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Decoherent histories quantum theory is reformulated with the assumption that there is one “real”
fine-grained history, specified in a preferred complete set of sum-over-histories variables. This real
history is described by embedding it in an ensemble of comparable imagined fine-grained histories,
not unlike the familiar ensemble of statistical mechanics. These histories are assigned extended
probabilities, which can sometimes be negative or greater than one. As we will show, this construc-
tion implies that the real history is not completely accessible to experimental or other observational
discovery. However, sufficiently and appropriately coarse-grained sets of alternative histories have
standard probabilities providing information about the real fine-grained history that can be com-
pared with observation. We recover the probabilities of decoherent histories quantum mechanics
for sets of histories that are recorded and therefore decohere. Quantum mechanics can be viewed
as a classical stochastic theory of histories with extended probabilities and a well-defined notion of

reality common to all decoherent sets of alternative coarse-grained histories.

I. INTRODUCTION

Decoherent histories quantum mechanics! (DH) is log-
ically consistent, in agreement with experiment as far as
is known, applicable to cosmology, consistent with the
rest of modern physics including special relativity and
quantum field theory, and generalizable to include quan-
tum gravity?. It is a framework for quantum cosmology
and for understanding large scale features of the quan-
tum universe ranging from the approximate applicability
of classical physics under suitable conditions to the num-
ber of e-foldings of inflation. It includes the Copenhagen
quantum theory of laboratory experiment as an approx-
imation adequate for measurement situations. It is the
only presently available formulation of quantum theory
with all these properties.

DH assigns probabilities to the members of decoher-
ent sets of alternative coarse-grained histories of the uni-
verse. By decoherent we mean that, as a consequence of
the quantum state and dynamics of the universe, there is
negligible quantum interference between coarse-grained
histories in the set. A coarse-grained history can be re-
garded as a class of fine-grained ones. Fine-grained histo-
ries describe the system as completely as possible. Feyn-
man paths for a particle are an example. Decoherent sets
of alternative coarse-grained histories are called realms.

As usually formulated, DH presents two obstacles to
the idea that there is one unique, real, fine-grained his-
tory of the universe that we experience at a highly coarse-
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grained level. The first is that, except for trivial cases,
there are no decoherent sets of completely fine-grained
histories. Negligible interference requires coarse-graining
such that the phases between histories are washed out.
The second obstacle is that there are realms that are
mutually incompatible in the sense that there is no com-
mon finer-grained realm of which they are both coarse-
grainings. There appears to be no connection between
the real history of one realm and that of an incompatible
one.

In this paper we show how to overcome these obsta-
cles. We overcome the first one by extending the notion of
probability to include values outside the range [0, 1]. Ex-
tended probabilities can then be assigned to any set of al-
ternative histories, in particular to fine-grained ones. We
overcome the second obstacle by restricting the allowed
sets of histories to those describable in a preferred set of
variables — those used in a sum-over-histories treatment
of quantum theory. The result will be a formulation of
quantum theory that at first sight appears to be both an
extension and a contraction of DH. It is an extension in
that it uses extended probabilities; it is a contraction in
the sense of using only a preferred set of variables. How-
ever, we shall see that in realistic situations it is equiva-
lent to a sum-over-histories formulation of DH.

There are two basic starting points for this formula-
tion. The first is the ensemble method of J. Willard
Gibbs [6], which has proved to be essential for describing
the coarse-grained regularities of physical systems about
which we have little fine-grained information, as in sta-
tistical mechanics. The same method is also useful for
characterizing the complexity of such regularities [7]. The
second starting point is the notion of extended probabil-
ity [8].

The statistical mechanics of a classical gas of N par-
ticles in a box illustrates the ensemble method. The gas
is described at a moment of time ¢y by giving the posi-
tions and momenta of the N particles, that is, by giving



a point, zg = z(tp), in the 6N dimensional phase space
of the system. This point in phase space evolves in time;
z(t) follows Newton’s deterministic laws. That is the
real fine-grained history of the gas. The evolution by a
deterministic law is a regularity of the fine-grained his-
tory, but not one that is completely accessible or useful
to us when N is large. There is no practical hope of
measuring, storing, retrieving, or computing with all the
information involved in describing these regularities. The
accessible, useful regularities, such as those summarized
by the Navier-Stokes equation, are very coarse-grained.
To describe them we conceptually embed the one real his-
tory of the particles in an ensemble (a set with probabil-
ities) of imagined comparable fine-grained histories with
various different initial conditions. The term ensemble
indicates that probabilities are assigned to these initial
conditions in such a way that the coarse-grained regular-
ities have high probability. For example, one might con-
sider a time-dependent coarse graining based on hydro-
dynamic quantities with probabilities representing local
equilibrium. The phenomenological equations of classi-
cal hydrodynamics then hold with high probability®. The
assumption that the one real history is typical in this en-
semble allows us to use the probabilities to bet on what
will really happen in the future and what really happened
in the past.

We will show how the quantum mechanics of a closed
system can be formulated in a similar way. We as-
sume the preferred variables of sum-over-histories quan-
tum mechanics are the ones to be used for describing
fine-grained histories?. The one real fine-grained history
of the universe is embedded conceptually in an ensem-
ble of alternative fine-grained histories, each of which
is assigned an extended probability [8] based on an as-
sumed quantum state and Hamiltonian for the system.
Extended probabilities obey the usual rules of probability
theory except that they can be negative or greater than
one for an alternative for which it cannot be determined
whether it occurs or not (as on the alternative histories
in the two-slit experiment). From the extended prob-
abilities of fine-grained histories, extended probabilities
can be constructed for sets of coarse-grained alternative
histories that are classes of fine-grained histories. Suffi-
ciently and appropriately coarse-grained ensembles have
only probabilities between 0 and 1 and can therefore be
used to bet on the outcomes of experiments that test the
theory. The result, as mentioned in [8], is that quantum
mechanics can be viewed as a classical stochastic theory
with extended probabilities.

