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The recently developed method combining the configuration interaction and the coupled-cluster
method was demonstrated to provide accurate treatment of correlation corrections in divalent atomic
systems [M. S. Safronova, M. G. Kozlov, and C. W. Clark, Phys. Rev. Lett. 107, 143006 (2011)].
We have extended this approach to the calculation of quadrupole polarizabilities α2 and applied
it to evaluate α2 for the ground state of Mg and Mg-like Si2+. Performing the calculations in
three different approximations of increasing accuracy allowed us to place the upper bounds on the
uncertainty of the final results. The recommended values α2(3s

2 1S0) = 35.86(13) a.u. for Si2+ and
α2(3s

2 1S0) = 814(3) a.u. for Mg are estimated to be accurate to 0.37%. Differences in quadrupole
polarizability contributions in neutral Mg and Si2+ ion are discussed.

PACS numbers: 31.15.ap, 31.15.ac, 31.15.am, 31.15.bw

I. INTRODUCTION

Atomic polarizabilities are important for a number of
applications ranging from studies of fundamental sym-
metries to development of ultra-precise atomic clocks as
well as modeling of properties of chemical compounds.
As a result, the study of polarizabilities has been of in-
creasing importance in recent years. A number of both
experimental and theoretical methods exist for determi-
nation of E1 electric-dipole polarizabilities. We refer the
reader to a recent review [1] and references therein for the
discussion of the applications of E1 polarizabilities and
methodologies to determine these quantities in systems
with a few valence electrons.

The quadrupole polarizabilities have been a subject of
far lesser number of studies, and few high-precision val-
ues exist. The previous theoretical studies used the ex-
ponentially correlated Gaussian functions [2], the pseu-
dopotential methods [3–5], coupled-cluster methods [5–
7], and combined the configuration interaction and the
many body perturbation theory (CI+MBPT) [8]. Most
of these studies have been limited to either very light or
monovalent atomic systems. There are ever fewer exper-
imental studies of the quadrupole polarizabilities owing
to intrinsic difficulty in measuring this property.

The quadrupole polarizability term arises in the effec-
tive potential for polarization interactions between the
core and the Rydberg electrons which allows determina-
tion of α2 from the analysis of the fine-structure intervals
of the high-L Rydberg states using a resonant excitation
Stark ionization spectroscopy (RESIS) method [9]. This
approach has been used to determine the ground state
quadrupole polarizabilities of Mg+ [10], Ba+ [11, 12], and
Th4+ [13, 14]. The lowest electric-quadrupole matrix el-
ements involving the ground state, which generally give
the dominant contribution to α2 have been determined
using the RESIS method for the 6s − 5dj transitions in
Ba+ [15] and 5f5/2 − 6dj transitions in Th3+ [16].

The difficulty of determining the quadrupole polariz-

ability from RESIS experiments that led to initial dis-
agreement with theory in Ba+ was analyzed in [12]. The
discrepancy between theory and experimental values was
resolved in the same work [12]. The Mg+ experimen-
tal α2 value from [10] was found to be in disagreement
with both coupled-cluster and configuration interaction
with semi-empirical core polarization potential (CICP)
results [5], while both theoretical values are in excellent
agreement with each other [5]. The revised polarization
plot analysis of Ref. [10] data carried out in [5] yielded
much lower value, that is only slightly outside of the com-
bined error estimates. The RESIS Th4+ α2 value is in
agreement with theory predictions taking into account
the uncertainties, but the theoretical calculations are of
low accuracy for this ion.
In summary, RESIS method can be used to determine

the quadrupole polarizabilities to a good precision, but
more benchmark cases of comparison with high-precision
theory are needed. Therefore, it is important to develop
approaches that are able to predict quadrupole polariz-
abilities to high precision and evaluate the uncertainties
of the final values. We note that quadrupole polarizabil-
ity is a particularly good property for benchmark testing
of theoretical approaches owing to generally large con-
tributions of the correlation corrections. Accurate cal-
culations and benchmark tests of divalent atomic sys-
tem properties are of particular interest owing to appli-
cations to atomic clock research [17], fundamental sym-
metry studies [18], and quantum information [19].
The method combining the configuration interaction

