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We propose a simpler and more efficient scheme for the implementation of the multi-valued
Grover’s quantum search. The multi-valued search generalizes the original Grover’s search by replac-
ing qubits with qudits — quantum systems of d discrete states. The qudit database is exponentially
larger than the qubit database and thus it requires fewer particles to control. The Hadamard gate,
which is the key elementary gate in the qubit implementation of Grover’s search, is replaced by a
d-dimensional (complex-valued) unitary matrix F, the only condition for which is to have a column
of equal moduli elements irrespective of their phases; it can be realized through any physical inter-
action, which achieves an equal-weight superposition state. An example of such a transformation
is the d-dimensional discrete Fourier transform, used in earlier proposals; however, its construction
is much more costly than that of the far simpler matrix F. We present examples of how such a
transform F can be constructed in realistic qudit systems in a single interaction step.

PACS numbers: 03.67.Ac, 03.65.Aa, 03.67.Lx, 42.50.Dv

I. INTRODUCTION

Grover’s quantum search algorithm, invented some 15
years ago [1], has become one of the most impressive
showcases of quantum computation. Its efficiency and
relative simplicity have made it not only a textbook ex-
ample of the superiority of quantum computers over their
classical counterparts but also a promising candidate for
a subroutine in various computationally hard problems.
The Grover algorithm finds a marked item in an unstruc-
tured database of N items in about NG = (π/4)

√
N tries

with a quantum computer, quadratically faster than the
classical routine, which requires O(N) tries. Grover’s
algorithm can also be adapted to computationally hard
problems with structure, by nested quantum searches [2].
Proof-of-principle Grover search has been demonstrated
in nuclear magnetic resonance with two [3] and three [4]
qubits (corresponding to 4 and 8 database elements),
in linear optics with 4 elements [5], and in trapped-
ion systems with 4 elements [6]. Because the physical
mechanism of Grover’s search is amplitude amplification
due to constructive wave interference [7], this algorithm
has been demonstrated also in individual Rydberg atoms
with 8 different levels serving as the database elements
[8] and in classical Fourier optics with 32 elements [9].
Although these latter approaches have outperformed the
qubit implementations in terms of database size, they are
not scalable to large databases.

The quantum computers, if ever built, are expected to
outperform the classical computers for large databases,
with the benefits increasing with the database size N .
The dominant model of quantum computing uses qubits
— two-state quantum systems — linked in quantum cir-
cuits with various one- and two-qubit gates. The size
of the Hilbert space for an ensemble of n qubits is 2n.
The Hilbert space can be increased either by increasing
the number of qubits n, or by increasing the number
of logical states in each carrier of information and use

qudits instead of qubits [10]. There are often practical
limitations for increasing the number of qubits; then the
use of qudits and the ensuing multi-valued quantum logic
is a valuable alternative.

Qudits— quantum systems with d states |q〉0, |q〉1, . . . ,
|q〉d−1 — offer exponentially higher dimensionality than
qubits. For example, it has been shown that qutrits —
three-state quantum systems — provide the best Hilbert-
space dimensionality [11], i.e. database size vs ease of
control. It has been shown recently [12] that for some
qutrits the most general SU(3) transformation of a qutrit
can be realized with similar resources — two fields and
three steps — as the general SU(2) transformation of a
qubit. Besides the immediate exponential increase of the
Hilbert space qutrits offer other advantages over qubits:
more secure and efficient quantum communications [13],
new types of quantum protocols [14, 15], new kinds of
entanglement [16], larger violations of nonlocality [17],
etc. To this end, a qudit generalization of the Deutsch-
Jozsa algorithm has been proposed [18], which besides
its original ability to distinguish between constant and
balanced functions, offers some new functionalities.

Grover’s quantum search with qudits has also been
proposed, where the Hadamard gate, used in the original
qubit version, is replaced by a discrete Fourier transform
(DFT) [19] or another d-dimensional transformation [20]
in order to construct the reflection-about-average oper-
ator (also known as the diffusion operator). A ternary
Grover search was discussed in [21]. We note, however,
that these proposals are far from being optimal for a
number of reasons, originating mainly from the numer-
ous redundant physical interactions they require, which
pose unnecessary challenges to a quantum computer.