The Bell inequalities together with the experiments

3 See, e.g. [9] for an exposition in the present context.

4 This assumption fits with the idea that the sum-over histories for-
mulation of quantum theory may be a more general and therefore
a more fundamental framework for quantum mechanics [10, 11].
Extensions of usual quantum theory to incorporate quantum
spacetime seem naturally formulated in this way (e.g [5, 12]).

verifying their violation restrict the nature of any classi-
cal stochastic theory that might reproduce the probabil-
ities of quantum mechanics. Either locality or positive
probabilities or both must be given up (e.g [33]). As we
will show quantum mechanics naturally allows extended
probabilities which can be non-positive. It is with these
that we construct the ensemble of fine-grained histories.
Extended probabilities are therefore an essential part of
our story5.

This formulation of the quantum mechanics of closed
systems is not a replacement for decoherent histories
quantum theory but rather a different starting point for
it. As we will see, we recover a sum-over-histories version
of DH in the end for realistic situations.

Our paper is organized as follows: Section II explains
how quantum mechanics can be formulated as a prescrip-
tion for the extended probabilities of an ensemble of fine-
grained histories containing one real history. Section III
discusses the role of records and the connection to deco-
herent histories quantum theory. Section IV discusses the
implications of this formulation of quantum mechanics.
Section VI contains a summary and further discussion of
the implications.

II. THE QUANTUM ENSEMBLE OF
FINE-GRAINED HISTORIES

This section formulates the quantum mechanics of a
closed system as a theory of one real fine-grained history
embedded in an ensemble of comparable alternative fine-
grained histories described in a preferred set of variables
and assigned extended probabilities. To keep the dis-
cussion manageable, we neglect gross fluctuations in the
geometry of spacetime. We then in effect consider a sys-
tem of a box of particles or fields moving in a fixed, pre-
sumably expanding, background spacetime. Well-defined
notions of space and time are then available, as well as
the usual machinery of quantum theory — amplitudes,
operators, a Hilbert space of states, etc. The important
thing is that the system is closed so that observers and
measuring apparatus (if any) and all other physical sys-
tems are within the box and are part of the quantum
system being described. We can think of this as a sim-
plified model of the universe. The fundamental theory
of this closed system consists of two parts: the system’s
Hamiltonian H specifying the dynamics (assumed inde-
pendent of time for simplicity) and the quantum state

specified by a wave function W.

5 Bohm theory [36] an example of a version of quantum mechanics
that assigns usual probabilities to fine-grained histories of par-
ticle positions but gives up on locality in the sense it is used in
the Bell inequality discussion.



A. Four ingredients of the formulation

This formulation is specified by four ingredients:

e The preferred set of variables in terms of which
the one real fine-grained history is described, as
well as the alternative fine-grained histories of the
ensemble in which the one history is embedded.

e An extended notion of probability that reflects the
notion of ignorance in quantum mechanics.

e The prescription that assigns extended probabili-
ties to the members of the ensemble of alternative
fine-grained histories using the system’s quantum
state and Hamiltonian.

e Coarse graining of the fine-grained set of histories
leading to coarse-grained sets that can be recorded
and decoherent and can have standard probabili-
ties.

We now discuss these in turn:

Preferred Variables: The fine-grained histories are de-
scribed by a preferred set of variables which we take to
be those of a sum-over-histories formulation of quantum
mechanics. They are histories of particle positions in the
case of particles, four-dimensional field configurations —
both bosonic and fermionic — in the case of quantum
field theory, and histories of geometries and fields in the
case of semiclassical quantum gravity. Histories of these
variables are assumed to be the most refined description
of the system possible.

A strong case can be made that these histories are
adequate for the prediction of all observable quantities
[13]. Particle momentum, for instance, can be defined in
terms of histories of position in a time-of-flight setup that
would measure velocity. We do not rule out introducing
operators, transformation theory, etc at some later stage
but we begin by assuming this preferred set of variables
for fine-grained histories.

To describe these preferred variables we assume a par-
ticular Lorentz frame and let ¢ be the time coordinate
of that frame. We denote the preferred variables by ¢*
or just ¢ for short. For particles i might be x,y,z and
a particle label. For fields ¢ would include the label &
of the spatial point. We denote the configuration space
spanned by ¢* by C. A fine-grained history is a path g(t)
in C that we assume to be single-valued — one and only
one value of ¢ for each ¢t. The set of all fine-grained histo-
ries between an arbitrary pair of times ¢y and ¢5 is the set
of all such paths {q(t)} between these two times. They
are continuous but typically non-differentiable.

Extended Probabilities: Probabilities can be usefully
understood as instructions for making fair bets [14]. To
hold that the probability of an alternative a is p(«)
means the following: Suppose that there is a bet on
whether a occurs with payoff S, (of either sign) if it
does. You will put up p(a)S, and consider it a fair bet.

L =

[y

FIG. 1: The two-slit experiment. An electron gun at left
emits an electron traveling towards a screen with two slits,
its progress in space recapitulating its evolution in time. The
electron is detected at a further screen at a position y with a
probability density that exhibits an interference pattern. A
coarse-grained set of histories for the electron is defined by
specifying the slit (U or L) through which the electron passes
through and ranges A of the position y where it is detected. In
the absence of the record of a measurement it is not possible
to settle a bet on the which of these histories occurred.

Probabilities can thus be said to express our ignorance
with respect to whether the alternative o occurs.

All the usual rules of probability theory, including the
restriction of values to the range [0, 1], follow from the re-
quirement that a bookie not be able to offer you a “Dutch
book” in which you will put up the stake p(«)S, but be
guaranteed to always lose, not just on average, but each
time the bet is made [14, 15].

