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Abstract

The effects of ultra high intensity laser radiation on dynamical processes such as electron scat-

tering, bremsstrahlung emission, pair production, etc. have recieved growing theoretical interest

as laser intensities in the laboratory continue to increase. Recently, for example, a calculation was

published that predicted more than four orders of magnitude resonant increases in bremsstrahlung

emission in the presence of intense optical laser radiation [A. A. Lebed and S. P. Roshchupkin,

Phys. Rev. A, 81, 033413 (2010)]. The analysis in this paper was limited to laser intensities

≤ 1017 W/cm2, and it was applied only to bremsstrahlung emissions at the laser frequency. In the

present paper, we extend this Lebed and Roshchupkin analysis in order to assess the possibility

of achieving some enhancement to bremsstrahlung emissions at significantly higher harmonics of

the optical laser photon energies (∼ 6 keV) and thereby to appraise whether or not enhanced

bremsstrahlung emissions may have played a hidden role in producing the population inversions

and kilovolt x-ray amplifications that have been seen experimentally [A. B. Borisov, et. al., J.

Phys. B, 40, F307 (2007)]. In these experiments, light from a KrF laser was focused onto a gas of

xenon clusters to intensities >∼ 1019 W/cm2. A model of the expansion and ionization dynamics of

a xenon cluster when heated by such laser intensities has been constructed [Tz. B. Petrova, et.

al., High Energy Density Phys., 8, 209 (2012)]. It is capable of replicating the x-ray gains seen

experimentally, but only under the assumption that sufficiently high inner-shell photoionization

rates are generated in the experiments. We apply this model to show that such photoionization

rates are achievable, but only if there are three to four orders of magnitude enhancements to the

Bethe-Heitler bremsstrahlung emission rate. Our extended analysis of the Lebed and Roshchupkin

work shows, for there to be emissions (enhanced by four orders of magnitude or not) at high order

KrF-laser harmonic energies, that laser intensities >∼ 1019 W/cm2 must be reached. Thus, further

extensions of these calculations (or experimental measusurements) are needed to detemine whether

the enhancement factors that are predicted for small laser harmonics at laser intensities <∼ 1017

W/cm2 can be extrapolated to large laser harmonics at laser intensities >∼ 1019 , which are shown

in our work to be needed in order to produce high laser harmonic kilovolt emissions.
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I. INTRODUCTION

The relativistic calculation of the bremsstrahlung emission cross section in the absence of

an external laser field has long been known and is well described in Ref. [1]. More recently,

there has been a growing interest in the calculation of cross sections for bremsstrahlung

emission and inverse bremsstrahlung absorption in the presence of intense laser fields[2–6].

In the presence of intense laser light (Ilaser ∼ 1017 W/cm2), for example, four or more orders

of magnitude enhancements to the bremsstrahlung cross section have been predicted[2] for

the special case of emission at the same frequency as the laser light. This result was derived

under the restriction that the laser intensity was ≤ 1017 W/cm2 so that, in particular, a

lowest order Taylor series expansion of a Bessel function could be employed in the analysis

and that alterations to the electron’s 4-momenta could be ignored.

The development of ultra-high intensity KrF lasers, which have photon energies of 5

eV and intensities ≥ 1019 W/cm2, has allowed experiments to be conducted in which x-

ray amplification at 2.8 Å was observed[7] when a gas of xenon clusters was irradiated

with intensities ≥ 1019 W/cm2. Recently, in an attempt to determine whether the gain

coefficient data that was inferred from these experiments could be modeled and thereby

replicated theoretically, a time dependent molecular-plus-ionization dynamic xenon model

was constructed[8, 10]. A key element in its development was the assumption that inner-

shell photoionization processes dominate over inner-shell collisional processes in creating

the hole states that produced the amplification. A second key element was the model’s use

of inner-shell photoionization rates shaped by Bethe-Heitler bremsstrahlung’s density and

temperature dependences and of magnitudes sufficient to produce the population inversions

and gains that had been inferred from the experimental data. For these conditions on

the size and shape of the photoionization rates to be satisfied, photon fluxes at and above

5.6 keV have to be of sufficient magnitude, in turn, to produce these large and needed

photoionization rates. A promising source for such fluxes was thought to be enhanced

bremsstrahlung emission in the presence of intense laser light, which is the photon source

investigated in this paper. For such enhanced emissions to be theoretically feasible, two

extensions of the calculations described in Ref. [2] are needed, one of which is described in

this paper: namely, the extension of the theory to much higher harmonics of the fundamental

laser frequency.
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The bremsstrahlung cross-section calculations of Ref. [2] must also be extended to higher

laser intensity levels at which the size of a dimensionless parameter, η0, approaches and

begins to exceed one. An exact semi-classical calculation of the bremsstrahlung cross section

in the presence of an intense light field is difficult to carry out for a variety of reasons that

are described in the formulation of the problem given in Refs.[2–4]. In this paper, therefore,

we will calculate an enhancement factor for values of η0 less than, but approaching, one,

leaving open the question as to whether such enhancements remain intact as η0 → 1. The

main focus of this paper is on the more limited problem of extending the analysis of Ref.[2]

to determine the laser intensity requirements that would be needed to produce enhanced

bremsstrahlung emissions at high KrF-laser frequency harmonics above 5.6 keV. As noted in

Ref. [2], the amount of enhanced kilovolt emission is a quantity ultimately to be determined

by experiment. Bessel function theory suggests that enhancements out to kilovolt energies

are possible. Finally, therefore, a power output versus input argument is used to show

that three to four orders of magnitude enhancements of the bremsstrahlung emissions at

Ilaser ≥ 1019 W/cm2 would be sufficient to produce the required inner-shell photoionization

rates needed to produce the observed x-ray amplification. The combined molecular and

ionization dynamics model described in Refs. [9, 10] is employed to make this demonstration.

This paper is structured, therefore, as follows. In Section II, the preliminaries to a semi-

classical bremsstrahlung calculation are taken intact from Ref. [2]. In this formulation of the

bremsstrahlung problem, η0-modifications to the electron’s initial and final 4-momentum,

which are described in Ref. [3], are ignored and the limitation that η0 <∼ 0.3 is implicitly

assumed. In Section III, the formula for the bremsstrahlung emission cross section in the

absence of an intense laser field is then extracted from this formalism as prelude to a repeat

of this calculation in the presence of an intense laser field. In each of these cross-section cal-

culations, four terms are to be evaluated, arising from the two lowest-order bremsstrahlung

S-matrix elements. As was done in Ref.[2], however, we focus on the calculation of just one

of these terms, and, as in Ref.[2], we average the cross-sections over electron spin and photon

polarization. In the absence of laser light, this averaging leads to the evaluation of a trace

over the product of four Dirac gamma matrices. In the presence of laser light, on the other

hand, this same calculation also involves traces over the product of six and eight gamma ma-

trices in addition to the trace over the product of four gamma matrices. The evaluations of

these traces contain 15, 105, and 3 terms respectively. For simplicity, therefore, only terms
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involving four gamma matices are computed. These calculations allow a formula for the

chosen cross-section term to be derived in Section IV for kilovolt bremsstrahlung emissions

that reduces, as it should, to the cross section term that is calculated in the absence of a

laser field. The cross section in the presence of laser light contains Bessel functions whose

arguments are functions of unrestricted laser field strengths. A comparison of these two

cross-section terms then allows an estimate of the enhancement factor for bremsstrahlung

emission in the presence of an intense laser field to be computed for values of η0 <∼ 0.5.

Theoretically, it is an open question as to how this enhancement holds up as η0 → 1 and

corrections to the initial and final 4-momenta of the electron enter the calculation in addition

to the above mentioned neglected terms.

