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Mean-field dynamics of strongly interacting bosons described by hard core bosons with nearest-neighbor
attraction has been shown to support two species of solitons: one of Gross-Pitaevskii-type (GP-type) where
the condensate fraction remains dark and a novel non-Gross-Pitaevskii-type (non-GP-type) characterized by
brightening of the condensate fraction. Here we study the effects of quantum fluctuations on these solitons using
the adaptive time-dependent density matrix renormalization group method, which takes into account the effect
of strong correlations. We use local observables as the density, condensate density and correlation functions
as well as the entanglement entropy to characterize the stability of the initial states. We find both species of
solitons to be stable under quantum evolution for a finite duration, their tolerance to quantum fluctuations being
enhanced as the width of the soliton increases. We describe possible experimental realizations in atomic Bose
Einstein Condensates, polarized degenerate Fermi gases, and in systems of polar molecules on optical lattices.

PACS numbers: 03.75.Lm, 03.75.-b, 67.85.De

I. INTRODUCTION

Solitary waves and solitons (i.e., solitary waves whose
shape and speed remain unchanged even after collisions) are
encountered in systems as diverse as classical water waves
[1], magnetic materials [1-17], fiber-optic communication
[1, 18, 19], and Bose-Einstein condensates (BEC) [1, 20-22].
Rooted in the nonlinearity of the system which balances dis-
persive effects, solitons are fascinating non-linear waves that
encode collective behavior in the system. Intrinsically nonlin-
ear in nature due to inter-particle interactions, and due to the
high degree of control in the experiments, the BEC systems
are a natural fertile ground for exploring solitons. In dilute
atomic gaseous BECs which are simply described in terms
of the properties of the non-linear Schrédinger equation, or
Gross-Pitaevskii equation [21] (GPE), bright (density eleva-
tion) solitons exist for attractive interparticle interactions and
dark (density notch) solitons in the repulsive case. These solu-
tions are characterized not only by persistent density profiles,
but also by characteristic modulations of the quantum phase
across their profiles, which differs for the bright (attractive
condensate) [23] and the dark (repulsive condensate) cases
[24-26]. However, we want to emphasize that, on general
grounds, other systems with intrinsic nonlinearities should be
able to realize solitons if the conditions are chosen appropri-
ately.

In this paper, we follow two goals: First, we want to de-
scribe the realization of solitons in lattice systems since in-
teraction effects there play a more pronounced role than in
the aforementioned systems of dilute atomic gases. In this
way, we can systematically study the effect of interactions on
the soliton dynamics in the broader framework of possible ex-
perimental observations in BEC, quantum degenerate Fermi
gases, hard-core bosons, and polar molecules on optical lat-

tices, as well as in certain condensed matter systems. The
common aspect of these various systems is that the soliton
dynamics can be described in terms of a simple S = 1/2 spin
chain which, in turn, can be the effective model for a variety
of situations, as the ones mentioned above. This description is
footed on an extension of the standard GPE treatment of soli-
tons, and leads us to the second scope of our paper which is to
describe new effects which go beyond mean-field dynamics.

Investigations of effects beyond GPE dynamics have been
a subject of various studies in the past decade. For short range
repulsive systems, the cubic non-linearity of the GPE was re-
placed by a quintic repulsive nonlinearity and the resulting
modified GPE was shown to support dark solitary waves of
GP-type [27]. This 1D system was further investigated in the
presence of dipolar interactions [28] and was shown to sup-
port bright solitons whose stability and mobility depended on
the dipolar interaction strength. In 2D systems, bright soli-
tons were found to be stable given a sufficient dipole-dipole
strength [29]. Further studies of the stability and dynamics of
solitons have been extended to two component BECs [30] and
multilayered BECs [31]. Existence of dark and bright soli-
tary waves was also shown numerically in systems describ-
ing multicomponent BECs [32]. In addition to the contin-
uum systems, solitary waves have been extensively studied in
systems described by a discrete non-linear Schrodinger equa-
tion [33, 34], BECs in deep optical lattices and also in optical
beams in wave guides.

In recent studies [35, 36], solitary waves in a system of hard
core bosons (HCB) described in terms of hard core on-site re-
pulsion and attractive nearest neighbor interaction, have been
studied using mean field equations obtained from mapping the
HCB system to an anisotropic S = 1/2 Heisenberg spin sys-
tem. The continuum limit of the lattice populated with HCB
is described by a generalized GPE, which we will refer to as



"HGPE” [See Eq. (6)] as it describes hard core bosons in mean
field treatment.