(CI) and the all-order coupled-cluster method (CI+all-
order) developed in Refs. [20, 21] was applied to the
calculation of the electric-dipole static polarizabilities
and the corresponding blackbody radiation shifts in di-
valent B+, Al+, In+, and Tl+ in [22, 23]. We applied
the same approach to calculate electric-dipole polariz-
abilities of the several low-lying states of Si2+ ion in
Ref. [24]. These polarizabilities were calculated with un-
precedented∼ 0.1% accuracies demonstrating a great po-
tential and a high efficiency of the CI + all-order method
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in calculation of such quantities. Therefore, we select the
ground state electric-quadrupole (E2) polarizabilities of
Mg and Si2+ as the benchmark test cases for the approach
developed in the present work, since the high precision of
the theory is expected for these cases. We note that the
method developed in this work can be used to calculate
quadrupole polarizabilities of the low-lying states of any
divalent or trivalent system.
The E2 polarizability of the Mg ground state was calcu-

lated using the CI+MBPT method in Ref. [8]. The core-
valence correlations were included explicitly in the second
order of MBPT, while the higher orders of MBPT were
included using the energy fitting described in Ref. [8].
The final result was α2(3s

2 1S0) = 812(6) a.u.. In this
work, we carried out pure ab initio calculation of this
quantity in the framework of the CI + all-order approach.
The resulting ab initio value 814(3) a.u. is in an excel-
lent agreement with the result reported earlier. A small
difference between the central values can be attributed to
the Breit interaction included in the present work, ab ini-

tio treatment of the higher-order correlation corrections,
the greater basis set, and the greater CI space. For Si2+,
we obtained α2(3s

2 1S0) = 35.86(13) a.u. We will discuss
the details of the method and evaluation of uncertainties
in the following sections.
To the best of our knowledge, there are no experi-

mental data for the α2(3s
2 1S0) for Si2+ and Mg. At

the same time the theoretical accuracy of calculation of
these quantities achieved in this work is sufficiently high
and, respectively, the E2 polarizabilities of the (3s2 1S0)
state in Si2+ and Mg present a good opportunity for a
high-precision benchmark test of theory and experiment.
Since Si2+ electric-dipole polarizability was already accu-
rately determined using the RESIS experiment [12], it is
a likely candidate for a benchmark test of determination
of E2 polarizability by the RESIS method. Mg is also
of particular interest since it is considered to be a good
candidate for the development of the atomic clock.

II. METHOD

The details of the CI+all-order method were presented
in [21, 22, 24], therefore, we provide only a brief outline
of the approach. We start from the solution of the Dirac-
Fock (DF) equations

Ĥ0 ψc = εc ψc,

where H0 is the relativistic DF Hamiltonian [21, 25] and
ψc and εc are single-electron wave functions and energies.
The dominant part of the Breit interaction was included
in the self-consistency procedure [26].
The calculation was carried out in VN−2 approxima-

tion, i.e. the self-consistent calculations were performed
for the [1s22s22p6] closed core, and the 3s, 3p, 3d, 4s,
4p, and 4d orbitals were formed in this potential. The
B-spline basis set was formed in a spherical cavity with
radius 60 a.u. and consisted of N = 35 orbitals for each

partial wave up to l = 5. The set of configurations was
constructed by single and double excitations of the elec-
trons from the main configuration 3s2 to the 4s − 23s,
3p−23p, 3d−23d, 4f−23f , and 5g−23g orbitals. Thus,
five partial waves with the orbitals having the principal
quantum numbers n ≤ 23 were involved in the construc-
tion of the CI space. We have verified that such CI space
is numerically complete.
The wave functions and the low-lying energy levels

were determined by solving the multiparticle relativistic
equation for two valence electrons [27]:

Heff(En)Φn = EnΦn. (1)

The effective Hamiltonian was defined as

Heff(E) = HFC +Σ(E),

whereHFC is the Hamiltonian in the frozen-core approxi-
mation. The energy-dependent operator Σ(E) takes into
account virtual core excitations. It is constructed us-
ing the second order many-body perturbation theory in
the CI+MBPT approach [25] and linearized coupled clus-
ter single-double method in the CI+all-order approach
[21]. The construction of the effective Hamiltonian in
the CI+MBPT and CI+all-order approximations was de-
scribed in detail in Refs. [21, 25].
The electric quadrupole polarizability α2 can be rep-

resented in a general case as a sum of three parts

α2 = αv
2 + αc

2 + αvc
2 , (2)

where αv
2 includes excitations of valence electrons, αc

2 is
the ionic core polarizability, and αvc

2 is the small cor-
rection to αc

2 which subtracts out the excitations of core
electrons into the occupied valence shells forbidden by the
Pauli principle. In our case, αvc

2 = 0 because there are no
nd orbitals in the core and, respectively, no excitations
from the core to the 3s shell. The ionic core polariz-
ability, αc

2, was evaluated in both the DF approximation
and the RPA approximation. The difference between two
these values can be used to estimate the uncertainty of
this quantity.
The static electric-quadrupole polarizability of the