We address this question in Section V in a different set of calculations, which give indirect

supporting theoretical evidence for the existence of enhanced bremsstrahlung emission in an

intense laser field. The combined molecular/ionization dynamic model of Refs. [9, 10] is

used in this section to compute the dynamical response of a xenon cluster of 200 atoms to

an intense pulse of KrF laser radiation that is taken to peak at an intensity of 2 × 1019

W/cm2, which is comparable to the intensities achieved in the experiments of Ref.[7]. In

a molecular dynamics calculation, average electron and ion densities and effective electron

and ion temperatures are first calculated in response to this KrF pulse. These quantities

are then used as input to an ionization dynamics calculation in which photoionization rates

were chosen to correlate with the field-free bremsstrahlung emission rate and that were taken

to have a peak value that produces the population inversions and the x-ray amplifications

at 2.8 Å that were measured in the experiments[7]. Using these rates, one computes a

photoionization power input to the cluster. It is found to compare favorably to the enhanced

(by a factor of 4.5 × 103) field-free bremsstrahlung power output that is calculated using

the averaged temperatures and densities derived from the molecular dynamics calculation.

Finally, this work is summarized in Section VI.
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II. BREMSSTRAHLUNG EMISSION IN THE PRESENCE OF AN INTENSE

LASER FIELD

A. Preliminaries

In this section, a brief summary is given of a slightly revised version of the semi-classical

theory of bremsstrahlung emission in the presence of an intense laser field that is given in

Ref. [2]. As was noted in Ref. [2], two dimensionless parameters, η0 and γ0, play important

roles in the bremsstrahlung analysis that follows:

η0 ≡
eF0

m0c2
1

k
, γ0 ≡ η0

m0c
2βi

h̄ω
=

eF0βi

h̄ω

1

k
. (1)

Here, k = ω/c is the laser wave number, F0 is the electric field strength at the peak of the

laser pulse, m0 and e are respectively the electron mass and charge, and βi = vi/c is the

electron velocity relative to the speed of light. F0 and η0 are given in terms of the peak laser

intensity, Imax
ℓaser, by

F0

[
statvolt

cm

]
=

√
8π

c
Imax
ℓaser = 9.156× 10−2

√
Imax
ℓaser [W/cm2],

η0 = 2.12× 10−10
√
Imax
ℓaser [W/cm2]. (2)

Thus, for example, when Imax
ℓaser = 1019 W/cm2, η0 = 0.67 and F0 = 8.69× 1010 V/cm.

As in Refs. [1] and [2], relativistic units in which h̄ = c = 1 are used in this paper and

4-vector scalar products are taken to be given by (ab) ≡ a0b0 − a · b. Also, as in Ref. [2],

the classical laser field is represented by the vector potential (describing circularly polarized

light for its simplicity in this analysis),

A(ϕ) =
F0

ω
g
(
ϕ

ωτ

)(
ex cosϕ+ ey sinϕ

)
, (3)

where

ϕ ≡ (kx) = ω(t− z), k ≡ (ω,~k) = ω(1, 0, 0, 1) ≡ ωn (4)

and

ex ≡ (0, ex),≡ (0, 1, 0, 0), ey ≡ (0, ey),≡ (0, 0, 1, 0),

e2x ≡ (exex) = e2y = −1, (exk) = (eyk) = 0. (5)
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FIG. 1. The Feynman diagram depicting the electron bremsstrahlung emission assisted by an r

laser photon absorption that is followed by the scattering of the electron from an ion of charge, Ze,

and the absoption or emission of s laser photons.

Similar to the definition of the four vector n = (1, 0, 0, 1) ≡ (1, n̂), where n̂ = (0, 0, 1) = ez,

we will also use the notation, k′ ≡ ω′n′ ≡ ω′(1, n̂′).

In Ref. [1], the envelope function of the laser pulse, g, was taken to have an exponential

fall-off: gLR(φ) ≡ exp (−4φ2), where φ ≡ ϕ/(ωτ) = (t− z)/τ and τ is the laser pulsewidth.
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FIG. 2. The Feynman diagram depicting the electron bremsstrahlung emission assisted by an r

laser photon absorption that follows the scattering of the electron from an ion of charge, Ze, with

the absoption or emission of s laser photons.

However, for mathematical expediency, in this paper, g is taken to be a square-wave pulse:

g(φ) = g0η+(φ+ 1/2)
(
1− η+(φ− 1/2)

)
, (6)

where η+(φ) = 1 when φ > 0; η+(φ) = 1/2 when φ = 0; and η+(φ) = 0 when φ < 0. Note

that by taking g0 =
√
π/2 = 0.886, the areas under both envelope curves, gLR and g, are

the same:
∫
∞

−∞
dφgLR =

∫
∞

−∞
dφg =

√
π/2. With this choice of envelope function, Bessel
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functions, Jn, of argument gγ also become square wave functions and can be written as

Jn(gγ) = Jn(g0γ)η+(φ+ 1/2)
(
1− η+(φ− 1/2)

)
+ δn0

(
1 + η+(φ− 1/2)− η+(φ+ 1/2)

)
. (7)

This latter term is present because Jn(0) = δn0. However, its presence in the following

analysis can be ignored, so that

Jn(gγ) = Jn(g0γ)η+(φ+ 1/2)
(
1− η+(φ− 1/2)

)
. (8)

is employed in each of the following calculations.

In the semi-classical QED theory described in Ref. [2], the momentum transfer, qi, at each

of the two vertices in Fig. 1 includes contributions from r and s laser photons, respectively:

qi = pi − k′ + rk, (9)

qi = pf − q + sk, (10)

The 4-vectors, pi and pf are the initial and final 4-momentum vectors of the scattered

electron respectively, k′ and k are the 4-momentum of the bremsstahlung and laser photons,

respectively, and q = (q0, ~q) is the 4-momentum transfered to the ion off of which the electron

is scattered. Note that

pi = (Ei, ~pi), pf = (Ef , ~pf), k′ = ω′(1, n̂′), k = ω(1, n̂), (11)

where

p2i = E2
i − ~pi · ~pi = m2

0, k′2 = ω′2(1− n̂′ · n̂′) = 0 = k2. (12)

Taken together the qi energy-momentum relations imply

q = pf − pi + k′ + (s− r)k. (13)

But because the ion is taken to be infinitely heavy in bremsstrahlung calculations, it absorbs

effectively no energy from the scattering and therefore,

q0 = Ef −Ei + ω′ + (s− r)ω = 0, (14)

from which equation, one derives the bremsstrahlung energy conservation relation,

ω′ = Ei − Ef + (r − s)ω. (15)
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Thus, in the presence of an intense laser field, a bremsstrahlung photon can acquire its

energy either entirely from the electron, entirely from the laser field in the form of a laser

harmonic, or from a combination of the two. Likewise, in the exchange reaction depicted in

Fig. 2, we have that

qf = pf + k′ − rk, (16)

qf = pi + q − sk, (17)

which again implies that

q = pf − pi + k′ + (s− r)k. (18)

and that

ω′ = Ei − Ef + (r − s)ω. (19)

B. Semi-classical S-matrix theory

We begin our analysis with the formula given in Ref. [2] for the S-matrix element for the

scattering of an electron in the field of a heavy, stationary ion that results in the absorption

or emission of r−s photons from the laser field and the emission of a bremsstrahlung photon.