In contrast to the GPE, HGPE contains both the normal
and condensate density. This system describing strongly re-
pulsive BEC was shown to support both dark and bright soli-
tary waves, the existence of both species being rooted in the
particle-hole duality/symmetry in HCB systems. Unlike other
studies, HGPE solitary waves are obtained as an analytic so-
Iution which was shown to provide an almost exact solution
of the equations of motion [35]. These two species of soli-
tons can be referred to as the GP-type and the non-GP-type
as the former corresponds to a dark condensate fraction that
dies beyond sound velocity while the latter is associated with
brightening of the condensate and persists all the way up to
sound velocity and transforms into a soliton train for super-
sonic velocities. Recent numerical studies investigating col-
lision properties of these nonlinear modes suggest that these
solitary waves are in fact solitons [37].

An important question that we investigate here is whether
these mean field solitons survive quantum fluctuations. In pre-
vious work, the quantum dynamics of GP dark solitons in the
superfluid regime of the Bose-Hubbard Hamiltonian has been
studied numerically by Mishmash et al. [38, 39]. The main
findings are that for weak interactions the dark soliton is sta-
ble on a time-scale of the order of ~ 20 — 40 units of the
hopping and afterwords decays due to two-particle scatter-
ing processes. The larger the on-site interaction, the stronger
the scattering and the faster the decay of the solitons. In ad-
dition, these studies treated collisions between the solitary
waves which confirm the soliton nature of the states on the
time scales treated. These studies focus on the limit of small
interactions. Here, we treat the strong coupling case and study
the fate of the soliton solutions obtained in the HGPE frame-
work. We do this by generalizing the Bose-Hubbard model of
Refs. [38, 39] to include on-site and nearest neighbor density-
density interactions. As discussed in Ref. [35], in the contin-
uum limit this gives rise to the two distinct types of solitons
mentioned above, which, as we shall see, are found to be sta-
ble in both the mean field approximation to the lattice dynam-
ics of the system, as well as in the full quantum dynamics on
the lattice.

More specifically, we describe the exact quantum evolu-
tion of an initial mean field soliton solution on 1D lattice sys-
tems. The soliton and the Hamiltonian driving the dynamics
are thereby formulated in terms of a S = 1/2 spin language.
It is so possible to envisage a realization of the described soli-
ton solutions in both, experiments with ultracold bosonic and
spin polarized fermionic atoms, as well as in experiments with
polar molecules [40—43] on optical lattices which can be used
to emulate spin-1/2 systems [44, 45]. We combine an analytic
solution of the HGPE which provides a continuum approx-
imation to the lattice problem, a numerical treatment of the
mean-field equations on the lattice, and a full quantum treat-
ment of the dynamics by applying the time-dependent DMRG
[46-50]. Both, mean-field and numerical results indicate that
for a certain range of parameters the solutions found are in-
deed stable solitons on the time scale treated. The non-GP-
type soliton is found to be somewhat less tolerant of quantum

effects compared to the GP-type. We characterize the stabil-
ity of the solitons by considering the entanglement in the sys-
tem: since in our set-up the initial soliton solutions are product
states on the lattice, the entanglement entropy [51] should re-
main zero for a stable soliton solution and hence is a measure
for the stability of the soliton in the course of the time evolu-
tion. In addition, we consider correlation functions which, on
similar grounds, can be used to characterize its stability.

The paper is organized as follows. In section II, we intro-
duce the effective spin model and its derivation from HCB and
spinless fermions on a lattice, the dynamical equation (HGPE)
that describes the continuum approximation to the mean-field
equations of the lattice system, and we summarize the analytic
solution of the HGPE. In Sec. III we describe the mean-field
ansatz and some details of the DMRG approach to the dynam-
ics. In Sec. IV, we analyze the stability of the soliton solutions
by comparing the mean-field results on a lattice to the DMRG
results. As a measure for the quality of the soliton solution, we
use in Sec. IV B the von Neumann or entanglement entropy as
well as correlation functions which also should remain zero in
the course of the time evolution if the mean field state were to
survive quantum fluctuations. In Sec. V we propose possible
experimental realizations of the HGPE solitons. In Sec. VI,
we summarize.