3s2 1S0 state can be written as

α2 = 2
∑

n

〈1S0|Q0|n〉〈n|Q0|
1S0〉

En − E0

. (3)

In atomic units (m=h̄=|e|=1) the electric quadrupole
moment operator is determined as Qν = −r2 C2ν(n),
where n ≡ r/r and C2ν(n) are the normalized spheri-
cal harmonics.
The valence part of the polarizability, αv

2 , of the state
|0〉 can be found by solving the inhomogeneous equation
in the valence space, which is written as [28]

(Heff − E0)|Ψ〉 = Qeff|0〉 (4)

and then calculating

αv
2 = 2 〈0|(Q0)eff|Ψ〉. (5)
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The effective quadrupole operator Qeff includes the
random-phase approximation (RPA) corrections.
Our analysis shows that the RPA corrections to values

of α2(3s
2 1S0) for both Si2+ and Mg are very small (a few

tenth of a percent). Therefore, all other smaller correc-
tions to the effective operator including core-Brueckner,
two-particle, structure radiation, and normalization cor-
rections can be omitted at the present level of accuracy.
We find that some caution is required in calculating the

E2 polarizabilities by solving the inhomogeneous equa-
tion in the valence space. First, the wave functions |Ψ〉
and |0〉 are of the same parity. Second, the wave function
|0〉 is the solution of the homogeneous equation

(Heff − E0)|0〉 = 0. (6)

It is known that a general solution of an inhomoge-
neous equation is a sum of a particular solution of the
inhomogeneous equation and the general solution of the
homogeneous equation. In our case the solution |Ψ〉 of
Eq. (4) is the sum of the particular solution of Eq. (4)
which we denote as |Ψ′〉 and a solution of Eq. (6):

|Ψ〉 = |Ψ′〉+ β |0〉, (7)

where β is a numerical coefficient and |Ψ′〉 is assumed to
be orthogonal to |0〉, i.e. 〈0|Ψ′〉 = 0.
To separate out the particular solution |Ψ′〉 from the

general solution, one needs to project |Ψ〉 to the subspace
orthogonal to |0〉 as

|Ψ′〉 = |Ψ〉 − |0〉〈0|Ψ〉. (8)

We emphasize that such an admixture does not occur
in calculating E1 polarizabilities, parity nonconserving
amplitudes and other quantities for which |Ψ〉 and |0〉
are of opposite parity. For those operators, |Ψ〉 and |0〉
belong to different subspaces from very beginning and
automatically turn out to be orthogonal to each other
(i.e., β = 0).
It seems that if |0〉 = |1S0〉 we do not need to worry

about the admixture of |0〉 to |Ψ′〉 because 〈0|(Q0)eff|0〉 =
0 and this admixture is removed from the final result.
The problems arise because the factor β can be very large.
In particular, in our case β was ∼ 105 which would lead
to a numerical instability of the method and, finally, to
a loss of accuracy in the straightforward implementation
of the approach described above.
We find a solution to this problem that can be imple-

mented in the framework of our approach without addi-
tional modifications of the method. The solution of the
inhomogeneous equation, |Ψ〉, can be represented as a
sum of projections to the states with definite total angu-
lar momenta and written as [28]

|Ψ〉 =

J+2∑

J′=Jmin

|ΨJ′,M 〉, (9)

where J and M are the total angular momentum and
its projection of the state |0〉 and Jmin ≡ max(0, J − 2).

In our case, the only term in Eq. (9) that is of interest
for us is |ΨJ′=2,M 〉. All other terms do not contribute to
Eq. (5). Thus, if we find the solutions of Eq. (1) belonging
only to the subspace J ′ = 2,M = 2 we avoid the problem
discusses above because the |ΨJ′=2,M=2〉 and |0〉 = |1S0〉
have different total angular momenta and cannot admix
to each other.

III. RESULTS

First, we find the low-lying energy levels of Mg and
Si2+. To estimate the accuracy of calculations we calcu-
lated the energy levels in the CI, CI+MBPT, and CI+all-
order approximations. The results for Si2+ were pre-
sented in [24], where we demonstrated that the CI energy
levels were already in good agreement with the experi-
mental values. The maximum difference between the CI
and experimental results did not exceed 2.2%. For Mg,
the agreement with experiment at the CI level is only
slightly worse. An inclusion of the core-valence corre-
lations in the CI+MBPT and CI+all-order calculations
led to further substantial improvement of the theoretical
energy levels.
In Tables I and II, we present the results obtained in