Semi-classically,

Sfi → Sfi
rs , where −∞ < r < ∞, −∞ < s < ∞, (20)

and

Sfi
rs = −ı

Ze3
√
π√

2ω′EfEi

uf (Brsi +Brsf)ui, (21)

where uf and ui are Dirac spinors for the final and initial states of the scattered electron

and, from Ref. [2],

Brsi =
2ω

| ~q |2 +q0(q0 − 2qz)

∫
∞

−∞

dξ
Λ(1)

s (ξ)(q̂i +m0 + k̂ξ)Λ
(2)
−r( xi)

q2i −m2
0 + 2(kqi)ξ

, (22)

Brsf =
2ω

| ~q |2 +q0(q0 − 2qz)

∫
∞

−∞

dξ
Λ

(3)
−r(ξ)(q̂f +m0 + k̂ξ)Λ(4)

s ( xi)

q2f −m2
0 + 2(kqf )ξ

. (23)

The matrix functions, Λ(1)
s (ξ), · · · ,Λ(4)

s (ξ), are defined by

Λ(1)
s (ξ) = τ

∫
∞

−∞

dφγ̃0Ls(φ | χpfqi, γpfqi) exp
[
ı
(
q0 − ξω

)
τφ
]
, (24)
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Λ
(2)
−r(ξ) = τ

∫
∞

−∞

dφ′F−r(φ
′ | χqipi, γqipi) exp

[
ı
(
ξωτ

)
φ′
]
, (25)

Λ
(3)
−r(ξ) = τ

∫
∞

−∞

dφ′F−r(φ
′ | χpfqf , γpfqf ) exp

[
ı
(
ξωτ

)
φ′
]
, (26)

Λ(4)
s (ξ) = τ

∫
∞

−∞

dφγ̃0Ls(φ | χqfpi, γqfpi) exp
[
ı
(
q0 − ξω

)
τφ
]

(27)

and the functions, Ls(φ | χpf qi, γpfqi), · · · ,Ls(φ
′ | χqfpi, γqf ,pi), by

Ls(φ | χpf qi, γpfqi) ≡ exp
(
−ısχpf qi

)
Js(γpfqi), (28)

F−r(φ
′ | χqipi, γqipi) ≡

[
ǫ̂∗J−r(γqipi) + (e+b) exp

(
−ıχqipi

)
J1−r(γqipi)

]
exp

[
ırχqipi

]
, (29)

F−r(φ
′ | χpf qf , γpfqf ) ≡

[
ǫ̂∗J−r(γpfqf ) + (e+b

′) exp
(
−ıχpf qf

)
J1−r(γpfqf )

]
exp

[
ırχpf ,qf

]
,(30)

Ls(φ | χqfpi , γqfpi) ≡ exp
(
−ısχqfpi

)
Js(γqfpi) (31)

where

e+ ≡ ex + ıey, ǫ̂∗ ≡ (ǫ∗γ̃), (32)

b ≡ 1

4
η0g(φ

′)m0

(
ǫ̂∗k̂γ̃

(kpi)
+

γ̃k̂ǫ̂∗

(kqi)

)
, b′ ≡ 1

4
η0g(φ

′)m0

(
ǫ̂∗k̂γ̃

(kpf )
+

γ̃k̂ǫ̂∗

(kqf)

)
, (33)

χpf ,qi ≡ arctan

(
(eyQpfqi)

(exQpfqi)

)
, χqipi ≡ arctan

(
(eyQqipi)

(exQqipi)

)
. (34)

γpfqi ≡ η0g(φ
′)m0

√
(exQpfqi)

2 + (eyQpf qi)
2 ≡ g(φ′)γ′pfqi, (35)

γqipi ≡ η0g(φ
′)m0

√
(exQqi,pi)

2 + (eyQqi,pi)
2 ≡ g(φ′)γ′qipi (36)

and

Qpf qi ≡
pf

(kpf)
− qi

(kqi)
, Qqipi ≡

qi
(kqi)

− pi
(kpi)

. (37)

Four-vector quantities with hats over them represent 4-vector dot products with the Dirac

gamma matrices, e.g.,

q̂i ≡ qµi γ̃µ = q0γ̃0 − ~q · ~̃γ ≡
(
qiγ̃
)
, γ̃µ ≡

(
γ̃0, γ̃1, γ̃2, γ̃3

)
. (38)

As can be seen from Eqs. (22)-(37), the analyses of Brsi and Brsf proceed along similar

lines, and thus, as in Ref. [2], we focus principally on the analysis of Brsi. Using Eq. (8),

one can rewrite Eq. (28), for example, as

Ls(φ | χpf qi, γpfqi) = exp
(
−ısχpf qi

)
Js(g0γ

′

pfqi
)η+(φ+ 1/2)

(
1− η+(φ− 1/2)

)
(39)
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and thus evaluate Eq. (24) as

Λ(1)
s (ξ) = τ γ̃0 exp

(
−ısχpf qi

)
Js

(
g0γ

′

pfqi

) ∫ 1/2

−1/2
dφ exp

[
ı
(
q0 − ξω

)
τφ
]

= γ̃0 exp
(
−ısχpf qi

)
Js

(
g0γ

′

pfqi

) 2(
q0 − ξω

) sin
[(

q0 − ξω
)
τ

2

]
. (40)

But, in the limit of sufficiently large τ , one can make use of

lim
τ→∞

1

π
(
q0 − ξω

) sin
[(

q0 − ξω
)
τ

2

]
= δ

(
q0 − ξω

)
, (41)

to approximate Λ(1)
s (ξ) by

Λ(1)
s (ξ) ∼= 2πγ̃0L

′

sδ
(
q0 − ξω

)
. (42)

where

L′s

(
χpfqi, γ

′

pfqi

)
≡ exp

(
−ısχpf qi

)
Js

(
g0γ

′

pfqi

)
(43)

Finally, in order to keep our (approximate) analysis of Sfi
rs close to that of Sfi

r=0,s=0, we

set b = b′ = 0 and approximate F′
−r by

F′
−r

∼= ǫ̂∗L′
−r

(
χqipi, γ

′

qipi

)
η+(φ+ 1/2)

(
1− η+(φ− 1/2)

)

= ǫ̂∗ exp
(
ırχqipi

)
J−r

(
g0γ

′

qipi

)
η+(φ+ 1/2)

(
1− η+( phi− 1/2)

)
. (44)

Then,

Λ
(2)
−r(ξ) ∼= 2πδ

(
ξω
)
ǫ̂∗L′

−r (45)

When Eqs. (42)-(45) are inserted into Eq. (22), one finds that

ufBrsiui
∼= 8π2

| ~q |2uf
L′sγ̃0(q̂i +m0)ǫ̂

∗L′
−r

q2i −m2
0

uiδ
(
q0
)
. (46)

Similarly, one would derive that

ufBrsfui
∼= 8π2

| ~q |2uf
L′′
−r ǫ̂
∗(q̂f +m0)γ̃0L

′′

s

q2f −m2
0

uiδ
(
q0
)
, (47)

where L′′s and L′′
−r are derived from L′s and L′

−r by the replacement of χpf qi and γ′pfqi by

χqfpi and γ′qfpi.
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C. Resonant denominators

Eqs. (46) and (47) contain two denominators that can be evaluated using the extended

semi-classical energy-momentum relationships of Eqs. (9), (10), (16), and (17). From Eq. (9),

for example,

q2i −m2
0
∼= 2r(pik)− 2(pik

′)− 2r(kk′). (48)

Similarly,

q2f −m2
0
∼= −2r(pfk) + 2(pfk

′) + 2r(kk′). (49)

In this paper, we are interested in bremsstrahlung emissions that are capable of photoionizing

n=2 electrons from the M-shell ions of xenon. The energy range of interest, therefore,

is roughly 5.6 keV <∼ ω′ <∼ 10 keV, which is to be compared to Ei > 511 keV and to

|~pi| ∼ 200− 300 keV. Thus, on defining five angles, θi, θ
′

i, θf , θ
′

f , and θ, by

(pik) ≡ ω
(
Ei − |~pi| cos θi

)
, (pik

′) ≡ ω′
(
Ei − |~pi| cos θ′i Bigr), (50)

(pfk) ≡ ω
(
Ef − |~pf | cos θf

)
, (pfk

′) ≡ ω′
(
Ef − |~pf | cos θ′i Bigr), (51)

and

(kk′) ≡ ωω′
(
1− cos θ

)
, (52)

one finds that

q2i −m2
0 = 2ω′|~pi|

(
cos θ′i − cos θi −

ω′

|~pi|
(
1− cos θ

))
, (53)

q2f −m2
0 = −2ω′|~pf |

(
cos θ′f − cos θf −

ω′

|~pf |
(
1− cos θ

))
, (54)

when the resonance condition, ω′ = rω, is satisfied, where

cos θ = cos θ′i cos θi + sin θ′i sin θi cosφi (55)

= cos θ′f cos θf + sin θ′f sin θf cosφf . (56)