II. HAMILTONIAN AND EQUATIONS OF MOTION

In this paper, we treat the dynamics of initial soliton states
driven by the spin Hamiltonian
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on a one-dimensional lattice, i.e., we are treating the dynam-
ics of a XXZ-chain with a global external magnetic field of
magnitude g. One way to obtain this effective Hamiltonian is
as the limiting case of the extended Bose Hubbard model,
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Here, b;T) are the annihilation (creation) operators for a bo-
son at the lattice site j, n; is the number operator, J /2 is the
n.n. tunneling strength, and p is the chemical potential. An
attractive nearest-neighbor interaction V' < 0 is introduced to
soften the effect of a strong onsite interaction |U| > 0. The
HCB limit (|U| — o0) corresponds to the constraint that two
bosons cannot occupy the same site. This HCB system can
then be mapped to the model Eq. (1) [52], where the two spin
states correspond to two allowed boson number states |0) and
|1), and setting ¢ = J — V. Note that this is in contrast to
the study of Refs. [38, 39] in which the quantum dynamics
was investigated in the original Bose-Hubbard system and not
for the effective model Eq. (1). This is interesting since the



existence of the proposed soliton solutions for this spin model
has implications for further systems than the ultracold bosonic
atoms usually considered when describing soliton phenomena
in cold gases. In particular it should be noted that the XXZ
model in 1D can be obtained using the Jordan-Wigner trans-
form from a system of spinless fermions
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() the fermionic annihilation (creation) operators on
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site 7, and n; = c; ¢; the density on site j. Therefore, it should
be possible to investigate the soliton dynamics in experiments
with bosonic atoms, in spin systems, and in fermionic sys-
tems. In Sec. V we discuss possible implementations in ex-
periments with cold gases. Note that both models, Eq. (1)
and Eq. (3) are fundamental models for describing condensed
matter systems such as quantum magnets and systems of itin-
erant electrons. It is therefore conceivable that, in principle,
the proposed soliton solutions can be realized in such systems
as well.

For simplicity, we set up our discussion in the framework
of bosonic systems, without losmg generality. Then, the spin
flip operators St =3, + zSy correspond to the annihilation
and creation operators of the corresponding bosonic Hamil-
tonian, b; — S”j Thus the order parameter that describes

a BEC wave function is ¢? = (Sjﬂ, where the expectation
value is obtained using spin coherent states [52]. In this mean-
field description, the evolution equation for the order parame-
ter is obtained by taking the spin-coherent state average of the
Heisenberg equation of motion. The spin coherent state |7;)
at each site j can be parametrized as:

b b 0. b 0.
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With this choice, the HCB system is mapped to
a system of classical spins [35, 52] via S =
(3 sin(6) cos(¢), £ sin() sin(¢), 3 cos()). Note that

the particle density p; and the condensate density p; satisfy
the relation p} = p; p?, with p? =1 — P the hole density.
In this representation, 5 = ﬁe’¢. This mean field
treatment is contrasted to the standard GPE derived from
the Bose-Hubbard model by taking the expectation value of
the Heisenberg equation of motion with Glauber coherent
states [53]. We cast the equations of motion in terms of the

canonical variables ¢; and §; = cos(f;) = (1 — 2p;) and
obtain
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A. Solitary Waves in the Continuum Approximation

In the continuum approximation, the equations for the or-
der parameter are derived from a Taylor series in the lattice
spacing a [54],
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where Ja? = = U, = 2(J — V) and V. = Va?. This equa-
tion can be viewed as a generalized-GPE and we will refer
to it as the HGPE in view of its relation to HCBs. The corre-
sponding discrete Eq. (5) will be referred to as discrete HGPE.
These equations have been shown to support solitary waves
[35] riding upon a background density po: p(z) = po + f(2),
with z = z — vt. We obtain for the soliton solution
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where v = /1 — ©2, and v being the speed of the solitary

wave in units of ¢, = /2p5(1 — V/J), which is the speed of
sound of the Bose gas system determined from its Bogoliubov
spectrum [52]. I is the width of the soliton,

100k = po)? + ¥ poply

The characteristic phase jump associated with the solitary
waves is
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This solution has some remarkable properties. One direct
consequence of the particle-hole symmetry underlying the
equations of motion is the presence of two species of solitary
waves, shown in Fig. 1. The existence of f(z, py) superposed
on the background particle density po implies the existence
of a counterpart f(z,plt), superposed upon a corresponding
hole density pf. In fact it is easy to see that f*(z,py) =
+fF(z,ph). For pg < 1/2, the & corresponds to bright and
dark solitons, respectively. The bright solitons have the un-
usual property of persisting at speeds up to the speed of sound,
in sharp contrast to the dark species that resembles the dark
soliton of the GPE whose amplitude goes to zero at sound
velocity. In the special case with background density equal
to 1/2, the two species of solitons become mirror images of
each other, as f1(2,p9 = 1/2) = —f~ (2, po = 1/2). In this
case, the condensate density in fact describes the GPE-soliton
[55, 56].