In this paper, we introduce a different implementation
of multivalued Grover’s search, which represents a con-
siderable simplification over the earlier methods [19–21].
Our implementation of the reflection-about-average op-
erator for a qudit with d states requires the minimum
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possible number of physical steps – just two steps, com-
pared to 2d steps in the proposal of Li et al. [20] and 2d2

steps in the proposal of Fan in [19]. Moreover, in our im-
plementation of the reflection-about-average operator,
no specific phase relations are required, which makes it
far easier to implement than in the two earlier propos-
als, which impose strict phase relations. Furthermore,
our implementation allows one to use resonant external
fields, unlike the implementation proposed by Li et al.

[20], which demands far detuned fields; resonant inter-
actions allow the fastest implementation because they
allow to use the minimum pulse area. We can there-
fore claim that our implementation has a double speed-
up over the existing proposals: the construction of the
reflection-about-average operator is faster by a factor
of d or d2, and the coupling fields can be on resonance,
which is a speed-up by at least a factor of 10 as com-
pared to far-off-resonance fields. Finally, unlike earlier
proposals, our implementation is adapted to determinis-
tic Grover search.

II. QUANTUM SEARCH WITH QUBITS

A. Overview of Grover search

Grover’s algorithm provides a method for solving the
unstructured search problem, which can be stated as
follows: given a collection of database elements x =
1, 2, . . . , N , and an oracle function f(x) that acts dif-
ferently on one marked element s to all others,

f(x) =

{

1, x = s,
0, x 6= s,

(1)

find the marked element in as few calls to f(x) as possible
[1].
The database is encoded into a set of quantum states;

each element is assigned to a corresponding state. There-
fore, each possible search outcome is represented as a
basis vector |x〉 in an N -dimensional Hilbert space; cor-
respondingly, the marked element is encoded by amarked

state |s〉. Thus one can apply unitary operations (involv-
ing the oracle function) to superpositions of the different
search outcomes, which are thereby searched in paral-
lel. The Grover algorithm amplifies the amplitude of the
marked state |s〉 using constructive interference, while at-
tenuating all other amplitudes, and locates the marked
element in O(

√
N) steps.

Before the execution of the algorithm, the quantum
register is prepared in an equal superposition of all basis
elements [1],

|a〉 = 1√
N

N
∑

x=1

|x〉 , (2)

with N = 2n, where n is the number of qubits. The algo-
rithm consists of the repeated execution of two sequential
operations.

(1) Oracle query. The oracle marks the marked state
|s〉 in each iteration by shifting its phase, leaving other
states unaffected: Rs(ϕs)|s〉 = eiϕs |s〉. In fact, this is a
conditional phase gate, which is implemented by a gen-
eralized reflection in Hilbert space:

Rs(ϕs) = 1+ (eiϕs − 1)|s〉〈s|. (3)

(2) Reflection-about-average. This operation is a re-
flection about the vector |a〉 with a phase ϕa:

Ra(ϕa) = 1+ (eiϕa − 1)|a〉〈a|. (4)

It can be constructed with the following operations.
(i) Apply the Hadamard gate,

H = 1√
2

[

1 1
1 −1

]

, (5)

to each qubit. This is a single-qubit operation, which can
be carried out to all qubits simultaneously.
(ii) Apply a conditional phase shift R0(ϕa), with |0〉 =

|0102 · · · 0n〉, wherein all qubits are in logical state |0〉.
(iii) Repeat step (i).
It can easily be verified that

H
⊗n

R0(ϕa)H
⊗n = Ra(ϕa). (6)

The combined action of the oracle and the reflection-
about-average gives the Grover operator G,

G = Ra(ϕa)Rs(ϕs). (7)

With the initial state given in Eq. (2), and during suc-
cessive applications of the operator G, the state vector
for the system begins and remains in the two-dimensional
subspace defined by the non-orthogonal states |s〉 and |a〉.
Each application of G amplifies the marked state popu-
lation until it reaches a maximum value close to unity
after NG iterations, at which point the search result can
be read out.

B. Deterministic quantum search

The problem of how to optimize the quantum search
routine by allowing arbitrary ϕa and ϕs has been stud-
ied extensively [22–24]. It is known that the maximum
possible amplitude amplification per step of the marked
state arises when the phases ϕa and ϕs are both set to
π, as in Grover’s original proposal [1]. In this case, how-
ever, one does not obtain a unit fidelity in the end. For
a deterministic search (unit fidelity) both phases ϕa and
ϕs must be equal, ϕa = ϕs = ϕ, where

ϕ = 2 arcsin

sin
π

4j + 2

sinβ
. (8)
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Here j = ⌊π/(4β) + 1/2⌋, β = arcsinN− 1

2 and ⌊x⌋ de-
notes the integer part of x. The corresponding minimum
number of search steps is [22]

NG = j or j + 1 (9)

if, respectively, (2j + 1)β or (2j − 1)β is closer to π/2.
This choice of phases is not unique. For large N , as long
as the phase matching condition ϕa = ϕs = ϕ is satisfied
[23], a high fidelity search can be performed for any value
of ϕ in the range π/2 . ϕ 6 π and for certain values of
ϕ, a deterministic quantum search is possible [22].