Note that the resonance condition together with Eq. (15) imply that

Ef = Ei − sω, (57)

i.e., when rω laser photons are emitted (r > 0) as a form of harmonically generated

bremsstrahlung, electrons are simultaneously being cooled (s > 0) or heated (s < 0) by

stimulated emission or absorption of sω laser photons.
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Eqs. (53) and (54) show that the energy denominators of Brsi and Brsf will vanish at

a resonance when the bremsstrahlung photon is emitted at an angle, θ′i,f , relative to the

initial or final momentum of the electron that is approximately equal to the angle, θi,f , of

the laser beam relative to these momenta. This resonance condition is approximate because

of the presence of the (kk′) term. Since ω′/|~pi| = O(1/10) is a small quantity, a correction to

the resonance at the angles, θi,f , can be obtained as follows. On substituting Eq. (55) into

Eq. (53), an integration over the angles of the bremsstrahlung emission, dΩ′ = sin θ′idθ
′

idφi,

of the energy denominator, 1/(q2i −m2
0)

2, and one encounters an integration of the form,

I0 =
∫ 2π

0
dφ

1

(a + b cosφ)2
=

2πa

(a2 + b2)3/2
, (58)

where, for example, b = (ω′/|~pi|) sin θ′i sin θi. Since b2 = O((ω′/|~pi|)2), this term can be set

to zero yielding I0 ∼= 2π/a2, where

a = cos θ′i − cos θi −
ω′

|~pi|
(
1− cos θi cos θ

′

i

)

=

(
1 +

ω′

|~pi|
cos θi

){
cos θ′i −

(
cos θi + ω′/|~pi|

)

1 +
(
ω′/|~pi|

)
cos θi

}
. (59)

Thus, Eqs.(53) and (54) can be rewritten as

q2i −m2
0
∼= 2ω′|~pi|

(
1 +

ω′

|~pi|
cos θi

)(
cos θ′i − cos θresi

)
, (60)

q2f −m2
0
∼= −2ω′|~pf |

(
1 +

ω′

|~pf |
cos θf

)(
cos θ′f − cos θresf

)
, (61)

where

cos θresi ≡ cos θi + ω′/|~pi|
1 +

(
ω′/|~pi|

)
cos θi

(62)

cos θresf ≡ cos θf + ω′/|~pf |
1 +

(
ω′/|~pf |

)
cos θf

. (63)

In the case, therefore, where τ → ∞, both Brsi and Brsf become infinite at θ′i = θresi and

at θ′f = θresf respectively. For a finite τ , however, we can borrow from Ref.[2] and replace

Eqs. (60) and (61) with

q2i −m2
0
∼= 2ω′|~pi|

(
1 +

ω′

|~pi|
cos θi

)(
cos θ′i − cos θresi + ıC i

τ

)
, (64)

q2f −m2
0
∼= −2ω′|~pf |

(
1 +

ω′

|~pf |
cos θf

)(
cos θ′f − cos θresf + ıCf

τ

)
, (65)
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where, from Eqs. (72)-(88) of Ref.[2],

C i
τ =

(kqi)

ω′|~pi|
2√
a2ωτ

, (66)

Cf
τ =

(kqf )

ω′|~pf |
2√
a2ωτ

(67)

and a2 ∼= 0.5.

An estimate for the size of C i
τ that is of interest to the 2.8 Å x-ray lasing experiment

can be made as follows. In accord with the experiments of Refs.[7] and in keeping with the

photon spectrum[9, 10] needed for the photoionization of n=2 inner-shell electrons, we take

for a 50 keV electron, for example, h̄ω = 5 eV, h̄ω′ ≥ 5.6 keV, m0c
2 ∼= 511 keV, |~pi|c ∼ 240

keV, vi ∼ 0.42, ω = 7.6× 1015 s−1, and τ ∼= 250× 10−15s.

(kqi) ∼= (kpi) = ω
(
Ei − n̂ · ~pi

) ∼= ω
(
Ei − |~pi| cos θi

)∣∣∣
cos θi=1

= m0ω

(
1− vi√
1− v2i

)∣∣∣∣∣
vi=0.42

∼= 0.64m0ω. (68)

Therefore, on putting back the h̄’s and c’s:

C i
τ
∼= 2

√
2× 0.64

(
h̄ω

h̄ω′

)(
m0c

2

|~pi|c

)(
1

ωτ

)
∼ 1.8

(
0.9

103

)
2.1

(
1

7.6 ∗ 250

)
∼ 2× 10−6. (69)

The smallness of C i
τ produces a large amplification factor to the bremsstrahlung emission

rate when either θ′i = θresi or θ′f = θresf . Since the laser pulse in the experiments propagates

a couple of millimeters in a narrow channel through the gas of xenon clusters, enhanced

bremsstrahlung emissions above 5.6 keV within the channel would act to generate L-shell

hole states along the way.

III. THE BREMSSTRAHLUNG CROSS-SECTION IN THE ABSENCE OF AN

INTENSE LASER FIELD

In the absence of an external field (F0 = 0), the parameter η0 vanishes [Eq. (1)] and thus

γpfqi = γqipi = γpfqf = γqfpi = 0, (70)

yielding

L′s = L′′s = δs0, L′
−r = L′′

−r = δr0. (71)
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In this case, Eq. (21) becomes [on substituting Eqs. (71) into Eqs. (46) and (47)]:

Sfi
00 = −ı

Ze3
√
π√

2ω′EfEi

8π2

|~q|2 uf

{
γ̃0
(
(qiγ̃) +m0

)
(ǫ∗γ̃)

q2i −m2
0

+
(ǫ∗γ̃)

(
(qf γ̃) +m0

)
γ̃0

q2f −m2
0

}
uiδ
(
q0
)
, (72)

where qi = pi − k′ and qf = pf + k′ [Eqs. (9) and (16)] and δ(q0) = δ(ω′ + Ef −Ei).

To summarize briefly, the differential cross section, dσfi, for radiating a bremsstrahlung

photon of frequency, ω′, in the absence of an external (classical) radiation field, is obtained

from |Sfi
00|2 by multiplying in a phase-space-factor and making a flux division[1]:

dσfi =
1

|~vi|
1

T

∣∣∣Sfi
00

∣∣∣
2 d3pf
(2π)3

d3k′

(2π)3
, (73)

where T is an observation time, T >∼ τ and one takes T = 2πδ(0) = 2πδ(ω′ +Ef −Ei)[1] to

cancel out one of the energy delta functions present in
∣∣∣Sfi

00

∣∣∣
2
. Eq. (73) can now be rewritten

as

dσfi =
Z2e6

|~vi|
(2π)4

ω′EfEi

1

|~q|4
∣∣∣ǫµMµ(k

′)
∣∣∣
2
δ
(
ω′ + Ef −Ei

) d3pf
(2π)3

d3k′

(2π)3
, (74)

where, on use of q2i −m2
0 = −2(pik

′) and q2f −m2
0 = 2(pfk

′),

Mµ(k
′) ≡ ufM̂µ(k

′)ui (75)

and

M̂µ(k
′) ≡

γ̃0
(
(qiγ̃) +m0

)
γ̃µ

2(pik′)
−

γ̃µ
(
(qf γ̃) +m0

)
γ̃0

2(pfk′)
. (76)

A cross section for unpolarized bremsstrahlung production from the scattering of un-

polarized electrons can now be obtained from dσfi by summing over polarizations and by

summing and averaging over spins:

d〈σ〉fi = Z2e6

|~vi|
(2π)4

ω′EfEi

F

|~q|4 δ
(
ω′ + Ef −Ei

) d3pf
(2π)3

d3k′

(2π)3
, (77)

where

F ≡ 1

2

2∑

λ′=1

∑

si,sf

∣∣∣ǫµ(k′, λ′)uf (sf)M̂µui(si)
∣∣∣
2

=
1

2

2∑

λ′=1

ǫµ(k
′, λ′)ǫ∗ν(k

′, λ′)Tr
{
M̂µ

(
(piγ̃) +m0

)
M̂ν+

(
(pf γ̃) +m0

)}
. (78)