It should be noted that for py > 1/2, the dark and bright
solitons switch their roles. In other words, for py < 1/2, it
is the dark soliton that behaves like a GPE soliton while the
bright soliton is the new type of soliton that persists all the
way up to sound velocity. In contrast, for pg > 1/2, the bright
soliton is GP-type while the dark one is the persistent soliton.
In view of the particle-hole duality, we will present our results

)



FIG. 1. (Color online) Bright (top) and dark (bottom) soliton solu-
tion in the continuum [Eq. (7)] for pg = 0.25 and V/J = 0.4 .
Left panels show the density, right panels the condensate density as
a function of position and speed. Note that the condensate density
of the bright soliton shows a "brightening’, around the notch, i.e., it
grows above the background value, whereas the dark soliton does not
show this effect.

for pg < 1/2 in which the bright solitons have the persistent
character noted above.

In the following sections, we will investigate for the ex-
istence and the lifetime of these solutions on lattice systems
using mean-field equations and the time dependent DMRG.
We will complement this analysis by investigating the stabil-
ity of further initial states. In particular, we show that an initial
Gaussian density distribution for a stationary soliton shows a
similar stability if a phase jump is realized, but becomes un-
stable without a phase jump. This is of importance for exper-
imental realizations indicating that imperfections in the cre-
ation of the initial state may not have a strong influence on the
soliton dynamics.

III. METHODS: MEAN FIELD ANSATZ AND DMRG
A. Mean field treatment

In this section, we compare the mean-field treatment of the
soliton dynamics on a lattice [governed by Eqs. (5)] to the dy-
namics in the continuum [Eq. (6)]. For the soliton dynamics
on a lattice, we apply the equations of motion (5) to an initial
state given by Eqgs. (7) and (9) on a finite lattice. In Fig. 2 we
show the discrete HGPE solitons for different values of V/.J
at time ¢t = 20/.J. We compare the continuum solution (black
dashed line) to the solution obtained on the lattice (symbols).
As can be seen, for V/J = 0.95, the lattice approximation and
the continuum solution show excellent agreement, up to small
deviations at the boundaries. For V/J = 0.75, however, sig-

10 i & (b)
0g VA=075 [} V= 0.95; %,*
\

P %

FIG. 2. (Color online) Comparison of the soliton profiles for a back-
ground density po = 0.25 at times t = 20/J obtained in the contin-
uum [black dashed line, Eq. (6)] and using the equations of motion
approach Eq. (5) on a lattice of L = 40 sites. The left panels show
the results for V//J = 0.75 (narrow soliton), the right panels the case
V/J = 0.95 (broad soliton). The top panels show the bright soliton,
the bottom panels the dark soliton solution of Eq. (7). Both, the par-
ticle density p (%) and the condensate density p° (+4) are shown.

nificant deviations occur. We further analyze this behavior in
Fig. 3 where we compute the difference of the lattice solution
to the continuum solution in the local observables (density p
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FIG. 3. (Color online) The differences resulting from Eq. (10) of (a)
the local density p and (b) the condensate density p® between the
mean-field continuum evolution and the mean-field lattice evolution
on a lattice of L = 40 sites at times ¢ = 20/J as a function of
V/J. (c) and (d): lattice mean-field evolution of the local density for
a broad soliton (c) with V/J = 0.65 and a narrow soliton (d) with
V/J =0.45.



and condensate density p°®, respectively),
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att = 20/J for a system of L = 40 sites as a function of V/.J.
As can be seen, the difference is significant for all values of
V/J < 0.8. Only at larger values the difference is of the order
of a few percent.

This discrepancy between the lattice and the continuum so-
lution is to be expected: the continuum model is an approx-
imation to the lattice model and its validity will break down
when the size of features (e.g., the width of the soliton) of the
analytic continuum solutions becomes comparable to the lat-
tice spacings. This breakdown of validity can be understood in
terms of the emission of Bogoliubov quasi-particles [57] for
solitons which are too narrow: analogous to the excitations
in a dilute bose gas, the Bogoliubov dispersion spectrum [52]
shows that a narrow perturbation excites high energy modes.
We further analyze this in Figs. 3 (¢) and (d). Quasi-particles
are emitted in the course of the time evolution, and due to
momentum conservation the soliton gets a velocity in the op-
posite direction so that it starts to move away from the original
position. The narrower the soliton, the stronger the emission
of quasi-particles, and — as expected — the lattice approxima-
tion becomes more and more unstable as the width of the soli-
ton decreases, i.e., with decreasing the value of V/J.

Note that this behavior is reminiscent of the mechanism
which leads to the ’light-cone’ effect in correlation functions
following a quantum quench [58—-63]. In this case, the quench
creates entangled quasi-particles on each lattice site which
then move ballistically through the system and lead to a lin-
ear signature in the time evolution of correlation functions. In
this way, the velocity of the quasi-particle excitations can be
obtained [61-63]. In a similar way, we propose that the linear
signatures in Fig. 3 can be used to further analyze the proper-
ties of the quasi-particles. However, this lies beyond the scope
of the present paper so that we leave this issue open for future
investigations.

