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Abstract

Here we consider three possible biased electrostatic guides of polar molecules. The design of these

guides is motivated by their possible uses in a precision measurement of the electron’s electric dipole

moment. These guides may also have applications in the alignment-preserving transportation of

ultracold molecules.
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I. INTRODUCTION

Experimentalists have been using static electric fields to manipulate neutral polar

molecules for well over half a century[1–15]. Early work was motivated by a desire to

spatially focus a single (or a few) quantum states of a molecule in order to carry out

state-selected spectroscopic, photodissociation, and reaction dynamics studies[1–3, 7, 8, 12].

More recent work has been motivated by a desire to produce a steady state source of cold

molecules and more specifically, to select slowly moving particles from a thermal effusive

source[4–6, 8–11, 13]. These efforts have produced sources of ND3[4, 8, 10, 11], NO[5], H2O

and its isotopologs[9], and CH3CN[13]. Typical translational temperatures at the output of

these electrostatic skimmers range from 0.5K to 10K.

This work is motivated by a new application of the Stark guide: Namely precision mea-

surement searches for the electric dipole moment of the electron (e-EDM). The importance

of the e-EDM to fundamental theories of Physics and, in particular, the matter-antimatter

asymmetry of the Universe has been reviewed elsewhere[16, 17]. The e-EDM experiment

we consider here is similar to many studies currently underway[18–22]: A heavy paramag-

netic molecule is initially prepared in a coherent superposition of two states and allowed

to evolve in an electric field. These two states differ only by the sign of the projection M

of the molecule’s total angular momentum on the electric field axis. For the case of zero

magnetic field and a uniform electric field, one expects these two states to be degenerate.

If the electron possesses an e-EDM, this degeneracy is lifted. The strategy for searching for

an e-EDM is to attempt to measure this energy difference. For a typical e-EDM sensitive

molecule, this energy difference ranges from roughly 10 mHz (for an e-EDM near the current

limit of 1.2 × 10−27e·cm[18]) to 0.1 pHz (for an e-EDM at the 10−38e·cm prediction of the

Standard Model[23].) Whereas the Standard Model’s 0.1 pHz measurement is out of the

range of current experiments, alternative models predict a large e-EDM comparable to the

current limit. This fact makes the current generation of molecular e-EDM measurements

important searches for Physics beyond the Standard Model.

The Stark-guided e-EDM experiments envisioned here are shown schematically in Fig. 1.

In brief, a beam of polar molecules is polarized in a region of uniform electric field using

optical and/or microwave radiation. This polarization process creates a coherent superposi-

tion of states that differ only by the sign of the projection M of total angular momentum of
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the molecule onto an electric field axis. The molecules are then allowed to evolve for a time

τ in the electric field of a long Stark guide. This guide is biased to have a minimum value of

electric field that is strong enough to align the dipole moment of the molecule with respect

to the electric field. After polarization and guiding, the molecules enter a second region

of uniform electric field and are probed with optical/microwave radiation to determine the

accumulated quantum phase between the two states. For a properly designed experiment,

reversal of the electric field in the system will result in a difference in phase that is propor-

tional to the e-EDM. In the language of beam resonance experiments, the biased Stark guide

becomes the Ramsey cavity. By guiding the particles tens or even hundreds of meters, the

coherence time of the experiment (and hence the sensitivity to an e-EDM) can be enhanced

by several orders of magnitude.

)c()b()a(

FIG. 1. (Color online) Two uniform field regions connected by various guides. In the envisioned

experiment, a beam of molecules is polarized by laser radiation, guided by the field within the

electrodes, and then probed with laser radiation. The guides shown are only 15 cm long, but

guides exceeding 100 meters may be considered.

Complementary to previous experimental studies of Stark guides there are several theoret-

ical studies that investigate the focussing and guiding properties of various two-dimensional

Stark potentials[11, 24–29]. Each of these two-dimensional potentials have a minimum in

the magnitude of electric field at a location in space where the electric field vanishes. This

fact is not by any special design. Rather it is a result of a theorem conceived and proven by

Samuel Meek[30]. This theorem starts with Maxwell’s equations in a vacuum to prove that,

all extrema in the magnitude of a two-dimensional electric field occur at zero electric field.