By substituting

d3pf = |~pf |EfdΩfdEf , d3k′ = ω′2dΩ′dω′, (79)
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and by noting that the initial electron velocity, |~vi|, is given by |~vi| = |~pi|/Ei, one can then

carry out the Ef integration to write the bremsstrahlung cross section in the form,

d〈σ〉fi
dΩ′dω′dΩf

=
|~pf |
|~pi|

Z2e6ω′F

|~q|4
1

(2π)2
η+(Ei −m0 − ω′). (80)

Because Eq. (76) implies that k′µM̂
µ = 0, one can rewrite F in a relativistically invariant

form as

F = −1

2
Tr
{
M̂µ

(
(piγ̃) +m0

)
M̂+

µ

(
(pf γ̃) +m0

)}
. (81)

Since M̂µ is made of two terms, F has four terms, which are denoted here using the same

notation as is found in Ref.[1] but with a different spinor normalization:

F = −1

8

{
1

(pfk′)2
F1 +

1

(pik′)2
F2 −

1

(pik′)(pfk′)

(
F3 + F4

)}
, (82)

As in Ref.[2], we are interested only in estimating the relative sizes of the bremsstrahlung

cross sections in the absence of and in the presence of an intense laser field. Given that each

of the four Fi, i = 1, · · · , 4 terms make comparable contributions to these cross sections,

and, as in Ref. [2], for algebraic simplicity, we focus here only on the F2 term in F and ratio

only the part of the two cross sections that contain this term, which is given by

F2 = Tr
{
γ̃0
(
(qiγ̃) +m0

)
γ̃µ
(
(piγ̃) +m0

)
γ̃µ
(
(qiγ̃) +m0

)
γ̃0
(
(pf γ̃) +m0

)}
, (83)

Again, from Ref.[1], in the absence of a laser field,

F2 = 16
{
m4

0 +m2
0

(
(p̃ipf)− (p̃fk

′)− (pik
′)
)
− (pik

′)(p̃fk
′)
}

= 16
{
m4

0 +m2
0

(
(p̃ipf)− ω′

[
(n′p̃f)− (n′pi)

])
− ω′2(n′pi)(n

′p̃f)
}
, (84)

where p̃i,f ≡ (Ei,f ,−~pi,f ). For the problem of interest, Ei and Ef ∼ 560 keV, |~pi| and
|~pf | ∼ 250 keV, and ω′ ∼ 6 keV. Thus, one can rewrite Eq. (84) as F2 = 16

(
m4

0+m2
0(p̃ipf )

)
+

(lower order terms), and approximate F2 by F2
∼= 16

(
m4

0 +m2
0(p̃ipf)

)
. On writing d〈σ〉fi =

∑4
n=1 d〈σn〉fi(Fn) and on using (pik

′) = ω′(Ei − |~pi| cos θ′i), one then finds that

d〈σ2〉fi
dω′dΩf

∼ −|~pf |
|~pi|

(
m4

0 +m2
0(p̃ipf)

)Z2e6ω′

|~q|4
1

2π2
η+(Ef −m0)×

∫ π

0
sin θ′idθ

′

i

∫ 2π

0
dφi

1

ω′2(Ei − |~pi| cos θ′i)2

= −2

π

(
m2

0 + (p̃ipf)
) |~pf |
|~pi|

Z2e6

ω′
1

|~q|4η+(Ei −m0 − ω′). (85)
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IV. THE BREMSSTRAHLUNG CROSS-SECTION IN THE PRESENCE OF AN

INTENSE LASER FIELD

A. Semi-classical cross section

Because the theory being used to calculate a bremsstrahlung cross section in the presence

of an intense laser field is part quantum electrodynamic and part classical, it inherently does

not allow the computation of a bremsstrahlung cross section from a given initial laser photon

number state, |N〉 to a final laser photon number state|N + s− r〉 (s− r < 0 or s− r > 0).

However, as was done in Ref. [2], we take the semi-classical definition of such a cross section

to be the following generalization of Eq. (73):

dσfi
rs =

1

|~vi|
1

T

∣∣∣Sfi
rs

∣∣∣
2 d3pf
(2π)3

d3k′

(2π)3
, (86)

In this case, the peak in laser intensity is given by Imax
ℓaser = F 2

0 /(8π) = Nω/V , where V is

the laser field’s quantization volume.

The dimensionless coupling strength, η0, given by Eq. (2), lies between values of 0.67 and

2.12 for strong laser fields for which, 1019 ≤ Iℓaser ≤ 1020 W/cm2, η0 and is, thus, not a good

expansion parameter. In this case, the substitution of Eq. (43) replaces that of Eqs. (71) in

Eq. (46). Note that, in general, there are two parts to F′
−r producing two parts to ufBrsiui.

However, in order to make a simplified comparison of bremsstrahlung formulas, with and

without the presence of an intense laser field, we shall set aside, as noted earlier, the b0

contributions to ufBrsiui, and analyze only the F2 contribution to it, which comes from the

Srsi part of S
fi
rs = Srsi + Srsf :

Srsi = −ı
Ze3

√
π√

2ω′EfEi

8π2

|~q|2uf

{
γ̃0
(
(qiγ̃) +m0

)
(ǫ∗γ̃)

q2i −m2
0

}
ui ×

exp
(
−ısχpf qi

)
Js

(
g0γ

′

pfqi

)
exp

(
ırχqipi

)
J−r

(
g0γ

′

qipi

)
δ
(
q0
)
, (87)

Thus, because q2i −m2
0
∼= 2ω′|~pi|

(
cos θ′i − cos θi + ıC i

r

)
[Eq. (64)],

dσ2
fi
rs =

1

|~vi|
1

T

∣∣∣Srsi

∣∣∣
2 d3pf
(2π)3

d3k′

(2π)3

=
Z2e6

|~vi|
1

ω′EfEi

(2π)4

|~q|4
∣∣∣ǫµM (2)

µ (k′)
∣∣∣
2∣∣∣Js

(
g0γ

′

pfqi

)∣∣∣
2∣∣∣J−r

(
g0γ

′

qipi

)∣∣∣
2

· δ
(
ω′ + Ef −Ei + (s− r)ω

) |~pf |EfdΩfdEf

(2π)3
ω′2dΩ′dω′

(2π)3
, (88)
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where

M (2)
µ (k′) = ufM̂r

(2)

µ (k′)ui. (89)

and

M̂r

(2)

µ (k′) ≡
γ̃0
(
(qiγ̃) +m0

)
γ̃µ

2ω′|~pi|
(
cos θ′i − cos θresi + ıC i

r

)
∣∣∣∣∣
qi=pi−k′+rk

. (90)

As before, one next needs to sum and average
∣∣∣ǫµM (2)

µ (k′)
∣∣∣
2
over spins as well as to sum

over polarizations. One then obtains

1

2

2∑

λ′=1

∑

si,sf

∣∣∣ǫµ(k′, λ′)uf(sf )M̂
(2)
µ ui(si)

∣∣∣
2

∼= −1

8

Tr
{
γ̃0
(
(qiγ̃) +m0

)
γ̃µ
(
(piγ̃) +m0

)
γ̃µ
(
(qiγ̃) +m0

)
γ̃0
(
(pf γ̃) +m0

)}

ω′2|~pi|2
{
(cos θ′i − cos θresi )2 + C i2

r

}

≡ −1

8

F2r

ω′2|~pi|2
{
(cos θ′i − cos θresi )2 + (C i

r)
2
} , (91)

Finally, on inserting Eq. (91) into Eq. (89) and on integrating the resulting equation over

Ef , one obtains

d〈σ2〉firs
dΩ′dω′dΩf

= − |~pf |
32π2ω′|~pi|3

Z2e6F2r

|~q|4
∣∣∣Js

(
g0γ

′

pfqi

)∣∣∣
2∣∣∣J−r

(
g0γ

′

qipi

)∣∣∣
2

· 1
(
cos θ′i − cos θresi

)2
+ (C i

r)
2
η+
(
Ei − ω′ − (s− r)ω −m0

)
. (92)

We note, because of qi’s dependence on rk, that F2 is modified from its value given in

Eq. (84). The (small) correction terms to it as well as those for F1, F3, and F4 are given in

Appendix I. Note further, as before, that had the b0 term been kept, there would be a trace

over eight, rather than four, gamma matrices to be evaluated. On following the procedures

for evaluating such traces, which are described in Ref. [1], one would derive an expression

containing 105 terms. Such a calculation is beyond the purview of this paper.