the CI+all-order approximation for Si2+ and Mg, respec-
tively, and compare them with experimental data. The
two-electron binding energies are given in the first row of
these tables, the energies in other rows are counted from
the ground state. We find that the agreement between
theoretical and experimental energy levels listed in these
tables is extremely good, 0.05% or better for most of the
levels. This is important for calculation of the quadrupole
polarizability of the ground state because the low-lying
levels give main contribution to this quantity. We note
that the inclusion of the ng orbitals to the CI space is
essential to obtain such high accuracy for all energy lev-
els, including the singlet states, for Si2+. For Mg the ng
orbitals can be omitted from the CI space with negligible
loss of accuracy.
In Table III we list the contributions of several low-

lying states to α2(
1S0) for Si2+ and Mg. We also

present the absolute values of the reduced matrix ele-
ments |〈1S0||Q||n〉|. For Si2+, the two transitions from
the ground state to the 3p2 1D2 and 3s3d 1D2 states con-
tribute 97% of the final value. Such a large contribution
of the 3p2 1D2 state appears at first to be surprising be-
cause the 3s2 1S0 − 3p2 1D2 is a two-electron transition.
However, there is the large admixture (33% in probabil-
ity) of the 3s3d configuration to the 3p2 configuration
that explains such a large contribution of the 3p2 1D2

state to α2(
1S0).

The breakdown of the E2 contributions is different for
Mg, where the low-lying 3snd 1D2 states with n = 3− 5,
listed in Table III, contribute 86% to α2(

1S0). For neu-
tral Mg, whose electrons are more weakly bound to the
nucleus, the contribution of the high-lying discrete states
as well as the continuum is larger than for doubly-ionized
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TABLE I: Comparison between experimental [29] and theo-
retical energy levels of Si2+ in cm−1. Two-electron binding
energies are given in the first row, energies in other rows are
counted from the ground state. Results of the CI+all-order
calculations are given in column labeled CI+All. Relative dif-
ference of this calculation with experiment is given in the last
column in %.

State Expt. CI+All Difference (%)
3s2 1S0 634232 634226 −0.001%
3p2 1D2 122215 122294 0.065%
3p2 3P0 129708 129753 0.035%
3p2 3P1 129842 129887 0.035%
3p2 3P2 130101 130145 0.034%
3s3d 3D3 142944 142944 0.000%
3s3d 3D2 142946 142946 0.000%
3s3d 3D1 142948 142948 0.000%
3s4s 3S1 153377 153403 0.017%
3p2 1S0 153444 153613 0.110%
3s4s 1S0 159070 159116 0.029%
3s3d 1D2 165765 165898 0.080%

3s3p 3P o

0 52725 52770 0.086%
3s3p 3P o

1 52853 52897 0.083%
3s3p 3P o

2 53115 53159 0.082%
3s3p 1P o

1 82884 82933 0.058%
3s4p 3P o

0 175230 175249 0.011%
3s4p 3P o

1 175263 175282 0.011%
3s4p 3P o

2 175336 175355 0.011%
3s4p 1P o

1 176487 176511 0.013%

TABLE II: Comparison between experimental [29] and the-
oretical energy levels of Mg in cm−1. Two-electron binding
energies are given in the first row, energies in other rows are
counted from the ground state. Results of the CI+all-order
calculations are given in column labeled CI+All. Relative dif-
ference of this calculation with experiment is given in the last
column in %.

State Expt. CI+All Difference (%)
3s2 1S0 182939 188288 0.03%
3s4s 3S1 41197 41184 0.03%
3s4s 1S0 43503 43491 0.03%
3s3d 1D2 46403 46388 0.03%
3s3d 3D2 47957 47933 0.05%
3s3d 3D3 47957 47933 0.05%
3s3d 3D1 47957 47933 0.05%
3s5s 3S1 51873 51854 0.04%
3s5s 1S0 52556 52541 0.03%
3s4d 1D2 52047 53114 0.04%

3s3p 3P o

0 21850 21849 0.01%
3s3p 3P o

1 21870 21869 0.01%
3s3p 3P o

2 21911 21909 0.01%
3s3p 1P o

1 35051 35044 0.02%
3s4p 3P o

0 47841 47823 0.04%
3s4p 3P o

1 47844 47826 0.04%
3s4p 3P o

2 47851 47833 0.04%
3s4p 1P o

1 49347 49328 0.04%

TABLE III: The contributions to the 3s2 1S0 E2 polarizabili-
ties (in a.u) in the CI + all-order approximation. The dom-
inant contributions to the valence polarizabilities are listed
separately with the corresponding absolute values of electric
quadrupole reduced matrix elements given in columns labeled
Q. The theoretical and experimental NIST transition ener-
gies are given in columns ∆Eth and ∆Eexp. The remaining
contributions to α2(