(It is interesting to note that this theory does not extend to three dimensions where several

biased trap configurations have been demonstrated[31].) This presents a problem for both
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the e-EDM measurement we envision and for any application of a Stark guide for which one

wishes to guide polar molecules while conserving the M state alignment of the system. In

this paper we present three possible ways one might still guide a beam of molecules over

long distances in a biased electrostatic guide.

II. CASE 1: THE HELICAL GUIDE.

As stated in the introduction, we are interested in creating Stark guide of molecules

for which the minimum electric field magnitude is non-zero. For this reason, a purely two

dimensional guide, such as a modified hexapole or quadrupole guide is inappropriate: By

Meek’s theorem, the minimum electric field magnitude in such a guide will occur at a point

in space for which E = 0.

The first possible solution to this problem we present in this section is a helical Stark

guide that employs curved plates spiraling around a central guide region in order to guide

molecules in the z direction (Fig. 1a). When opposite voltages ±V are applied to the two

electrodes of the guide, the potential

Φ = −Eo
2I1(kr)

k
cos(kz − φ) (1)

is created. Here I1 is the modified Bessel function of the first kind and k = 2π/λ is a

parameter that determines the pitch of the helix. Along axis of this guide, the electric field

is of constant magnitude Eo and rotates with the z dimension:

~E(~r = ~0) = Eo(cos kzı̂+ sin kz̂) (2)

The electric field magnitude E throughout the guide can be shown to be given by

E = Eo

√

[1 + (kr)2fp(kr)]2 cos2(kz − φ) + [1 + (kr)2][1 + (kr)2fa(kr)]2 sin
2(kz − φ). (3)

Here we have defined the two even functions fa(α) and fp(α):

fa(α) =
2

α3
I1(α)−

1

α2
=

∞
∑

n=0

1

4(n+ 1)!(n+ 2)!
(
α

2
)2n (4)

fp(α) =
2

α2

dI1(α)

dα
−

1

α2
=

∞
∑

n=0

2n+ 3

4(n+ 1)!(n+ 2)!
(
α

2
)2n (5)
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We note that fa(0) = 1/8, fp(0) = 3/8, and both functions increase rapidly as α goes from

zero to positive infinity. Thus the minimum field magnitude everywhere in the twisted guide

is Eo, with the field rapidly increasing as a function of distance from the center of the guide.

The electrodes of the helical Stark guide shown in Fig. 1a are equipotential surfaces of the

potential given by Eq. 1. The topology of these surfaces suggests that the guide could easily

be made from two intertwined wires twisted with a pitch-length λ = 2π/k to inner-diameter

d ratio determined by the voltage ±Vo on the electrodes:

1

π
I1(π

d

λ
) =

Vo

λEo
. (6)

A numerical solution to this transcendental equation is given in Fig. 2.
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FIG. 2. Relationship between the d/λ and Vo/(λEo) for the helical guide. Here voltages ±Vo are

placed on the electrodes, d is the inner diameter of the guide, λ = 2π/k is the pitch length, and

Eo is the bias field of the guide.

To test the performance of the helical guide, we performed classical trajectory calcula-

tions. Here we assume a force given by

~F = −
∂U(E)

∂E
~∇E +m~g, (7)

where U(E) is the Stark potential of the guided state, m the mass of the particle, and ~g

the acceleration due to gravity. For illustrative purposes we assume U(E) is that of the

J = 1/2, F = 1, |M | = 1, Ω+ rotational state of the X1(v = 0) ground state of the e-

EDM sensitive 208Pb19F molecule. The Stark energy is determined by diagonalizing a spin-

rotational Hamiltonian determined from detailed microwave and optical spectroscopy[32].
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We have carried out this analysis and fit this potential to a quadratic polynomial with the

result

U(E) = µeV[23.056(
E

10kv/cm
)2 − 31.358(

E

10 kv/cm
)3 + 10.004(

E

10kv/cm
)4], (8)

where the fit is valid in the range 0 < E < 10 kV/cm. A plot of this potential is given in

Fig. 3.
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FIG. 3. Stark energy of the low-field seeking X1
2Π1/2(v = 0, F = 1, |M | = 1, J = 1/2, Ω+)

state of 208Pb19F.