III. QUANTUM SEARCH WITH QUDITS

A. Generalization of Grover’s algorithm

As in the original implementation with qubits, the im-
plementation that we propose here with qudits begins
with the system initialized in an equal-weight superpo-
sition |a〉 of all basis states, similar to Eq. (2) but with
arbitrary relative phases. To do that, first all qudits must
reside in the logical states |0k〉 (k = 1, 2, . . . , n), the col-
lective state thereby being |0〉 = |0102 · · · 0n〉. The super-
position |a〉 is obtained by applying the same transforma-
tion F independently on all qudits. The transformation
F generalizes the Hadamard gate H used in the origi-
nal qubit implementation. It can be achieved by means
of any physical interaction, which drives the single-qudit
state |0k〉 into an equal-weight superposition state,

F|0k〉 =
d−1
∑

q=0

ξq|qk〉, (10)

with |ξq| = d−1/2, in all qudits (k = 1, 2, . . . , n). Thus
F is a representative of a large class of d-dimensional
unitary matrices, in which the first column contains el-
ements of equal moduli [25]. Upon application of F the
collective state is an equal-weight superposition,

|a〉 = F
⊗n|0〉 =

N
∑

x=1

αx|x〉, (11)

wherein |αx| = N−1/2, with N = dn being the database
size, and |x〉 designates the collective states of n qudits.
An example of F is the discrete Fourier transform F

(DFT), wherein all elements, Fjk = eiπjk/d/
√
d, differ

only in phase. The Hadamard gate (5) of a qubit is in
fact the two-dimensional manifestation of DFT. However,
it is not necessary to assume that F is indeed the DFT
F because the construction of F for d > 2 may be very
demanding; it requires the synthesis of an entire DFT
matrix, which needlessly attempts to transform the whole
basis of single qudit states into a new set of superposition
states. In fact, all we need for the matrix F is an interac-
tion that creates an equal-weight coherent superposition

of the d states of each qudit starting from the qudit state
|0k〉 only. Moreover, the relative phases in this superpo-
sition can be arbitrary while there are strict relations for
them in the DFT F ; it is only necessary to use the same
F in all steps. Of course, the matrix F must be unitary,
i.e. F† = F

−1, because the interaction is supposed to be
coherent. In general, there are numerous suitable choices
for F, of which the respective DFT F is just one possi-
bility but certainly not the most convenient one for the
reasons given above: the only requirement is that F is
unitary and has a column of elements of equal moduli. It
was a circumvention of DFT that enabled to factor the
number 21 in the experiment, described in [26].
Next one applies repeatedly the Grover operator,

which has the same form (7) as for qubits. The only
difference from Eq. (7) is that the Hadamard gate H is
replaced by F, which is contained in the reflection-about-
average,

Ra(ϕ) = F
⊗n

R0(ϕ)(F
†)⊗n. (12)

This is a reflection with respect to a state that is an equal
superposition of all N = dn possible collective states of
a system of n qudits.
The conditional phase shifts R0(ϕ) and Rs(ϕ) are im-

plemented in the same way as for qubits. There is a
variety of techniques for construction of these gates; for
example, efficient methods exist for trapped ions [27–29].

B. Construction of F

There are potentially numerous ways to implement the
interaction F in different physical systems. Recently, sev-
eral different scenarios for the synthesis of an arbitrary
SU(3) transformation of a qutrit, including DFT, have
been proposed [12]. Here we will show how the transfor-
mation F can be constructed relatively easily in a multi-
pod system, which is one of the most natural and simplest
realizations of qudits.
A multipod is a system of d degenerate quantum states

|0〉, |1〉, . . ., |d− 1〉, coupled to each other by two-photon
Raman processes via a common (ancilla) state |c〉, as il-
lustrated in Fig. 1 (top). Such a coupling scheme usually
arises in systems of ions or atoms. Ωk = |Ωk| eiθk and ∆
are respectively single-photon (complex) Rabi frequen-
cies and detuning. If all coupling fields coincide in time,
which we assume hereafter, the dynamics of the multi-
pod system is reducible by the Morris-Shore transforma-
tion [30] to a two-state system, as illustrated in Fig. 1
(bottom). The two states are coupled by the root-mean-

square (rms) Rabi frequency Ω(t) =
√

∑d−1

k=0
Ω2

k(t).