Implicit in the above definition of probability in terms
of fair bets is the assumption that it can be settled
whether the alternative a occurs or not. Elementary
physics assumes that any alternative that can be de-
scribed can be determined without significantly affect-
ing its value. Every alternative in elementary physics is
therefore in principle the basis of a settleable bet, how-
ever difficult it may be to settle it in practice. For in-
stance, we assume that the value of the initial condition
zp of the box of gas discussed in the preceding section is
in principle the basis for a settleable bet even though it
is impossible in practice to determine zg. Thus, when we
construct an ensemble reflecting our ignorance of zy, we
assign probabilities obeying the usual rules to the differ-
ent values it might take.

But in usual quantum theory there are alternatives
that can be described but are not the basis for settleable
bets. A classic example is provided by the two-slit ex-
periment illustrated in Figure 1. A bet on whether the
electron went through the upper slit or the lower slit is
not settleable without carrying out a measurement that
would significantly disturb the system. Alternatives that
are not the basis of settleable bets are a new kind of ig-
norance not found in elementary physics and they can
be usefully described by extending the classical notion
of probability. In [8] we proposed the following simple



extension: Keep the rules of probability as they are, but
allow the values to be outside the range [0, 1] for alterna-
tives corresponding to non-settleable bets. Evidently this
extension does not lead to Dutch books because no book
of any kind can be made on non-settleable alternatives.

Even one out-of-range probability in an exhaustive set
of exclusive alternatives means that there are no set-
tleable bets on which alternative occurs. If there were, a
Dutch book could be constructed using only the alterna-
tives that have out-of-range extended probabilities. The
excursion out of the normal range [0, 1] is a measure of
how much coarse graining is needed to find alternatives
that have probabilities in the normal range [8, 16].

The quantum history ensemble will consist of alter-
native fine-grained histories assigned extended probabil-
ities. We now turn to how the ensemble is constructed.

The Fundamental Distribution: To complete the for-
mulation of quantum theory starting with an ensemble of
fine-grained histories, we need to specify the fundamen-
tal distribution w[q(¢)] that assigns an extended prob-
ability® to each history ¢(¢). This formula will depend
on the initial quantum state of the box represented by a
Schrodinger picture wave function W(q, tg). (Hats denote
the Schrodinger picture.) This is just as much a part of
the necessary theoretical structure for prediction in the
universe as the Hamiltonian” H. There are no quantum-
mechanical predictions of any kind that do not depend
on both. The Schrodinger picture wave function evolves
in time according to

U(gq,t) = e U=/ (go, 1) (2.1)

To keep the discussion manageable assume that all
coarse-grained alternatives lie between an initial ¢y and
a final time t;. That is not a loss of generality since ¢y
can be as large as desired. Elementary causality shows
that we need not consider fine-grained histories at times
later than ¢; (e.g [18], Section VIIC). Thus, we consider
single valued histories ¢(¢) that take initial values go at
t =ty and final values g at t = t;. We then postulate
the fundamental distribution of extended probabilities is
8]

wlg(®)] = Re |9*(az, t) exp{iSla(t))/1} ¥(a0, o) | -

(2.2)
where S[q(t)] is the action functional corresponding to
the Hamiltonian H. We will show in Section III that this
formula reproduces the probabilities of DH when there
are records of histories that can be used to settle bets
on which history actually occurs. At this point in the
exposition, however, (2.2) is a postulate.

6 The distribution is a probability functional density for continuous
q, but we rely on the reader to make this qualification where
appropriate.

7 In more general quantum gravitational contexts a theory of the
quantum state like the one that yields the no-boundary wave
function [17] may derive the state from the dynamical theory.

So defined, the extended probabilities sum to one since
the integral over all paths from ¢ to ¢; (including over

qo and g¢y) is

/ 5q wlg(t)] = / dgp¥ (g, tp) (s ty) =1 (2.3)

because the sum over all paths just evolves the wave func-
tion at ¢y to ty to give (2.3).

The distribution w[q(t)] defined by (2.2) will have val-
ues outside the range [0,1] for some ¢(t). To see that,
suppose there is a history ¢(¢) with w[q(¢] within the
range [0,1]. Then a variation of ¢(t) that leaves go and
gy unchanged can still contribute significantly to the ac-
tion in (2.2) and change the sign of w(g(t)] from positive
to negative. As we will see in Section III, these negative
extended probabilities mean that the set of fine-grained
histories is not the basis for a settleable bet on what the
real fine-grained history is like.

Coarse Graining. The set of alternative fine-grained
histories {q(¢)} can be coarse grained by partitioning it
into an exhaustive set of exclusive classes ¢, with o =
1,2,---. The extended probability of the class c, is the
sum of the extended probabilities of all its members, that
is

p(a) = / 5 wla(t)] | (2.4)

where the sum is over all ¢(¢) in the class ¢4, including a
sum over go and gy.

Sufficient coarse graining will lead to sets with all pos-
itive probabilities if only because the completely coarse-
grained set consisting of all histories has probability one®.
Suitably coarse grained sets can be recorded and decoher-
ent, and can have standard probabilities. They therefore
describe alternatives that are the basis of settleable bets.
We discuss this in more detail in the next section, but
we conclude this one with introducing useful operator
representations of most of our formulae.

B. Operators

Using (2.2), the expression (2.4) for the extended prob-
ability of a coarse-grained history ¢, can be written more
explicitly as

a)= [ d d 1)
p(a) / Qf/ qO/[qocaqf] q
x Re [ (g5, t7) expliSla(t)) i} (a0, to)] . (2.5)

where the notation [goceqr] means that the sum is over
all histories in the class ¢, that begin at gy and end at

8 See [8] for a more quantitative discussion of how coarse graining
leads to usual probabilities.



gf. This can be conveniently written in operator form as

p(a) = Re[(¥(t1)|Cal ¥(t0))] , (2.6)

where the matrix elements of the class operator C, in
the Schrédinger picture are defined by

(a51Clao) = /

[g0;caray]

SqetSlal/n, (2.7)

and W(q,t) = (q[¥(t)).