Fig. 4a gives the transverse (x−y) trajectory of a typical molecule with the Stark potential

of Eq. 8 as it travels a distance z = 10, 000 cm down a helical guide with λ = 2π/k = 2.5 cm.

This electric field is chosen in such a way that it won’t extend to the high field range to

become high-field seeking, and it also needs to be large enough to fully polarize the PbF

molecules. From Fig. 3, we can therefore choose a moderate field Eo = 5 kv/cm, which

is subject to the experimental test. The initial conditions of this trajectory are given by

~r = (0.10 ı̂−0.09 ̂+0.00 k̂) cm and ~v = (−6.5 ı̂−46.2 ̂+20, 000 k̂) cm/s. It is notable that

the molecules are guided 10, 000 cm (4000 twists) without being lost. It is not immediately

obvious that this three dimensional guide will lead to stable trajectories as the energy in

axial motion could, in principle, be coupled to the transverse motion. For the guide shown

and a beam velocity of 200 m/s, particles with transverse-kinetic plus potential energy less

than or equal to 85% of the barrier height of 2.94 µeV were guided the entire 100 m length

of the guide. This corresponds to an acceptance of approximately 2× 10−5 steradian.
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FIG. 4. (a) Simulated x-y trajectory of a particle as it moves N = 4000 = 100 m through the

helical guide described in the text. (b) Accumulated geometric phase after a particle with the

initial conditions described in the text travels from a uniform field region, through a helical guide

of Nturns, and exits into a second region of uniform field region.

Although the helical guide is effective at guiding polar molecules over long distances, it is

not likely to be suited to an e-EDM measurement. Whereas the helical guide will conserve

the |M | state population, it can not be expected to conserve any phase coherence between

two states that differ only by the sign of M . This is because, as the electric field direction

is allowed to vary in three dimensions, a geometric phase φΩ is accumulated which leads to

rapid decoherence of the molecules in the beam. To quantify this geometric phase effect, we

imagine an experiment in which molecules are polarized in a uniform electric field, travel

the length of a helical guide, and finally probed with laser radiation (Fig. 1). The expected

rate of molecular detection is expected to be given by

Γ = ΓN

(

2− c

2
−

c

2
cos(φEDM + φB + φL + φΩ)

)

. (9)

Here ΓN is the rate of detection of an unpolarized beam of molecules and c is an experi-

mentally determined contrast with 0 < c < 1. The angle φEDM = 2peEeffτ/~ is the effect

of the e-EDM with pe the electric dipole moment of the electron, τ the time of flight of the

molecule as it travels from the polarization to probe region, and Eeff the effective internal

field of the molecule. For heavy diatomic radicals, Eeff is of the order of 10-100 GV/cm[33].

The angle φB = 2gµBτ/~ is the contribution of background magnetic fields. For the purpose

of this discussion, we assume that magnetic fields are shielded so φB is insignificantly small.

The angle φΩ is due to the geometric phase effect. Lastly, φL is the angle between the initial

and final laser polarization and is modulated to gain sensitivity to φEDM + φΩ. Final de-
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termination of the e-EDM would be determined by reversal of the electric field which would

change the sign of φEDM , but not φΩ.

In the adiabatic approximation, the phase φΩ may predicted by performing the integration

φΩ =

∫

−
2|M |

e2

(

d~e

dt
× ~e

)

· ẑ dt (10)

over the trajectory[34]. Here ~e = Ê + ẑ where Ê is the direction of the electric field and ẑ

is the direction of a laboratory-fixed quantization axis, which we take to be along the axis

of the guide. A plot of φΩ modulus 2π verses N is given for the trajectory of Fig. 4b. Here

N is the number of twists of the helical guide and the total guide length is (2.5 cm) × N .

The large-amplitude oscillations in this phase as a function of distance down the guide is

very sensitive to the initial conditions of the trajectory and hence very difficult to control.

For this reason, the almost random final geometric phase of each molecule will to lead to

rapid decoherence of the experimental measurement and, as a result, loss of sensitivity to

the e-EDM.