B. Bessel function analysis

Eqs. (91) and (92) add several correction terms to Eq.(80). One, a non-resonant denom-

inator has been replaced by a resonant one. Two, the F2 factor has been replaced by Fr2.

Three, in the scattering of an electron from an ion, the final electron energy, Ef , now equals

the initial energy of the electron minus the radiation energy emitted as bremsstrahlung and
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FIG. 3. The Bessel function, J1200, squared is shown as a function of its argument, x, in a region

surrounding the value of its index, 1200. Nonzero values of significance are reached only for

x >∼ 1200.
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FIG. 4. A sum over Bessel functions squared from J2
1200 to J2

1209 is shown for values of the argument

just below the Bessel function index to values well beyond. Oscillations are still present, but they

no longer go to zero as in Fig. 3.
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FIG. 5. Plots of ηcrit0 as a function of the cosine of the angle between the laser beam and the

propagation direction of the bremsstrahlung photons are shown for four different electron velocities,

vi, and for φ = 0. Two cases involving different angles of the bremsstrahlung emission with respect

to the incident momentum of the scattered electron are compared.

plus or minus any energy gained or lost to the laser field. And four, the strength by which

r + s laser photons are emitted or absorbed is tempered by the presence of the two Bessel

functions, whose strengths are determined by the magnitudes of their arguments, g0γ
′

pfqi

and g0γ
′

qipi
[see Figs. 3 and 4].
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FIG. 6. Plots of ηcrit0 as a function of the cosine of the angle between the laser beam and the

propagation direction of the bremsstrahlung photons are shown for four different electron velocities,

vi, and for φ = π/2. Two cases involving different angles of the bremsstrahlung emission with

respect to the incident momentum of the scattered electron are compared.

The definitions of γ′pfqi and γ′qipi are given in Eqs. (35) and (36). These expressions can

be rewritten using k = ω(1, 0, 0, 1), which implies

(kQqi,pi) = ω{Q0
qi,pi

−Q3
qi,pi

} = 0, → Q0
qi,pi

= Q3
qi,pi

. (93)

Thus, (exQ)2 + (eyQ)2 = (Q1
qipi

)2 + (Q2
qipi

)2 + (Q3
qipi

)2 − (Q0
qipi

)2 = −(QqipiQqipi) and, from
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FIG. 7. η0 as a function of laser intensity, Ilaser.

Eqs. (37),

γqipi = g0η0m0

√
−(QqipiQqipi)

=
g0η0m0

(kpi)(kqi)

√
2(piqi)(kpi)(kqi)− (qiqi)(kpi)2 − (pipi)(kqi)2. (94)

Finally, because (kqi) = (kpi)− (k′k), (qiqi) = m2
0 − 2(k′pi) + 2r(kpi)− 2r(k′k), and (piqi) =

m2
0 − (k′pi) + r(kpi) and since ω′ = rω, one then finds that

g0γ
′

qipi
= η0

g0m0 r

(npi)(nqi)

√
(n′n)

{
2(n′pi)(npi)−m2

0(n
′n)
}
≡ aqipiη0 r. (95)

Note, when η0 = 1/aqipi ≡ ηcrit0 , that γqipi = r and Jr(g0γ
′

qipi
) = Jr(r). Figs. 3 and 4 show r

to be close to the argument of the Bessel function, Jr, at which it reaches its highest value.

The 4-vector products in Eq. (95) involve the angles, θi and θ′i, defined in Eqs. (50) as

well as an angle, θ, defined in Eq. (52) as the direction of the laser photon relative to the

bremsstrahlung photon:

(nn′) = 1− cos θ. (96)

The angles between the three vectors, n̂, n̂′, and ~pi, are related by cos θ′i = cos θi cos θ +

sin θi sin θ cosφ. Moreover, (nqi) = (npi)−ω′(nn′) = Ei−|~pi cos θi|−ω′(1− cos θ). Thus, we

can take the three independent angular dependences in Eq. (95) to be θ, θi, and φ. Figs. 5

and 6 show how ηcrit0 varies for a variety of bremsstrahlung scatterings for an r value of 1200,
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in which ω′ = rω ≈ 6 keV. In these figures, the angle, θ, is varied between 0 and π for two

values of θi, two of φ, and four values of the electron velocity. Values of η0 are then shown

in Fig. 7 as a function of Imax
laser. Together, Figs. 5-7 show that η0 both reached and exceeded

critical values in a large variety of scattering angles and throughout the energy spectrum of

the electrons in the experiments of Ref. [7].

A similar analysis carried out for γpf ,qi begins, as above, from Eqs. (35) and (37):

g0γ
′

pfqi
= g0η0m0

√
−(Qpf qiQpfqi)

=
g0η0m0

ω(nqi)(npf)

√
2(pfqi)(nqi)(npf )− (qiqi)(npf )2 −m2

0(nqi)
2. (97)

and ends, using qi = pf − q + sk, with

g0γ
′

pf ,qi
=

g0η0m0

ω(nqi)(npf )

√
2(pfq)(nq)(npf)− (qq)(npf)2 −m2

0(nq)
2. (98)

Thus, the magnitude of γpf ,qi can be estimated as follows. All terms under the square root

are of order (m0|~q|)2. Therefore, since ~q ∼ m0~vi,f and m0/(nqi) = O(1), one has that

γ′pf ,qi = O

(
η0|~q|
ω

)
∼ O

(
η0m0vi

ω

)
= O

(
γ0
)
. (99)

The size of γ0 [see Eqs. (1)] varies with η0 and vi, but for η0 ∼ 1 and for a 50 keV electron

for which vi ∼ 1.36× 1010 cm/s, one finds that γ′pf ,qi ∼ m0vi/ω ∼ 104.

C. F2 enhancement factor

In order to compute a bremsstrahlung-like, harmonic generation rate for ω′ ∼= rω that

is independent of the laser heating or cooling rate of the electrons, one must sum Eq. (92)

over all s values:

d〈σ2〉fir
dΩ′dω′dΩf

≡
∞∑

s=−∞

d〈σ2〉firs
dΩ′dω′dΩf

∼= − |~pf |
32π2ω′|~pi|3

Z2e6Fr2

|~q|4
∣∣∣J−r

(
g0γ

′

qipi

)∣∣∣
2

· 1
(
cos θ′i − cos θresi

)2
+ C i2

r

∞∑

s=−∞

η+
(
Ei −m0 − sω

)∣∣∣Js

(
g0γ

′

pfqi

)∣∣∣
2
. (100)

In the problem we are considering, Ei −m0 lies in the tens of kilovolts range, while ω ∼ 6

eV; thus s ∼ 104. Using the Bessel function identity,
∑
∞

s=−∞

∣∣∣Js

(
γpfqi

)∣∣∣
2
= 1, one has that

∞∑

s=−∞

η+
(
Ei −m0 − sω

)∣∣∣Js

(
g0γ

′

pfqi

)∣∣∣
2
= 1−

∞∑

s=(Ei−m0)/ω

∣∣∣Js

(
g0γ

′

pfqi

)∣∣∣
2 ≡ α. (101)
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Again, because Ei > |~pi| >> ω′ for a 50 keV electron and a 6 keV bremsstrahlung photon,

one has that α ∼= 1/2. Therefore, on setting Fr2
∼= F2

∼= 16
(
m4

0 +m2
0(p̃ipf)

)
,

d〈σ2〉fir
dω′dΩf

∼= −
|~pf |

(
m4

0 +m2
0(p̃ipf)

)