Thus the dynamics of the multipod can be derived from
the two-state solution; the derivation can be found else-
where [31].
The propagator for the qudit manifold for rms pulse

area A = Ω
∫∞
−∞ f(t)dt = 2(2l+ 1)π (with l = 0, 1, 2, . . .)
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Morris-Shore

transformation

FIG. 1: (Color online) (Top) qudit in a multipod linkage:
linkage patterns in the original basis (top) and in the Morris-
Shore basis (bottom). The qudit is formed of states |0〉, |1〉,
. . ., |d− 1〉, coupled to each other by two-photon Raman pro-
cesses via a common (ancilla) state |c〉 with a common de-
tuning ∆, but different single-photon Rabi frequencies Ωk. In
the Morris-Shore basis the multipod reduces to a two-state
quantum system formed of a bright state |b〉 and the origi-
nal ancilla state |d〉, coupled by the rms Rabi frequency Ω.
State |b〉 is a superposition of the qudit states weighted by
the couplings Ωk; |un〉 are uncoupled (dark) states, which do
not participate in the dynamics.

is given by the generalized reflection Rχ(φ), with

|χ〉 = 1

Ω
(Ω0,Ω1, . . . ,Ωd−1)

T
. (13)

The acquired phase φ depends on the pulse shape f(t)
and the detuning. For a hyperbolic-secant pulse, f(t) =
sech (t/T ), with rms area A = 2π, φ is [31]

φ = π − 2 arctan(∆T ). (14)

The generalized reflection can be created also for other
pulse shapes, e.g. Gaussian, but the required pulse area
and detuning have to be evaluated numerically.
We note that one of the possible implementa-

tions of F is the reflection Rξ(π), with |ξ〉 =

α
(

∑d−1

q=0
ξq|qk〉 − |0k〉

)

and |α| = 1/
√

2(1− Reξ0). It

can be obtained in a multipod system with resonant in-
teraction (∆ = 0), wherein the couplings fulfill the fol-
lowing conditions [31]

Ω0 =

√

1

2

(

1− 1√
d

)

, Ωk 6=0 =

√

1

2(d−
√
d)

. (15)
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FIG. 2: (Color online) Simulation of Grover’s search in a
system of 5 qutrits. The figure depicts the population of the
marked state |s〉 vs the number of applications of the Grover
operator (7). The vertical dash indicates the time, when unit
fidelity is obtained, corresponding to NG = 12 search steps,
as predicted by Eq. (9).

C. Example

Simulation of quantum search in a system of 5 qutrits
(d = 3, n = 5) is shown in Fig. 2, where the probability
to find the marked state is plotted as a function of time.
The corresponding database contains N = dn = 243 el-
ements. Unit probability is obtained in NG = 12 inter-
action steps, denoted with a vertical dash, after which it
decreases as a part of oscillations between zero and unity
in a long run.

IV. CONCLUSION

Earlier proposals for Grover’s quantum search with qu-
dits use the discrete Fourier transform [19] or other com-
pound transformations [20], to assemble the reflection-
about-average operator. These transformations, carried
out twice at each search step, demand an increasing num-
ber of redundant physical interactions and thus pose un-
necessary challenges to a quantum computer. Instead,
in our simplified scheme for qudit Grover search we pro-
pose to use a reflection operator F, achieved in a sin-

gle physical interaction, which does not even assume any
phase relations between the fields driving individual qu-
dits. Our method minimizes the number of algorithmic
steps, as well as the duration of each step, which results
in a minimal number of interaction steps, fast implemen-
tation, increased immunity against detrimental effects of
decoherence or inevitable imperfections, resulting from
coherent interactions, etc., and deterministic search. Be-
cause of its conceptual simplicity, our method is applica-
ble in numerous physical systems. We have shown how
F can be constructed relatively easily, in a single interac-
tion step, in a multipod system, which is one of the most
natural and simplest realizations of qudits.
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Rev. A 64, 052109 (2001); D. Collins, N. Gisin, N. Lin-
den, S. Massar, and S. Popescu, Phys. Rev. Lett. 88,
040404 (2002); D. Kaszlikowski, L. C. Kwek, J.-L. Chen,
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