Although the helical guide is most likely not of use to an e-EDM experiment, it might

be of use in other applications which require the transport of molecules from one region of

space to another without loss due to mixing of |M | states. We also note that the combined

rotating radial field and oscillating axial field seen by a polar molecule is similar to the field

seen by a trapped ion in an envisioned e-EDM experiment. However, in the case of this ion

trap experiment, the axial field is orders of magnitude smaller than the radial field and, as

a result, the geometric phase is not a major concern[22].

III. CASE 2: THE STARK GRAVITATIONAL GUIDE

Here we show that Meek’s theorem can be overcome by creating a Stark gravitational

guide that uses two slightly distorted field plates (see Fig. 1b). This distortion leads to

an increasing Stark energy when a polar molecule moves in the down (−ŷ), left (−x̂) or

right (+x̂) direction. The fact that the Stark energy decreases as the molecule moves in the

up (+ŷ) direction, assures compliance with Meek’s theorem. However, this decrease is not

enough to overcome gravity. Thus, in this manner, one constructs a trough for molecular

flow without dispersion. The distorted plates of Fig. 1b are equipotential surfaces of the

following electric potential, created from a series of increasingly high order terms odd in x
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each with zero Laplacian:

Φ = −Eox+ β1 xy + β3(xy
2 −

1

3
x3) + β5(x

3y2 −
1

2
xy4 −

1

10
x5). (11)

The Stark gravitational potential is given by

Usg(x, y) = mgy + Ui(E) (12)

Here ~E = −~∇Φ, and mg is the weight of the molecule. For the purpose of example, we

continue with the example system of the last section, namely the Stark energy Ui(E) of the

X1
2Π1/2 (v = 0, F = 1, |M | = 1, J = 1/2,Ω+) state of 208Pb19F. Rewriting Eq. 8 as

Ui(E) = C2E
2 + C3E

3 + C4E
4 (13)

Usg(x, y) can be written in terms of a series expansion in x and y. The potential parameters

β1, β3, and β5 may be taken to zero in the terms of order y, x2y, and x4y. The result is the

Stark gravitational potential of the form

Usg(x, y) = Ui(Eo) +
1

2
kxx

2 +
1

2
kyy

2 +O[y3] +O[x4]. (14)

with

kx =
(mg)2

2C2E2
o − 4C4E4

o

= 0.0195 µeV/cm2 = 23.4µK/cm2 (15)

ky =

[

4C2
2 + 6C2C3Eo − 9C2

3E
2
o − 60C3C4E

3
o − 80C2

4E
4
o

(2C2 + 3C3Eo + 4C4E2
o)

2

]

kx

= 0.0233 µeV/cm2 = 28.0µK/cm2 (16)

Here the values of kx and ky are taken by assuming coefficients Ci that model the J = 1/2,

Ω+, F = 1, |M | = 1 quantum state of interest in this experiment and a trap field bias field

Eo = 2500 volts/cm. The simple harmonic potential described by the kx and ky terms alone

does a very good job of modeling the exact Stark gravitational potential Usg(x, y) everywhere

inside a guide created by plates separated by 2 cm.

Two factors make the Stark gravitational guide somewhat miserable to work with. The

first is that the trap force parameters (constants kx and ky) rapidly decrease with increasing

value of Eo, making a central field much greater than 2500 volts/cm impossible. This limits

the polarization field, and hence e-EDM sensitivity of the state of the PbF molecule we
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considered in the last section to 8.2 mHz/10−27e·cm, roughly 65% of its sensitivity when

fully polarized. A second is the fact that the trap depth is frustratingly small, stopping

only those particles that begin their journey from the center of the trap with a transverse

velocity of 9 cm/s or less. For a beam velocity of 200 m/s, this corresponds to an acceptance

of only 6.× 10−7 steradian. However, the guide has an overwhelmingly positive feature that

may make its disadvantages worth coping with: Because the trap is two-dimensional, there

is no accumulation of geometric phase as a polarized molecule travels down the beam. This

implies the length of the guide is limited only by one’s ability to control vacuum, black-body

radiation, and background magnetic fields. Indeed, one can imagine an 1 km machine with

five second coherence time that fits within one’s abilities to control these factors.