πω′|~pi|3
Z2e6α

|~q|4
∣∣∣Jr

(
g0γ

′

qipi

)∣∣∣
2
∫ π

0

sin θ′dθ′
(
cos θ′i − cos θresi

)2
+ C i2

r

(102)

and since for very small C i
r,

∫ π

0

sin θ′idθ
′

i(
cos θ′i − cos θresi

)2
+ C i2

r

=
1

C i
r

{
arctan

(
1 + cos θresi

C i
r

)
+ arctan

(
1− cos θresi

C i
r

)}

∼= π

C i
r

, (103)

one has that

d〈σ2〉fir
dω′dΩf

∼= −
|~pf |

(
m4

0 +m2
0(p̃ipf )

)

ω′|~pi|3
Z2e6

|~q|4
α

C i
r

∣∣∣Jr

(
g0γ

′

qipi

)∣∣∣
2

(104)

Finally, from Eqs. (85) and (104), and for ω′ < Ei − m0, one obtains the following

enhancement factor, η2, derived from the F2r part of the bremsstrahlung emission cross

section in the presence of a high intensity laser field:

η2 ≡
d〈σ2〉fir
dω′dΩf

/
d〈σ2〉fi
dω′dΩf

=
π

2

m2
0

|~pi|2
∣∣∣Jr

(
g0γ

′

qipi

)∣∣∣
2 α

C i
r

. (105)

Using Eq. (66) (with α ∼= 1/2 and a0 ∼= 1/2), one estimates an enhanced bremsstrahlung

emission that is given by

η2 ∼=
π

8
√
2

m2
0

|~pi|2
∣∣∣Jr

(
g0γ

′

qipi

)∣∣∣
2 |pi|
(nqi)

(ω′τ). (106)

In the Refs. [7] xenon cluster experiments, the laser pulsewidth was τ ∼ 2.5× 10−13 s while

the bremstrahlung emissions of interest lie above 5.6 keV. In this case, ω′ ≥ 8.5×1018 s−1 and

ω′τ >∼ 2.1×106. Moreover, for a 50 keV electron for which Ei
∼= 560 keV and |~pi| ∼= 240 keV,

|~pi|/(nqi) ∼= |~pi|/(Ei − |~pi| cos θi) ∼= 1/2 and from Figs. 3 and 4, (m2
0/|~pi|2)

∣∣∣Jr

(
g0γ

′

qipi

)∣∣∣
2 ∼=

1.6× 10−2. Therefore, the estimated enhancement is

η2 ≈ 0.28× 1.6× 10−2 × 0.5(ω′τ) ≈ 4.5× 103. (107)

V. COMPARING TO EXPERIMENT: XENON PHOTOIONIZATION ABSORP-

TION RATES

In their paper on resonant spontaneous bremsstrahlung emission[2], Lebed and Roshchup-

kin conclude with the statement that their ”obtained results may be experimentally verified,
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FIG. 8. Laser intensity as a function of time used in the gain calculation that follows.

for example, by the scientific facilities at the SLAC laboratory”; in other words, the theoret-

ical prediction of enhanced bremsstrahlung emission that they had made needs experimental

confirmation. The extensions of their work that were made in this paper similarly need to

be confirmed.

In this section, we present results from a model calculation that offer indirect support

for the above predicted bremsstrahlung enhancement. The experiments that were modeled

are described in Ref. [7] and in the references cited therein. In these experiments, KrF laser

radiation was focused to intensities greater than 1019 W/cm2 in a gas of xenon clusters.

A prominant double humped collection of n=3 to n=2 radiative transitions, originating

from within the various M-shell ionization stages, was observed. Amplified x-ray emissions

at ∼ 2.8Å were also seen within this collection of lines. Moreover, η0 values >∼ 1 were

attained in these experiments, and thus, conditions were suitable for the production of

enhanced bremsstrahlung as described and predicted above. When they occur at laser

photon harmonics greater than 1120, these emissions have sufficient energies, ≥ 5.6 keV, to

begin photoionization of n=2 inner-shell electrons from within the xenon M-shell ionization

stages. However, the strength of such emissions has yet to be measured.

A theoretical model of a xenon cluster’s early-time dynamics was recently constructed[8–

10] in an effort to determine the mechanism by which such n=3 to n=2 x-ray amplifica-
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FIG. 9. Average xenon ion density declines rapidly as a function of time

tions could be generated. In this model, a molecular dynamics calculation of the cluster’s

early-time expansion and heating was combined with a detailed description of the cluster’s

ionization dynamics both in response to the same intense laser field. A basic assumption

made in this modeling was that hole states were generated preferentially by photoionization.

The rates of photoionization were determined by the requirement that the calculated gain

coefficients matched up with the measured ones. These calculations showed that large pho-

toionization rates were needed in order to theoretically replicate the measured gains. These

rates, in turn, produce large power inputs to the xenon ions. In this section, a calculation of

this power input is presented and compared to an enhanced Bethe-Heitler bremsstrahlung

power output. It is found that enhanced bremsstrahlung emission, if present in the experi-

ments, is of sufficient strength to be the driver of the inner-shell ionizations that are needed

to produce the x-ray amplifications seen in the Ref. [7] experiments.

The model calculation is carried out as follows. To begin, a prescribed, time evolving

laser intensity is used in the molecular dynamics calculation to obtain average electron and

ion densities, ne(t) and ni(t), and average effective electron and ion temperatures, Te(t)

and Ti(t), as functions of time. These values are stored and used as input to an ionization

dynamics calculation whose rate equations and gain coefficients depend on them. Ground

and excited state ion densities are calculated from the ionization dynamics model, and
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FIG. 10. Effective electron temperature as inferred from the calculated non-Maxwellian electron

distribution as a function of time.

fractional populations, fµ(t), are thus determined as a function of time. Three essential

features built into the rate equation dynamics are (1) tunneling ionization rates are included

as part of the dynamics of each ground and valence excited state, (2) there is no charge

neutrality in the calculations, i.e., ne(t) 6=
∑

µ Zµfµ(t)ni(t), and (3) both single and double

hole states are coupled self-consistently into the rate equations. In these calculations, hole

states are created by photoionization, at rates that are approximately determned by the

strength of the photoionization cross sections, and they are shaped approximately by Bethe-

Heitler bremsstrahlung emission rates, which are proportional to Te(t)ni(t)
2.

A typical calculation is illustrated in Figs. 8-14. Figure 8 shows the rise in laser intensity

used to drive the energy absorption, heating, and expansion of a xenon cluster consisting of

200 atoms. In the calculation, a peak intensity of 2×1019 W/cm2 is reached in 8 fs beginning

from an initial intensity of 3 × 1018 W/cm2. A fast rise in intensity from this initial value

completes the rapid tunnel ionization of a xenon atom through the N-shell, bringing almost

the entire cluster into the ground state of the Ni-like xenon ionization stage. In response to

the Fig. 8 rise in laser intensity, the cluster Coulomb explodes. Electrons are driven from

the cluster, and it rapidly expands (Fig. 9). Electrons undergo a rapid non-equilibrium rise

in energy, producing an effective rising temperature (Fig. 10), i.e., the electron distribution
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function generated in the molecular dynamics calculation is highly non-Maxwellian.

The calculated response of the ion populations to this rise in laser intensity, and to

the cluster’s heating and expansion, is shown in Fig. 11. Once intensity values greater

than 1019 W/cm2 are reached, effectively all of the xenon ions have been stripped of their

N-shell electrons (Fig. 11). At this point in the dynamics and somewhat thereafter, the

cluster consists predominantly of Ni-like ions in their ground state. The photoionization of

n=2 electrons, which is driven by enhanced bremsstrahlung emissions, can now take place

into the 2p3/2, 2p1/2, and 2s1/2 hole states of Co-like xenon. The magnitudes of the rates

that are used in this calculation to inner-shell ionize the ground state of Ni-like xenon into

these states is shown in Fig. 12. Their relative magnitudes reflect the relative strength of

the photoionization cross sections as well as the different energy thresholds, which, for the

2p3/2, 2p1/2, and 2s1/2 states, are 5653, 5975, and 6322 eV respectively in our calculations.