The formulae simplify even further in the Heisenberg
picture. Referred to the time ty, the Heisenberg picture
state is

|B) = et =t0)/h |y (1)), (2.8)
The equivalence between sum-over-histories evolution
and Hamiltonian evolution shows that the Heisenberg
picture state |¥) is constant in time. Then, if we de-
fine

C, = eHti=t)/h e | (2.9)

we find ?

p(a) = Re[{(T|Cy | T)]. (2.10)

Extended probabilities satisfy all the rules of proba-
bility theory except the requirement that probabilities
lie in the range [0,1]. In particular, they must satisfy
the usual sum rules connecting the extended probabilities
for coarse-grained sets related by operations of fine and
coarse graining. Suppose that {5} is a coarse graining of
a set {cq}. This means that the even coarser-grained set
is a partition of the finer-grained set into an exhaustive

set of exclusive classes so that
E@ = Uae@ Co -

(2.11)

The rules of extended probabilities require the sum rules

B@) = pla).

aca

(2.12)

These are satisfied exactly as a consequence of (2.4),

which leads to
C@ = Z Ca.

aca

(2.13)

A familiar example of a coarse graining of a fine-
grained set of histories concerns the motion of a parti-
cle in one dimension x. The set of fine-grained paths

9 This is the expression used by Goldstein and Page [19] to de-
fine their linear positivity condition that restricts sets of coarse-
grained histories to those for which (2.10) is positive. The fun-
damental distribution (2.2) is a related expression that assigns
extended probabilities to fine-grained histories without restric-
tion.

can be partitioned into classes by using exhaustive sets
of exclusive intervals of x, {A’;k}, with a, = 1,2,---,
at a sequence of times ty kK = 1,2,--- ,n. The index k
allows for the sets to be different at different times. The
index «y labels the interval in each set. The alterna-
tives at each time correspond to an exhaustive set of ex-
clusive (Schrédinger picture) projection operators {P% }
onto the intervals A’Oik. A coarse- grained history « is de-
fined by a particular sequence of intervals at the possible
times, @ = (a1, a9, -+ ,a,). The class ¢, consists of the
bundle of paths ¢(t) that pass through these intervals at
the assigned times. The class operator in the Heisenberg
picture defined by (2.7) can be shown (e.g [20]) to be
given by

Co = P2 (t,) - Pl (t1). (2.14)

The extended probabilities of these histories are given by
(2.10); some explicit calculations can be found in [16].

III. SETTLEABLE BETS, RECORDS, AND
DECOHERENCE

A. IGUS Choice

In this section we turn to the question of how ex-
tended probability ensemble quantum mechanics (EPE )
is used. Information gathering and utilizing systems
(IGUSes) like ourselves exploit the regularities summa-
rized by physical theories to construct schemata, make
predictions, and direct behavior [3]. Even a frog aiming
to catch a fly can be said to be exploiting a rudimentary
classical approximation to quantum mechanics (perhaps
hard wired). The frog is in effect betting on these regu-
larities.

We can imagine an IGUS equipped with the
EPE formulation of quantum theory of the previous sec-
tion and theories of the quantum state ¥ and action S.
Such an IGUS might use the theory plus data acquired
in previous observations to make bets that will be settled
by future data it may acquire. That is true whether or
not the bet concerns the outcome of a delicate laboratory
experiment, the outcome of the next election, what hap-
pened in the distant past, or whether the universe will
be destroyed in a big crunch singularity in the far future.

To make a bet the IGUS must first choose the alter-
natives that are the basis for the bet, and then prescribe
the means to settle it. The only candidates for settleable
bets are sets of alternative histories that are sufficiently
coarse-grained that all the p(«) are positive so that the
set has genuine probabilities. Of course, even with that
restriction there is an infinity of possibilities.

B. Records and Decoherence

Among the wealth of possibilities for alternative histo-
ries to bet on and for ways of settling such bets, one gen-



eral property stands out: Bets are settled using records
of the alternatives one is betting on. A set of histories
{C4} is recorded if there are alternatives with projection
operators { R, } at one time that are correlated with the
histories. These alternatives need not be ones that are
used or even could be used by IGUSes. As in the exam-
ples of Joos and Zeh [21], there is a record of the position
of a dust grain in interstellar space in all the CMB pho-
tons that have scattered from it and left the vicinity at
the speed of light.

A very general notion of record is the following: We
say that a set of histories {C,} is (strongly) recorded if
there is an exhaustive set of orthogonal exclusive projec-
tion operators { R, } on regions of the configuration space
spanned by the ¢* at a time after the last alternative in
C\, such that

Ra|W) ~ Co W) (3.1)
to a suitable approximation appropriate for realistic situ-
ations!®. The projection R, defines the record of the his-
tory C,. Some approximation must be allowed in (3.1)
because we can’t expect realistic records to be exactly
correlated with the histories they record. The degree of
approximation is treated in [8]. We now discuss how some
familiar features of quantum mechanics are recovered for
sets of histories {C,} that are recorded in the sense of
(3.1).

From the fundamental distribution (2.10) and the def-
inition of recorded sets of histories (3.1) it follows that

p(0) ~ (| Ra|T) = (U] Ry RoT) = [[Cal D). (3.2)
The extended probabilities are therefore positive for a
set of histories for which there are records. They are
genuine probabilities with which to make fair bets, and
the records supply a way to settle each bet. Further,
the values of the probabilities are given by the usual
quantum-mechanical square of an amplitude (the branch
state vector).