IV. CASE 3: THE CYLINDRICAL GUIDE

The guides of the previous sections collimate a beam of low-field seeking states. Here

we consider a guide of high field seeking states. Because it is not possible to create a local

maximum in the magnitude of electric field, this guide must be a dynamic guide for which the

translational angular momentum of the molecules keeps them from colliding into a central

electrode.

b

v
r

vφ

r
o

a

r
-

r
+

v
o

FIG. 5. Cross section of the cylindrical guide.

The electrodes of this guide (Fig. 1c and Fig. 5) are a central rod of radius a = 0.2 cm

surrounded by a coaxial cylindrical electrode of inner radius b = 1.0 cm. For the case that

voltages V = ±8050 volts are applied to the electrodes, the field magnitude varies inversely

with r from 50, 000 volts/cm to 10, 000 volts/cm. The strong electric field strength can not
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only keep the molecular beam of the high-field seeking state from diverging, but also fully

polarize the PbF molecule to gain enough sensitivity to the e-EDM measurement. This field

strength is manageable in the lab environment, but the determination of the appropriate

values is still dependent of the design of the electrodes and the ability of controlling vacuum.

For the case of a molecule interacting with a linear Stark interaction US = −d̄ E, the energy

of a molecule in the guide is (ignoring gravity) that of Kepler motion:

U

m
= −

k

r
+

1

2
v2 (17)

with

k =
∆V

ln(b/a)m
d̄. (18)

Here ∆V = 16100 volts is the potential difference between the electrodes and m the mass

of the molecule. For strongly mixed J = 1/2, J = 3/2 states of a 2Σ1/2 or 2Π1/2 molecule,

the approximation d̄ ≈ 2

3
d where d is the dipole moment of the ground state of the molecule

may be used. Over the range of fields in the cylindrical guide described here, this value of

d̄ does a good job modeling the Stark interaction of the e-EDM sensitive low field seeking

states of YbF(d = 3.58 Debye[35]), PbF(d = 3.40 Debye[32]), and HgF(d = 2.18 Debye[36]).

We now consider the fraction of a beam of molecules entering the guide a distance ro away

from the center that will be sent into orbits that do touch the electrodes ( i.e., for which

a < r
−
and b > r+, in Fig. 5). We make approximation of Keplerian motion to allow us to

proceed analytically. Because of the dispersion of beam velocities, we expect each molecule

to enter with a unique initial transverse velocity ~vo = vrr̂ + vφφ̂ as shown in Fig. 5. If a

molecule enters with vr = 0 and vo = vc =
√

k/ro, then the molecule will enter a circular

orbit of constant ro and therefore avoid the electrodes. By analyzing other Kepler orbits,

one finds the range of input velocities that will lead to stable trajectories:

vc

√

2a

ro + a
< vφ < vc

√

2ab

(a+ b)ro
and |vr| ≤

√

2(ro − a)

a

(

ro + a

2a
v2φ − v2c

)

(19)

or

vc

√

2ab

(a+ b)ro
< vφ < vc

√

2b

ro + b
and |vr| ≤

√

2(b− ro)

b

(

v2c −
ro + b

2b
v2φ

)

(20)

This region of velocity space for the case that ro = (a+ b)/2 = 0.6 cm, is given in Fig. 6 for

the molecules 174Yb19F, 208Pb19F, and 198Hg19F.
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To test the approximations that, for the case of 208Pb19F, gravity can be ignored and

U ≈ −2

3
dE, we carried out a Monte Carlo calculation. This calculation incorporates both

gravity and a potential energy U(E) taken from a detailed calculation of the Stark interaction

using known spectroscopic parameters of the high-field seeking X1(v = 0, F = 1, |M | =

1, J = 1

2
, Ω

−
) state of 208Pb19F. In this study, values of vφ and vr are chosen randomly and

trajectories are evolved from the point x = 0, y = 0.6 cm. For each trajectory that evolves

for 50 ms, the initial velocities vφ and vr are recorded and plotted on Fig. 6. From this

calculation we see that the Kepler approximation slightly overestimates the acceptance of

the guide.
1
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FIG. 6. Kepler-motion prediction of acceptance velocities of the cylindrical guide for the ground

state of 198Hg19F (dashed line), 208Pb19F(solid line), and 174Yb19F(dotted line.) The shaded area

indicates initial conditions of stable trajectories in a Monte Carlo Simulation assuming motion of

high-field seeking ground-state 208Pb19F(v = 0, F = 1, |M | = 1, J = 1
2
, Ω−) molecules governed

by Eq. 7 and a potential energy U(E) taken from a detailed calculation of the Stark interaction

using known spectroscopic parameters.