These ionization rates are shaped in time by a Te(t)
1/2ni(t)

2 time dependence taken from

the bremsstrahlung emissions, but the peak value of ∼ 1014 s−1 of the 2p3/2 photoionization

rate was specifically chosen to produce the calculated gain curves shown in Fig. 13. Given

a dilution factor of roughly 1/10 or more due to the gaseous structure of the cluster gain

medium, these gain coefficients compare favorably with the ones that were measured.

29



0 2 4 6 8 10
1012

1013

1014

2s1/2

2p1/2W
P

I  
(s

-1
)

time (fs)

2p3/2
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An important question is raised by these calculations; namely, are the rates shown in

Fig. 12 consistent with the enhanced bremsstrahlung emission rates calculated above? One

indicator that they are is presented in Fig. 14. In this figure, a comparison is made between

the power density, P PI, absorbed in the calculation by the photoionizations that generate

hole states to the bremsstrahlung power output density, PBrems, that is calculated in the

absence of an intense laser field, but that is enhanced by a factor of 4.5 × 103. This power

output was calculated using the formula given in Eq. 23 of Ref.[12],

PBrems ≡ niW (ν)dν =
128π2

3
√
3
niα

3Z2
(
nea

3
0

)( E0

Ryd

)
−1/2

dνgffRyd, (108)

where α ≡ e2/(h̄c), a0 = h̄2/(m0e
2), Ryd ≡ e2/(2a0). The power output was calculated over

a bandwidth, dν, of 6 keV from electrons whose energies were set at 40 keV, i.e., PBrems

was approximated by setting gff ∼= 1, E0 = 4× 104 eV, and h̄dν = 6 keV in this formula.

The calculated photoionization power input into the plasma is given by

P PI =
∑

µ,ν

nνW
PI
µ←ν

(
Eµ − Eν

)
, (109)

where Eµ and Eν are the energies of hole states and ground states respectively, nν are ground

state population densities, and W PI
µ←ν are the photoionization rates that connect them to

the hole states. As expected from Fig. 11, the photoionization power input peaks slightly
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photoionization.

before the time of peak gain and at a time near when the peak value of the Ni-like ground

state population is reached. Fig. 13 suggests that if an enhanced bremsstrahlung emission

of the strength shown in Fig. 14 takes place, it can provide the needed photon flux to create

the hole-state population inversions seen in the experiments.
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VI. SUMMARY AND CONCLUSIONS

In experiments in which KrF laser radiation was focused onto a cluster of xenon atoms

at peak intensities >∼ 1019 W/cm2, hole states within the M-shell ionization stages of xenon

were generated; i.e., emissions that result from the filling of these n=2 hole states were

prominant in the recorded x-ray spectra between 2.5 and 3 Å as were amplified line emissions.

A model, recently constructed to analyze the femtosecond cluster dynamics behind these

amplifications[8, 9], assumed that the n=2 hole states were generated by photoionizations.

It was found that large photon fluxes were needed in order to generate the gain coefficients

that were measured in the experiments. More flux was needed, for example, than is produced

by Bethe-Heitler bremsstrahlung, which is calculated in the absence of intense laser fields.

Recent work[2], on the other hand, has predicted a four or more order of magnitude increase

in bremsstrahlung emission rates when (1) it takes place in the presence of intense laser

fields, (2) it is at the laser frequency, and (3) it has intensities that are <∼ 1017 W/cm2. In

this case, energy is predicted to be taken from the laser field and converted into enhanced

bremsstrahlung emissions.

In this paper, the theory of Ref.[2] was first extended (η0 ∼ 0.1) and then extrapolated

(η0 → 1) to higher laser harmonics of relevance to the calculation of the photoionization

rates employed in Refs.[8–10]. By virtue of their dependence on Bessel functions, these

high laser harmonic bremsstrahlung emissions were found to require laser intensities: >∼ 1019

W/cm2. Thus, this requirement on laser intensity plays an important role both (1) in rapidly

stripping all N-shell electrons from a xenon atom in on the order of a femtosecond[8] and

(2) in exceeding (by extrapolation) the intensity threshold that would be needed to reach a

three to four order of magnitude enhancement of the bremsstrahlung emissions at energies

above 5.6 keV. Moreover, it was then shown that a four order of magnitude increase in the

power density output of Bethe-Heitler bremsstrahlung emission was consistent with (i.e., was

much greater than) the photoionization power density inputs that were needed to produce

the gains seen experimentally.

While this power input and output comparison is encouraging, it does not replace the

need for a direct experimental verification of this speculated upon enhanced bremsstrahlung

emission. However, experiments to confirm such enhancements must take into account

the predicted reabsorption of these emissions through inner-shell photoionization processes,
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especially if these processes occur by means of the process depicted by the Feynman diagram

shown in Fig. 15. In this figure, state, a, represents the ground state of a xenon ion and

state, b, represents a hole state. In this photoionization scattering process, both emission

and absorption are virtual processes in the sense that no radiation transport per se takes

place.

label command.

label command. the

Appendix A: Matrix Element Evaluations

Four traces defined by:

Fr1 = Tr
{
γ̃µ
(
(qf γ̃) +m0

)
γ̃0
(
(piγ̃) +m0

)
γ̃0
(
(qf γ̃) +m0

)
γ̃µ
(
(pf γ̃) +m0

)}
,

Fr2 = Tr
{
γ̃0
(
(qiγ̃) +m0

)
γ̃µ
(
(piγ̃) +m0

)
γ̃µ
(
(qiγ̃) +m0

)
γ̃0
(
(pf γ̃) +m0

)}
,

Fr3 = Tr
{
γ̃0
(
(qiγ̃) +m0

)
γ̃µ
(
(piγ̃) +m0

)
γ̃0
(
(qf γ̃) +m0

)
γ̃µ
(
(pf γ̃) +m0

)}
,

Fr4 = Tr
{
γ̃µ
(
(qf γ̃) +m0

)
γ̃0
(
(piγ̃) +m0

)
γ̃µ
(
(qiγ̃) +m0

)
γ̃0
(
(pf γ̃) +m0

)}
, (A1)

enter into the approximate evaluation of |Sfi
rs |2,where qi = pi−k′+ rk and qf = pf +k′− rk.

These traces are computed in Ref. [1] for the case r = s = 0:

F1 ≡ 16
{
m4

0 +
(
(pip̃f) + (k′p̃i) + (k′pf)

)
m2

0 − (k′pf)(k
′p̃i)

}
,

F2 = 16
{
m4

0 +
(
(pip̃f)− (k′p̃f)− (k′pi)

)
m2

0 − (k′pi)(k
′p̃f )

}
,

F3 = −8
{
m4

0 + 2
(
(pip̃f)− (Ef + Ei)

2 + ω′2
)
m2

0 + 2E2
f (k
′p̃i)

−2E2
i (k
′p̃f) + (pipf )

2 + (pip̃f )
2 + (pipf)(k

′pi) + (pip̃f)(k
′p̃i)

−(pip̃i)(pf p̃f)− (pipf)(k
′pf )− (pip̃f )(pip̃f)

}
,

F4 = F3, (A2)

and, when r 6= 0, they are approximately given by

Fr1 = F1 − 16(kpf)(kp̃i)r
2 − 16r

{(
(kp̃i) + (kpf) + 2(k′k)

)
m2

0

−(k′pf)(kp̃i)− (k′p̃i)(kpf) + (pip̃f)(k
′k)
}
,

Fr2 = F2 − 16(kpi)(kp̃f)r
2 + 16r

{(
(kp̃f) + (kpi)− 2(k′k)

)
m2

0
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+(k′pi)(kp̃f) + (k′p̃f )(kpi)− (pip̃f )(k
′k)
}
,

Fr3 = F3 − 8r
{(

2ω2r − 4ω′ω + (kp̃f)− (kp̃i)
)
m2

0

+(pip̃f )(kp̃f)− (pip̃f)(kp̃i) + (pip̃i)(kp̃f )− (pf p̃f)(kp̃i)

+(pipf )(kpf)− (pipf)(kpi) + 2(pipf)(k
′k)
}
,

Fr4 = Fr3. (A3)
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