Due to the necessity of having a width of the soliton larger
than a few lattice spacings, we find that we need to inves-
tigate systems with L. > 30 lattice sites. Since this can-
not be achieved using exact diagonalization methods for the
Hamiltonian matrix, we choose to apply the adaptive t-DMRG
which is capable of treating sufficiently large systems effi-
ciently. In the following we therefore compare the lattice
mean-field solution to the full quantum dynamics obtained by
the DMRG for systems with L = 40 and L = 100 lattice sites
and V/J > 0.9.

Ap(s)

(10)

B. Details for the DMRG

We apply the adaptive time-dependent extension of the den-
sity matrix renormalization group method [46—48] (adaptive

t-DMRG, [49, 50]) for systems with up to L = 100 lattice
sites with open boundary conditions. The DMRG is a numer-
ical method which is capable of obtaining ground-state prop-
erties of (quasi-)one-dimensional systems with a very high
efficiency and accuracy for lattices with up to several thou-
sand sites, i.e., system sizes which are far larger than the ones
amenable to exact diagonalizations of the Hamiltonian matrix.
This is achieved by working in a truncated basis of eigenstates
of reduced density matrices obtained for different bipartitions
of the lattice. A measure for the error is given by the so-
called discarded weight which is the sum of the weights of
the density-matrix eigenstates which are neglected and which
should be as small as possible (for more details, see, e.g., the
review article 48). Also its time-dependent extension can treat
the real time evolution of strongly correlated quantum many-
body systems substantially larger than the ones amenable to
exact diagonalization methods and with an accuracy which
can be, at short and intermediate times, similar to the one of
ground state computations. In this paper, we exploit this accu-
racy in order to provide very high precision numerical results
to which we compare the mean-field solutions discussed in
Sec. [IT A.

We solely use open boundary conditions since the DMRG
performs far better in this case than in the case of periodic
boundary conditions, so that we can treat larger system sizes
with up to the aforementioned L = 100 lattice sites. How-
ever, at this point it becomes necessary to discuss the effect of
the boundaries: we choose system sizes and initial widths of
the solitons so that there is a wide region between the soliton
and the boundary which can be considered to be ’empty’. In
Fig. 4, we compare the initial state for a system with L = 40
and L = 100 sites. As can be seen, the effect of the boundaries
on the soliton is completely negligible. This remains so on
time scales on which perturbations either from the boundaries
reach the soliton or from the soliton reach the boundaries. At
these instants of time, we stop the evolution and consider this
to be the maximal reachable time for the given system size.
We find that already for systems as small as L = 40 sites, the
maximal reachable time is ¢ > 20/J, so that we conclude that
the analysis which we present in the following is not affected
by boundary effects.

We work with the S = 1/2 spin system [Eq. (1)] and engi-
neer the initial state on the lattice by imprinting a phase and
density profile by applying an external magnetic field. More
specifically, for the initial state we compute the ground state
of

l%:—h}Z@-@ (11)
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For the treatment of the dynamics of the system after turning
off this magnetic field we apply a Krylov-space variant [64]

pi(1 = p;) cos ¢;,
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FIG. 4. (Color online) Local particle density p (blue %) and conden-
sate density p° (red +) obtained by DMRG (symbols) and by the
mean-field ansatz (solid line) for a stationary bright soliton (v = 0)
at times ¢ = 0 (left panels) and at times ¢ = 20/J (right panels). The
plots show results for lattice sizes of L = 100 sites (top) and L = 40
sites (bottom). The parameters are V/J = 0.95 and po = 0.45.

of the adaptive t-DMRG. During the evolution, we keep up to
1000 density-matrix eigenstates for systems with up to L =
100 sites. We apply a time step of At = 0.05, resulting in a
discarded weight of < 10~ at the end of the time evolution.
We estimate the error bars at the end of the time evolution to
be smaller than the size of the symbols.