Like the Stark gravitational guide, the electric field in this guide is constrained to two

dimensions and, as a result, the geometric phase effect is not expected to be of concern. This

guide has many advantages over the Stark gravitational guide. One is that, for 2Σ1/2 states

with small spin rotational constants, the high field seeking ground state is more sensitive to

an e-EDM then low field seeking ground states. For example, The most sensitive low-field
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seeking state of 174Yb19F, is 4 to 5 times less sensitive to an e-EDM than is the most sensitive

high-field seeking state. For 198Hg19F this low-field seeking state is approximately 2 times less

sensitive. In addition, while both the low- and high- field seeking states of the ground 2Π1/2

state of 208Pb19F exhibit similar sensitivities to an e-EDM, the Stark gravitational guide

only functions at low fields for which the PbF molecule is only partially polarized, leading

to an approximately 35% reduction in sensitivity. Thus for each of these three important

e-EDM molecules, sensitivity to an e-EDM is substantially greater in the cylindrical guide.

A second advantage of the cylindrical guide is its tremendous acceptance. This acceptance

is given by the area of the region of trapped velocities divided by the beam velocity squared.

For a cylindrical guide of a 200 m/s beam of PbF , this acceptance is 3× 10−4 steradian, a

factor of 500 times greater than the 6×10−7 steradian acceptance of the Stark gravitational

guide. For a statistics limited experiment, this increased acceptance could, in principle, lead

to a factor of 20 improvement in sensitivity to an e-EDM. Many factors may offset this

advantage. One problem with the cylindrical guide is that the electric field at the entrance

and exit is complex and likely to cause a substantial spatially-dependent geometric phase

shift that restricts the probe region to a small volume in space. A second problem is the

beam must be loaded with a substantial translational angular momentum. This angular

momentum may couple with distortions in the electric field to create false e-EDM signals.

If these problems can be overcome, then the cylindrical guide may prove to be the most

promising candidate for use as a Ramsey cavity in an e-EDM experiment.

V. SUMMARY

We have introduced three guides of polar molecules for possible use as the Ramsey cav-

ity in an optical double resonance measurement of the electron’s electric dipole moment

(e-EDM). Each of these guides must overcome Meek’s theorem that states that, in two

dimensions, all extrema in electric field magnitude occur at zero electric field magnitude.

The first guide we consider is a helical guide formed from two twisted wires (Fig. 1a).

This guide is likely to be useful for manipulating low field seeking states without loss of

alignment, but is unlikely to be useful in an e-EDM measurement: Molecules traversing

the beam will accumulate a large trajectory-dependent geometric phase. This phase would

cause rapid loss of coherence in an optically polarized beam transversing the guide.
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The second guide is a Stark gravitational guide formed from two slightly distorted plates

(Fig. 1b). This guide offers simplicity of construction. More importantly, because the trap is

created from fields restricted to two dimensions, no geometric phase will accumulate within

the guide. However trap acceptance is limited by the size of the gravitational acceleration

g, with an acceptance of 6× 10−7 steradian for a 200 m/s beam of ground state of 208Pb19F

molecules.

The final guide we present is the cylindrical guide (Fig. 1c). This guide is a dynamical

guide of high-field seeking states. The trap is also created by a two-dimensional field, so

decoherence due to the accumulation of geometric phase within the guide is not expected. In

addition, the effective guide depth is very deep, leading to a acceptance of 3×10−4 steradian

for a 200 m/s beam of ground state 208Pb19F molecules. If difficulties associated with its

precise construction can be overcome, this guide may prove the best candidate for a long

coherence time guided e-EDM experiment.
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