A recorded set of histories is decoherent. That is be-
cause the projections R, are orthogonal, so that

0= (¥|RLRs|W) ~ (V[CLCOsT) =0, a#8, (33)
which is the condition for (medium) decoherence'!. Any
set of histories has extended probabilities, but the sets of
histories that are the basis for bets settleable by records
are decoherent and have standard probabilities.

10 There are other general notions of record. In the terminology
used in [8] we are defining strong records. There a further dis-
cussion of the appropriate degree of approximation can be found.
In a general operator context the decoherence condition implies
that records of histories exist, but not necessarily in a preferred
set of variables as we are assuming here. For recovering DH we
need only that records imply decoherence, not the other way
around.
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C. EPE as a version of DH

In equations (3.3) and (3.2) we have the central
relations of decoherent histories quantum mechanics.
Eq.(3.3) is the condition for decoherence of the set of
coarse-grained histories represented by the {C,}, and
(3.2) gives their standard probabilities. Thus we have re-
covered a sum-over-histories version of decoherent histo-
ries. The probabilities of EPE that satisfy the sum rules
of probability theory exactly are recovered only to the ex-
tent that the histories are recorded as in (3.1). The DH
probabilities will satisfy these rules approximately, but in
realistic situations there is no physically significant dif-
ference between the two sorts of probability. Extended
probability ensemble quantum mechanics is a version of
decoherent histories quantum mechanics.

Expositions of EPE and traditional DH (TDH) begin
at the same starting point and end with essentially the
same predictions for probabilities of histories in realms.
But the routes to these ends differ — in particular with
regard to the role played by records and decoherence. It
may be helpful to the reader to compare these different
routes.

Both approaches to DH aim at the probabilities for
sets of alternative histories represented by {C,}. Both
start from the observation that there are interfering sets
of histories that cannot consistently be assigned proba-
bilities.

TDH assigns probabilities only to sets of histories for
which quantum interference between the members of the
set is negligible as a consequence of the state |¥) and
Hamiltonian H. TDH does not treat sets of histories for
which interference is non-negligible.

Decoherence means that the branch state vectors
{|¥,)} are nearly mutually orthogonal. This means that
records of the histories exist if only trivially as projec-
tions {R,} on the branch state vectors. The approxi-
mate probabilities of the histories are given by p(a) =

1Cal @)

EPE starts from the idea that probabilities are instruc-
tions for settleable bets. But interfering sets of alterna-
tive histories are not the basis of a settleable bet. The
notion of probability is expanded to give extended prob-
abilities to non-settleable alternatives.

Records of histories are defined as the means of set-
tling bets on which of a set of alternative histories occurs.
Decoherence is deduced as a consequence of a strong no-
tion of records. In contrast to records following from
decoherence in TDH, in EPE decoherence follows from
records. The probabilities of recorded histories in EPE
are p(a) = Re(¥|C,| ), which differ negligibly from the
TDH p(a) = ||Ca|¥)||? in realistic situations.



D. States and the Quantum-Mechanical Arrow of
Time

The extended probability formulation of quantum the-
ory elaborated in the previous section is time-neutral —
incorporating no fundamental arrow of time. That can
be seen from the fundamental distribution (2.10) . Field
theory is invariant under C'PT transformations that re-
verse the time order of the alternatives in a C,. (That
is immediate in the case of chains of alternatives at mo-
ments of time, as in (2.14).) The result is to complex
conjugate the matrix elements in (2.10) and (2.6), but
the resulting probabilities p(«) are unchanged. At this
level of generality there is no quantum-mechanical arrow
of time as there is in usual quantum theory and no fun-
damental distinction between past and future.

That means that there is not a notion of a state at a
moment of time that summarizes the past for prediction
of the future. That is a time-asymmetric notion'2.

However, the formula (3.2) for the probabilities of a
recorded set of histories is not time-neutral. Written out
for histories that are sequences of alternatives at definite
moments of time [cf (2.14)] it reads

pla) R [|Pa, (tn) -+ Pa, ()W) .

The projections in the chain are time ordered!3. As al-
ready mentioned, that is not an essential asymmetry be-
cause the order could be reversed by a C'PT transforma-
tion. But, in any case, there is the state at one end of the
chain and nothing at the other end. This asymmetry is
what is called the quantum-mechanical arrow of time'?.

How did we arrive at a formulation with a quantum-
mechanical arrow of time from one that did not have one?
The answer is that the notion of record introduced it. To

see that, first note that a consequence of (3.1) is

RpCo| W) & 6,504 |T) .

(3.4)

(3.5)

The combinations R3C, can be considered as a set of
histories in which the time of the records t,e. is after the
last time t,, in the chain in (3.4) (frec > tn). The result
is that the probabilities are

p(B, @) = dpa p(a) (3.6)

12 See, e.g. the discussion in [22].

13 In this paper expressions like (3.4) are to be understood as ab-
breviations for particular sum-over-histories expressions (in the
preferred variables ¢*) following from (2.2) and (2.4). Thus, there
is no freedom to change the times {t;} and thereby the descrip-
tions of the projections (to a different set of variables using the
Heisenberg equations of motion) as there is in a general operator
formulation (see e.g. [23]).

In a more general time-neutral formulation of decoherent histo-
ries quantum theory [24] this asymmetry can be seen as arising
from an initial condition that is a pure state or a somewhat mixed
state and a final condition of total indifference (a density matrix
proportional to the unit matrix.) Indeed from that perspective
the present formulation can be seen as one way of justifying a
final condition of total indifference.

14

which concisely expresses the correlation between records
and history. With the usual conventions for past and
future the R’s then can be said to record the past.

The above discussion shows that when the records de-
fined by (3.1) are considered as part of history they come
at the opposite end of the chain from the state |¥). That
is consistent with our intuitive understanding of the pro-
cesses by which records are formed in a universe like ours
that has an initial low entropy state leading to a second
law of thermodynamics. (See [9] for further discussion.)