IV. FULL QUANTUM DYNAMICS
A. Soliton Stability

The initial soliton state is prepared as discussed in Sec-
tion IIIB and is propagated with the XXZ spin-1/2 Hamil-
tonian Eq. (1) using the adaptive t-DMRG. Snapshots of the
resulting time evolution for the density profile of both, the
bright and the dark soliton, with speed v = 0 are shown in
Fig. 5. Since our results for moving solitons (v > 0) are sim-
ilar, we restrict in the following to the case of static solitons.
While the mean-field solution remains essentially unchanged
in time, the full quantum evolution shows some deformation
of the initial state: in the course of the evolution, the total
density profile widens as the peak decreases. The amount of
change depends on the parameters V/J and v, and is differ-
ent for the bright and the dark soliton. However, as further
discussed below, for V/J close enough to unity the difference
between the quantum solution and the initial state remains be-
low a few percent on a time scale ¢ ~ 20/.J, where the hop-
ping amplitude due to the mapping from the spin system is
J/2. This has to be compared to time scales reachable by
experiments on optical lattices. For typical lattice depths in
which a tight binding description is valid, the tunneling rate

varies from 0.1 — 1 kHz, while the typical time scale of the
experiments is on the order of 1-100 milliseconds. We there-
fore conclude that the density profile suggests a stable soliton
on the experimentally accessible time scale in the full quan-
tum evolution. Now we turn to the condensate density. Here,
at t = 20/.J, the deviation from the mean field solution is
larger. Nevertheless, as shown in Fig. 5, the change remains
within a few percent for V/t = 0.95, so that we conclude that
both quantities identify a stable soliton solution on this time
scale.

To obtain a better measure for the life time of the solitons,
we analyze in Fig. 6 for the local observables (density p and
condensate density p°, respectively) the discrepancy between
the t-DMRG evolution and the mean-field solution

similar to our analysis in Fig. 3 which was based on Eq. (10).
As shown in Fig. 6, 6p(*) decreases significantly as V/J ap-
proaches unity or as the speed of the soliton v (in units of the
speed of sound) increases. This is associated to a widening of
the initial density profile when increasing V/J and a reduc-
tion of the peak amplitude for larger v, so that we conclude
from this analysis that for a variety of initial conditions the
GPE and discrete-HGPE solitons can survive quantum fluctu-
ations on the time scales treated. This is further confirmed in
the following by the behavior of the entanglement entropy and
the correlation functions.
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FIG. 5. (Color online) Local particle density p (top) and condensate
density p® (bottom) obtained by the DMRG (symbols) and by the
mean-field (solid line) propagation of the stationary (v = 0) bright
(red 4) and dark (blue *) solitons for times ¢ = 0 and 20/J for a
system with L = 40 sites. The parameters are V/J = 0.95 and
po = 0.25.
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FIG. 6. (Color online) Differences using Eq. (13) between the
DMRG results and the lattice mean-field results for the total den-
sity (left) and for the condensate density (right) for a stationary (top)
and for moving (bottom) bright solitons (po = 0.25) on a system
with L = 40 sites.

B. Entanglement entropy and nearest neighbor correlations

A quantity that reveals the quantum nature of a state is
the von Neumann or entanglement entropy in the system [51]
which is defined as

S4Y = —Tr(palogpa), (14)

with p 4 the reduced density matrix of a subsystem A obtained
by tracing out the degrees of freedom of the remaining part of
the system B. From the Schmidt decomposition

) =D Vil %) (15)
it follows that
SvN = — Z)\i log \;, (16)

with |¢?,) and |¢%;) the eigenstates of the reduced density ma-
trix of subsystem A or B, respectively, and \; the eigenvalues
of the corresponding eigenstates. This quantity gives a mea-
sure for the entanglement between two subsystems. Since the
initial states are product states on the lattice, S*V is exactly
zero at the beginning of the time evolution since only one of
the weights is finite with \; = 1 while the others are exactly
zero. If SUN (t) remains zero (or very small) in the course of
the time evolution, we conclude that quantum fluctuations do
not strongly influence the nature of the initial product state,
and so the value of SUN(t) gives an additional measure for
the stability of the soliton solutions. Note that there are two
variants of this analysis: in Refs. [38, 39], the entanglement
entropy for a subsystem of one single site is measured with
respect to the remainder of the system. However, within the
DMRG framework it is easier to consider the time evolution
of the entanglement entropy for all bipartitions of the system

po and reaches SVIV> center ~ 1 35 for py = 0.45.

A second estimate for the strength of the entanglement
growth is to compare to the maximal possible entanglement
entropy in a generic spin-1/2 chain with L sites. Consider
a bipartition of the chain into M and L — M spins with
M < L — M. Since the dimension of the Hilbert space of
a chain of M spins is 2, a maximally entangled state is ob-
tained when all A; = 1/ 2M  This state has hence an entropy

guN,maz _ _ Z)\] log /\j = M log 2.
J

For a system of L = 40 sites and a bipartition M = L/2 we
therefore obtain S ™%% ~ 13.86, i.e. it is a factor of ~ 10
larger than the one in the ground state for the same bipartition.