1S0) are given in rows Other. The con-
tributions from the core are given in rows αc

2. The dominant
contributions to α2 are calculated with the CI + all-order
energies.

Contribution ∆Eexp ∆Eth Q α2

Si2+ 3s2 1S0 − 3p2 1D2 122215 122276 5.200 19.41
3s2 1S0 − 3p2 3P2 130137 130101 0.119 0.01
3s2 1S0 − 3s3d 3D2 143028 142946 0.002 0.00
3s2 1S0 − 3s3d 1D2 166247 165765 5.373 15.24
Other 1.09
αc

2 0.11
Total 35.86

Mg 3s2 1S0 − 3s3d 1D2 46390 46403 18.65 658.6
3s2 1S0 − 3s3d 3D2 47939 47957 0.01 0.0
3s2 1S0 − 3s4d 1D2 53105 53135 5.05 42.2
3s2 1S0 − 3s5d 1D2 56289 56308 1.52 3.6
Other 109.0
αc

2 0.5
Total 813.9

Si. Therefore, using a sum-over-states approach with a
few low-lying contributions in the sum over intermediate
states allows to obtain the ground state E2 polarizabil-
ity for Mg only with an accuracy of about 15% percent.
To obtain this quantity with a higher accuracy a more
sophisticated approach like a solution of inhomogeneous
equation used in this work is required.

The E2 polarizabilities of the ground state obtained
in different approximations are given for Si2+ and Mg
in Table IV. This table illustrates that the core-valence
correlations included in the second order of MBPT in
the CI+MBPT approximation and in all orders in the
CI+all-order approximation change the results obtained
in the CI approximation by only a few per cent (by 4.5%
for Si2+ and by 8% for Mg).

Since we use the numerically complete basis set and
the saturated CI space, we take into account the valence-
valence interactions almost exactly. The main source of
uncertainty arises from the core-valence correlations. We
conservatively estimate this uncertainty as the difference
between the CI+MBPT and CI+All results presented in
Table IV. The core contributions, αc

2, are very small for
both Si2+ and Mg (0.3% for Si2+ and less than 0.1%
for Mg). Even if we estimate (very conservatively) their
uncertainties at the level of 10%, their contribution to
the uncertainty budget is negligible. Our final recom-
mended values of α2(3s

2 1S0) are 35.86(13) a.u. for Si
2+

and 814(3) a.u. for Mg. Note that in both cases our re-
sults are in excellent agreement with other most accurate
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TABLE IV: Comparison of the present recommended values
of the ground state static E2 polarizabilities (in a.u.) in Mg
and Si2+ with other calculations. First three rows give ab

initio results for the valence polarizabilities αv

2 calculated in
the CI, CI+MBPT, and CI+all-order approximations. In the
row ∆(MBPT − All) the differences of the CI+MBPT and
CI+all-order values are presented. The contributions from
the core are given in the row αc

2. The “Total” are the values
obtained as the sum of the CI+All values and αc

2.

Si2+ Mg
CI 37.58 888.4
CI+MBPT 35.88 817.5
CI+All 35.75 814.3
∆(MBPT − All) 0.13 3.2
αc

2 0.11 0.52
Total 35.86 813.9
Recommended value 35.86(13) 814(3)

Other works 35.74(36)a 812(6)b

813.9c

809.3d

828e

aRef. [30]; bRef. [8]; cRef. [4]; dRef. [31]; eRef. [32].

results obtained by Mitroy in Ref. [30] for Si2+ and by
Mitroy and Bromley in Ref. [4] for Mg.

IV. CONCLUSION

In conclusion, we have developed a method for the
precision calculation of electric quadrupole polarizabil-

ities and applied it to evaluate the static E2 polarizabil-
ities of the ground 3s2 1S0 state of the doubly-ionized Si
and neutral Mg. Our recommended values are α2(

1S0) =
35.86(13) a.u. for Si2+ and 814(3) a.u. for Mg. To the
best of our knowledge, these are the most accurate values
of these quantities obtained so far. They are in excellent
agreement with the previous calculation of Porsev and
Derevianko [8] for Mg and with the theoretical results
obtained by CICP method in Refs. [4, 30].

The method developed in this work can be used to cal-
culate quadrupole polarizabilities of the low-lying states
of any divalent or trivalent system. We hope that
the present work will stimulate experimental studies of
quadrupole polarizabilities of divalent systems using the
resonant excitation Stark ionization spectroscopy and
other methods for benchmark test of theory and experi-
ment.
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