The quantum-mechanical arrow of time of DH allows
us to introduce a notion of state at a moment of time as
we discussed in [22]. Suppose we have a decoherent set
of histories consisting of sets of (a,,- -, 1) at sequence
of times t; < tg--- < t, with t; > ty3. Suppose that
at time t; we know from present records that particular
alternatives (ay,---«a1) happened in the past. Predic-
tions for future alternatives are given by the conditional
probabilities

p(an, e ,041)
plag, -, a1)

p(anv"' ,O[k+1|0[k,"' aal) ) (37)
where we have dropped the time labels to keep the nota-

tion concise. This can be rewritten

p(anv" : ,O[k+1|0&k," : ,041)
= [|P} (tn) -~ PEE (try 1) [Wayan) P, (3.8)
where
P* (t)--- Pl (4|0
|\Ijak...al> = Otk( k) Ozl( 1| > (39)

1P, (tx) - - A, () [ W)

The state [Py, ...q, ) defines a state at the time ¢ that
has evolved from the begining by unitary evolution (con-
stant in the Heisenberg picture) and projection (reduc-
tion). It summarizes past information for future predic-
tion. We recover this time asymmetric notion of state at
a moment of time, not generally, not exactly, but as a
special feature of those sets of histories that are approx-
imately recorded and are therefore approximately deco-
herent!®.

IV. IMPLICATIONS OF THE EXTENDED
PROBABILITY ENSEMBLE FORMULATION

In this section we develop the implications of the ex-
tended probability ensemble formulation of quantum the-
ory (EPE ) in which the ‘real’ history of the universe is

15 Another property of ordinary quantum mechanics that emerges
only for recorded history is the usual quantum-mechanical no-
tion of non-entangled, non-interacting subsystems represented
by product states. The extended probabilities generally don’t
factor into products, as noted by Didsi [26], but the probabilities
for recorded histories do, if only approximately [8].



embedded in an ensemble of comparable imagined histo-
ries with extended probabilities.

Throughout we will assume that histories are specified
in the variables of sum-over-histories quantum mechanics
(e.g. quantum fields) whether they are real or imagined,
fine-grained or coarse-grained. Notions like realms (de-
coherent sets of coarse-grained histories) are also to be
understood in this sum-over-histories context.

A coarse graining is a partition of the histories of
the ensemble into an exhaustive set of exclusive classes,
which are the coarse-grained histories. The one real fine-
grained history must lie in one of these classes. That
class is the real coarse-grained history in the set. With
sufficient and appropriate coarse graining we have realms
with standard probabilities that can be the basis of set-
tleable bets on what the real history in the set is like.
One coarse-grained history in each realm is real.

By measurement and other observation we acquire
data D on what the real coarse-grained history is in any
realm in which D is valid in some histories but not in
others. With these data we also acquire coarse-grained
information on what the real fine-grained history is. As
we make further observations we learn more and more
about the real fine-grained history.

However, this process of progressive discovery of reality
can never be carried to the completely fine-grained level.
That is because the set of fine-grained histories is not
decoherent, not recorded, and therefore not the basis for
settleable bets!S.

The ensemble formulation permits the straightforward
and unqualified use of ordinary language in quantum-
mechanical discussion. Statements about what hap-
pened, or is happening, or will happen refer to the real
history in situations where it is possible to bet on records
that check these. That is, we can straightforwardly use
these words in discussing realms!”.

Because of the restriction to sum-over-histories vari-
ables, all coarse-grained sets are coarse grainings of the
unique common fine-grained set of histories. However,
even with this restriction there will generally be mutu-
ally incompatible realms (e.g as discussed in [9]). That is,
there are decoherent coarse-grained sets for which there
is not a finer-grained decoherent set of which they are
both coarse-grainings 8.

16 The fine-grained histories of classical statistical mechanics are
only in principle the basis of a settleable bet.

17 This is in contrast with the usual formulation of DH where it
is necessary to qualify the use of ‘happen’ by choosing to which
mutually incompatible family of realms it refers [27].

Imagine for example a closed system of two kinds of particles,
red and blue. It seems likely that a set of suitably coarse-grained
histories following only the positions of the red particles could
be decohered by the interactions with the blue particles. There
could also be a set of coarse-grained histories following only the
positions of the blue particles are made to decohere by interac-
tions with the red. These realms could be mutually incompati-
ble, with no finer-grained decoherent set following the positions
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EPE is a four-dimensional presentation of quantum
theory. The histories in the ensemble are spacetime his-
tories. A spacelike surface of constant time particular
Lorentz frame of the kind we have assumed through-
out defines a notion of past, present, and future. For
any realm, and any such spacelike surface, the unique
real fine-grained history selects one coarse-grained his-
tory that gives a description of what is happening in the
present, what did happen in the past, and what will hap-
pen in the future.

As is well known, spacetime formulations of theories
are not inconsistent with notions of causality and IGUS-
specific distinctions of past, present, and future (e.g.[28]).
The physical structure of our universe makes it easier
to acquire information about times toward the big bang
(what we call the past) than about times away from the
big bang (what we call the future). The fact that the
sources of electromagnetic radiation that we receive now
lie in the past is just one of the several reasons for this
[28]. That is why there are more events in the past that
can be retrodicted with high probability conditioned on
present data than there are events in the future that can
be predicted. Such time asymmetries are due to the par-

ticular quantum state of our universe'®.

V. TYPICALITY RESTRICTIONS ON
COARSE-GRAININGS

Families of quasiclassical realms are striking features
of our quantum universe. These are families of deco-
herent sets of coarse-grained alternative histories defined
by quasiclassical variables — averages over suitable vol-
umes of densities of approximately conserved quantities
such as energy, momentum and particle number. The
histories consist largely of related but branch-dependent
projections onto ranges of quasiclassical variables at a
succession of times. Each history with a non-negligible
probability constitutes a narrative, with individual histo-
ries exhibiting patterns of correlation implied by closed
sets of effective equations of motion interrupted by fre-
quent small fluctuations and occasional major branchings
(as in measurement situations).