We now compare this values to the ones reached in the
time evolution of the solitons. In Fig. 8 we display the en-
tanglement growth of both the dark and the bright soliton at
po = 0.1, 0.25 and 0.45, respectively. We obtain that the
entanglement growth is strongest at low fillings (pg = 0.1),
and it is larger for the bright soliton than for the dark one.
For pg = 0.45, the maximum value for the bright soliton is
SN~ 0.4, and for the dark soliton S*Y = 0.25 — both val-
ues are significantly smaller than the one in the corresponding
ground state, and much smaller than the one of the maximally
entangled state. This shows that on the time scale treated,
the state is significantly closer to a product state than to a
strongly correlated ground state of the same system, or than
to a maximally entangled state. Since the entanglement is not
negligible, quantum fluctuations play an important role for the
characterization of the state towards the end of the considered
time evolution, but they are not strong enough to fully destroy
the product nature of the initial state.

Note that the entanglement growth for the bright soliton for
po = 0.1 is significantly larger than for py = 0.45. This is
connected to the fact that also for the local observables the
corresponding initial state decays much faster. The entangle-
ment entropy can be used as a measure to compare the stabil-
ity of the initial states at pg = 0.1 and py = 0.45: it appears
that the bright soliton at pg = 0.1 is about half as stable as
the one at pyg = 0.45. This is reflected in the numerical val-
ues of §p(*) (t) which also show approximately a factor of two
between the two cases.
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FIG. 7. (Color online) Entanglement entropy in ground states of the
spin system Eq. (1) for V/J = 0.95, L = 40 sites for values of
S¢.ia1 corresponding to the background density po = 0.1, 0.25, and
0.45, respectively.

While the entanglement entropy at the center of the system
shows a peak for the bright soliton, it possesses a minimum for
the dark soliton. This can be understood by the fact that the
dark soliton has fewer particles at the center of the system and
so quantum fluctuations are less pronounced. Due to particle-
hole symmetry, the dark and bright soliton evolutions for pg >
1/2 possess the same behavior.

The behavior of the entanglement entropy can be com-
pared to the local spin fluctuations and correlations in the
system. In the mean field approach, at all times the coher-

ent spin state enforces that pf(MF) = p;(1 — p;). This re-
lation can be expressed in terms of spin observables, leading
to (S¥)? 4+ (S¥)? + (S7)? = 1/4 on each site, realizing a
constraint on the local spin fluctuations. In the full quantum
dynamics, this constraint is broken, so that the initial coherent
state becomes modified, and entanglement is induced in the
system [66].

The entanglement entropy is related to the long distance
correlations and has been extensively studied in spin systems
[67-71]. It is therefore interesting to consider the growth of
correlations in our system in the course of the time evolution.
For simplicity, and since they are the most relevant ones for
experiments, we consider nearest neighbor spin correlations
(Si - Sit1) — (Si) - {(Sit1). The results shown in Fig. 9 show
similar behavior to the entropy dynamics.

C. Gaussian initial states

In this section, we test the stability of the discrete HGPE
soliton solutions to modifications of the initial state. Specifi-
cally, we compare the time evolution of these solitons to that
of a Gaussian initial state (both obtained using the adaptive
t-DMRG)

22

p(z) ~ e 207 a7

which might be easier to implement in experiments [24, 25,
72]. We analyze the dynamics for initial states with and with-
out a phase shift of 7 across the center in order to compare
the evolution of an initial state with a similar shape and phase
properties as the HGPE soliton to one which has only a simi-
lar shape. As discussed in Sec. III B, the initial state is created
via a Gaussian external field.

The obtained results are shown in Fig. 10. As can be seen,
the Gaussian state with a phase jump remains stable and ap-
pears to be a very good approximation to the discrete HGPE
soliton. In contrast, without the phase jump, the initial wave
packet quickly disperses. Note that due to the lattice the wave
packet can disperse by creating two peaks moving in opposite
directions. This is due to the deviation of the cos(k) disper-
sion of the lattice from the dispersion ~ k2 of a free particle
and comes into appearance if the number of particles is high
enough.

We conclude, therefore, that once the phase jump is imple-
mented, it is not necessary in the experiments to implement
initial states which have exactly the form of the discrete HGPE
solitons.

V. EXPERIMENTAL REALIZATIONS

In this section, we discuss possible realizations of the mod-
els introduced in Sec. II. We start with the experimental im-
plementation of the extended Bose Hubbard model, Eq. (2),
and its fermionic variant. The nearest neighbor interaction
term V' can be possibly generated in bosonic or spin polar-
ized fermionic systems via long-range electric [73] or mag-
netic [74] dipolar interactions as discussed below or with a
short-range interaction between atoms in higher bands of the
lattice [75]. The hard-core constraint for bosons requires in-
creasing the interactions so that there is a large energy dif-
ference between states with a different number of bosons per
site. This can be achieved by tuning the scattering length via a
Feshbach resonance [76]. Note that in this type of implemen-
tation, in which the spin 1/2 degrees of freedom correspond to
sites with zero and one atom, the sign of the U and V interac-
tion is determined by the scattering length and thus is the same
for both. In our proposal, we need attractive V' interaction, so
also the Hubbard U will be attractive. However, note that also
in this case it is possible to realize the hard-core constraint:
even though the states with one or zero atom per site do not
belong to the ground state manifold, when prepared, they are
metastable since there is no way to dump the excess energy, at
least when prepared in the lowest band [77]. This is since the
bandwidth in a lattice is finite, which is known to lead also to
repulsively bound pairs [78]. In our case, however, it prevents
double occupancies, which for |U| — oo corresponds to the
HCB limit. A possible way to proceed then is to prepare the
ground state in the repulsive side of the Feshbach resonance
and then quickly ramp the magnetic field to the attractive side
in which the evolution takes place. The atoms now are still in
the lowest band and need to be promoted to higher bands us-
ing, e.g., similar techniques to the ones discussed in Ref. 79.
Note that the requirement of populating higher bands can in-
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FIG. 8. (Color online) Entanglement entropies as a function of the subsystem size of the stationary bright soliton (top) and dark solitons

(bottom) at different times for V//J = 0.95.

deed lead to an additional relaxation. In the fermionic system
the decay to the lowest band can be blocked by filling the low-
est band. The lifetime of bosons in higher bands on the other
hand does require further investigation but at least recent ex-
periments in 2D [79] reveal that it can be 10—100 times longer
than the characteristic time scale for intersite tunneling.

In a recent proposal, it is shown that the XXZ spin model
Eq. (1) and the spinless fermion model Eq. (3) both can be re-
alized in systems of polar molecules on optical lattices, even
though with a long-range 1/ decay of the interactions rather
than nearest-neighbor interactions only. Two different paths
allow the study of the soliton dynamics in such experiments:
First, as discussed in detail in Refs. [44, 45], the spin model
Eq. (1) can be directly implemented in the case of unit filling
(i.e., one molecule per site of the optical lattice) by select-
ing two rotational eigenstates of the molecules which emulate
the two spin degrees of freedom of the S = 1/2 chain. The
parameters of the system can then be tuned via external DC
electrical and microwave fields. The second implementation
is by populating the lattice with molecules which are all in the
same rotational eigenstate, emulating a spin polarized system.
Since the dipolar interaction decays quickly, we presume that
the effect of the interactions beyond nearest neighbor on the
soliton dynamics should be very small, so that both realiza-
tions can be used to study the soliton dynamics. We leave
a detailed study of the effect of the interaction terms beyond
nearest-neighbor sites on the dynamics of the solitons to fur-
ther studies.

VI. SUMMARY

We have analyzed the stability and lifetime of HGPE soli-
tons on 1D lattice systems driven by a XXZ-Hamiltonian
which can model the behavior of bosonic atoms, fermionic
polar molecules, spin systems, and spin-polarized itinerant
fermions on optical lattices and in condensed matter systems.
We compare the dynamics obtained in a mean field approxi-
mation to the full quantum evolution obtained using the adap-
tive t-DMRG and find that the solitons remain stable under
the full quantum evolution on time scales ¢ ~ 20/.J, where
J/2 is the unit of the hopping. This is quantified by the en-
tanglement entropy which remains smaller than the one in
the ground state of the corresponding spin system and sig-
nificantly smaller then the one of a maximally entangled state
on this time scale. Similar to the findings of Refs. [38, 39],
for longer times the soliton decays. However, given the time
scales reachable by ongoing experiments with optical lattices,
this should suffice to identify this effect in the lab. In addition,
we find that imperfections in the creation of the initial state
should be of minor importance, as long as the density profile
and the phase jump are similar to the ones of the proposed
soliton solutions. This is exemplified by a Gaussian initial
state, which in the case of a phase jump shows good agree-
ment with the soliton solution, while in the absence of the
phase jump becomes completely unstable. Due to the tunabil-
ity of parameters either via Feshbach resonances for atomic
systems or via electric and microwave fields in the case of po-
lar molecules, the possibility of realizing both, bright and dark
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FIG. 9. (Color online) Top: contour plot of the time evolution of
the nearest neighbor spin correlations (S; - Si+1) — (S:) - (Si41)
on the whole lattice for the stationary bright soliton (left) and the
dark soliton (right) for po = 0.25 and V/J = 0.95. Bottom: time
evolution of the entanglement entropy for the same parameters.

solitons in strongly interacting systems, adds a new paradigm
to the existence of coherent non-linear modes in systems of
ultracold quantum gases.
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