Human IGUSes make use of coarse-grainings of a qua-
siclassical realm to describe the every day world of expe-
rience — tables and chairs, stars and galaxies, measure-
ments and their results. To be useful, a theory like that
summarized in (2.2) must reliably describe the coarse-
grained regularities of the real history in a quasiclassical
realm.

But what about other recorded coarse grainings that
are allowed by the very general definition of record in

of both.
19 For discussions in which the authors participated, see e.g. [9, 24,
28, 29].



TABLE I: The Ensemble in Classical Statistical Mechanics and Quantum Mechanics

Classical Statistical

Mechanics

Quantum Mechanics

real

fine-grained history

a particular path in phase space,
z(t), obeying an equation of motion

a particular path in configuration space,
q(t) between to and ¢y

ensemble alternative alternative configuration space
phase space paths paths between to and ¢y
betting using probabilities using extended probabilities —
instructions the instruction is “don’t bet”
if non-standard probabilities involved
state distribution on phase space wave function
p(z0,to) U(go, to)
fundamental wlz(t)] = [ dzo6[2(t) — z¢(20)]p(20), wlg(t)] =
distribution where z¢(z0) is the classically evolved zo| Re [\i/*(q‘f7tf) exp{iS|[q(t)]/h} ¥ (qo, to)]

coarse graining

partitions of the ensemble into
classes cq (coarse-grained histories)
one of which contains

the real fine-grained history

partitions of the ensemble into
classes cq (coarse-grained histories)
one of which contains
the real fine-grained history

probabilities or
extended probabilities

for coarse-grained histories

sum over fine-grained
probabilities

p(@) = [, 0zw[z()]

sum over fine-grained
extended probabilities

pla) = [, dq wlg(t)]

sets that are the basis
of settleable bets

in principle
all coarse-grained sets

recorded coarse-grained sets

(3.1)? Tt seems likely that there are recorded sets of
coarse grained histories for which the ensemble defined
by (2.2) will not give a reliable description?’. The al-
lowed coarse-grained sets must therefore be more re-
stricted than those allowed by (3.1). We now describe
how this works both in classical statistical mechanics and
quantum mechanics.

A. Classical Statistical Mechanics

The ensembles of the classical non-equilibrium statis-
tical mechanics of a box of gas are usually employed to
make predictions of regularities defined by quasiclassi-
cal coarse grainings. (In the classical context we refer to
these as hydrodynamic coarse grainings.) Hydrodynamic
variables are readily accessible to observation. Indeed,
the probabilities of these ensembles can be defined by
maximizing the measure of ignorance (entropy) of fine-
grained histories while holding fixed the ensemble aver-
ages of relevant hydrodynamic variables. Statistical me-
chanics makes successful predictions for such hydrody-
namic coarse grainings.

But there are coarse grainings for which the predic-

20 This was pointed out to us by Fay Dowker, who has worked out
specific examples in simple models [35].

tions of these ensembles could fail. Coarse grainings of
classical histories can be defined by partitioning the space
of the values of their initial phase space coordinates zg.
Consider the class of coarse grainings in which this ini-
tial phase space is partitioned into a small region around
some particular point z; and the rest of the space. The
classical ensembles will typically assign a very low prob-
ability to the small region and a probability near unity
to the rest.

Suppose the point z; happens to coincide with the ini-
tial condition z, of the real history of the gas. Then
the ensemble will have predicted a small probability for
what really will happen and a probability near unity for
something else happening.

Of course, the technology does not exist to explore such
coarse grainings experimentally for a box with a large
number of particles. Even it it did, it is unlikely that
we would explore the one in which the real history has
a small probability. Those limitations, however, should
not obscure the fact that in statistical mechanics there
is some coarse graining for which the real history has
negligible probability. The probabilities assigned by the
ensemble do not, in this sense, constitute a good descrip-
tion of the real history.

If such coarse grainings are not accessible by realistic
experiment then the theory can perhaps be augmented
by restrictions on the coarse-grainings for which it can be
employed — to quasiclassical realms for instance. But if
observations can be carried out to decide which history



in such a coarse graining actually occurs then we have to
allow that the observed (real) history may be one that
was assigned a very low probability.

A characteristic feature of such coarse grainings is that
the real coarse-grained history is not a typical history of
the ensemble. More precisely, suppose {p(«)} are the
probabilities assigned by the ensemble to the alternative
coarse-grained histories; let us call the real coarse-grained
history r. Then the following typicality condition [7] is
not satisfied:

—logp(r) < =Y _p(a)logp(a) =S5,  (5.1)

where S is the entropy of the ensemble’s probability dis-
tribution.

Would we discard statistical mechanics if such an ex-
periment were carried out with this result? It would be
more sensible to restrict the coarse grainings that test
the theory to ones in which the typicality condition (5.1)
is satisfied. Such coarse grainings cannot be identified in
advance of the determination of the real coarse-grained
history. But typicality can be calculated when the real
results are in and their significance as a test of the theory
is assessed accordingly.

B. Quantum Mechanics

The situation in the EPE formulation of quantum me-
chanics is similar. For any fine-grained history it is pos-
sible to find a coarse graining in which its probability is
very small or even zero. For example, consider a partition
of the fine-grained histories ¢(¢) by whether the values of
q at a time t1 are in a small region around ¢; or elsewhere.
Unless the state and dynamics are very special, the fun-
damental distribution (2.2) will assign a small probability
to the small region. If g1 happened to coincide with the
q of the real history at that time the real history would
be assigned a small or zero probability?'.

The notion of record in (3.1) that implies medium de-
coherence is general and mathematically simple. The
quasiclassical coarse grainings used by human IGUSes
are a much more restricted class. Restrictions on either
the coarse-grainings or their records are can still lead to
theories that are consistent with known observations and
would rule out examples such as those discussed above.

Whatever the restriction on records and coarse grain-
ings, one should check that the real coarse-grained his-
tory that emerges has a probability that is typical of the
ensemble of coarse-grained histories before throwing out
the theory in (2.2), which consists of ¥, S, and quantum
mechanics itself.

21 Indeed, Dowker has exhibited [35] simple examples involving spin
in which, for every fine-grained history, there is some coarse
graining in which its probability is zero.
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VI. DISCUSSION

By way of conclusion, let us begin by recapitulating the
analogy between classical statistical mechanics (CSM)
and extended probability ensemble quantum theory with
one real history (EPE ).

There is a common central idea in CSM and EPE :
They are both concerned with systems with one real fine-
grained history about which we have little information
from observation either in practice (CSM) or in principle
(EPE ). The coarse-grained regularities that are accessi-
ble to observation and test cannot therefore be predicted
from a fine-grained starting point. Rather, both theories
use the ensemble method to describe coarse-grained reg-
ularities. The real history is conceptually embedded in
an ensemble of comparable imagined histories that are
assigned measures of ignorance consistent with coarse-
grained knowledge??. Within this ensemble framework
there are similarities and differences between CSM and
EPE . The table summarizes these, but we now describe
them in a few additional words.

Notion of probability: In CSM the fine-grained history
is assumed to be determinable in principle and therefore
the basis of a settleable bet on what it is like. Standard
probabilities are therefore assigned to members of the
ensemble. In EPE the fine-grained history is in princi-
ple not completely accessible and therefore not the basis
of a settleable bet. The ensemble therefore has to be
constructed with extended probabilities.

Assignment: In CSM, for the case of local equilib-
rium, the probabilities can be constructed by a principle
of maximizing entropy, the measure of ignorance, while
holding certain quantities fixed. (Energy, momentum,
and particle number in suitably small volumes are ex-
amples.) In EPE the extended probabilities are given as
the fundamental distribution (2.2) based on the state and
Hamiltonian. Whether there are deeper principles that
underlie this formula is an open question.

Despite these differences the two theories are similar
in their general characteristics. In particular, EPE can
be regarded as a classical stochastic theory based on ex-
tended probabilities. That perspective has a number of
advantages for interpreting quantum mechanics that we
have discussed earlier: EPE provides a unified perspec-
tive on coarse-graining. EPE allows the use of ordinary
language especially with existential words such as ‘hap-
pen’. EPE provides a simple interpretation of extended
probabilities as a unified measure both of ignorance and
knowability in principle. The sum rules of probability
theory are satisfied exactly for the extended probabilities
of EPE . EPE may provide a starting point for further

22 Gibbs considered a real system (box of gas) embedded in an en-
semble of imagined systems. In what amounts to the same thing,
we are considering an ensemble of real and imagined histories of
one system.



generalization and modification of quantum mechanics.
But perhaps most interestingly EPE provides an intu-
itively attractive notion of reality in quantum theory.

If a notion of reality is to be introduced in DH it seems
only natural that there be one real history in each realm.
The question of the connection between the real histo-
ries in different realms then arises?®. Two realms may be
compatible in the sense that there is a finer-grained realm
of which they are both coarse grainings. In that case
the real history in each of the coarser-grainded realms
is the one that contains the real history of the finer-
grained realm. However, two realms may be incompat-
ible — without a finer-grained realm of which they are
both coarse grainings. Unadorned DH provides no con-
nection between the meanings of reality for incompatible
realms. This poses a challenge to the notion of reality in
unadorned DH.

This challenge is overcome in the EPE version of DH.
There is one real fine-grained history in an ensemble of
comparable histories with extended probabilities. All
realms are coarse grainings of this unique fine-grained
set described in sum-over-histories variables. The real
history in each realm is the one that contains the real
fine-grained history. Thus EPE has a single notion of
reality that is expressed in all realms.
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There is a significant literature discussing reality in the context
of decoherent histories quantum mechanics. Some recent discus-
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APPENDIX: QUESTIONS THAT MIGHT BE
FREQUENTLY ASKED

Bell’s Inequalities: Since EPE can be thought of as
a classical stochastic theory, won’t it imply that the Bell
inequalities are satisfied?  As discussed in the Intro-
duction, it is well known [33] that to understand clas-
sically the experiments that demonstrate a violation of
Bell’s inequalities requires either non-local interactions
or negative probabilities or both. EPE can be viewed as
a classical stochastic theory with extended probabilities
that can sometimes be negative. There is thus no conflict
with these experiments. Indeed, EPE is a formulation
of quantum theory, so it predicts a violation of the Bell
inequalities.

Hidden Variables: Is this in effect a hidden vari-
able theory? There are no variables involved beyond the
usual quantum fields of sum-over-histories quantum the-
ory — the {q(t)}. However their fine-grained values are
not completely accessible to experiment or observation
and therefore partially hidden.

One real history in each realm: Why are extended
probabilities needed? Couldn’t one say that in DH one
history in each realm is real? One can say that. But, as
discussed in Section VI, using extended probability for
fine-grained histories provides a connection between the
realities of different realms.

Probabilities and Frequencies: I understand prob-
abilities as frequencies, but a negative number cannot be
a frequency. We are taking a more general view of proba-
bilities, commonly called a Bayesian one, of probabilities
as instructions for betting. Extended probabilities out-
side the range [0, 1] are, in a way, instructions for betting
— don’t bet, it won’t be settleable. The connection of
standard probabilities with frequencies of occurrences in
an infinite ensemble of identical systems can be derived
from this view of probability for realms. See e.g. [34].
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