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We consider a harmonically trapped dilute N-boson system described by a low-energy Hamil-
tonian with pairwise interactions. We determine the condensate fraction, defined in terms of the
largest occupation number, of the weakly-interacting N-boson system (N ≥ 2) by employing a per-
turbative treatment within the framework of second quantization. The one-body density matrix and
the corresponding occupation numbers are compared with those obtained by solving the two-body
problem with zero-range interactions exactly. Our expressions are also compared with high precision
ab initio calculations for Bose gases with N = 2 − 4 that interact through finite-range two-body
model potentials. Non-universal corrections are identified to enter at subleading order, confirming
that different low-energy Hamiltonians, constructed to yield the same energy, may yield different
occupation numbers. Lastly, we consider the strongly-interacting three-boson system under spher-
ically symmetric harmonic confinement and determine its occupation numbers as a function of the
three-body “Efimov parameter”.

PACS numbers:

I. INTRODUCTION

The weakly-interacting homogeneous Bose gas has
been studied extensively in the literature [1–6]. Most
commonly, the equation of state of the homogeneous Bose
gas is expressed in terms of the square root of the dimen-
sionless gas parameter ρ[as(0)]

3, where ρ denotes the den-
sity and as(0) the zero-energy s-wave scattering length.
The leading order term is the mean-field energy and the
lowest order correction accounts for quantum fluctua-
tions. In an alternative approach [4, 7–9], the ground
state energy of N bosons in a cubic box with periodic
boundary conditions has been obtained by applying per-
turbation theory or the techniques of effective field the-
ory to the weakly-interacting regime. As outlined by Lee,
Huang and Yang [3], the latter approach must reproduce
the equation of state of the weakly-interacting homoge-
neous Bose gas if the energies of the “subclusters” are
summed up carefully.
In addition to the energy, other observables of the ho-

mogeneous weakly-interacting Bose gas have been con-
sidered. The condensate fraction N0/N , i.e., the frac-
tion of particles in the macroscopically occupied low-
est momentum state, is a particularly interesting quan-
tity since it can be measured experimentally. Further-
more, the connection between the condensate fraction
and the superfluid fraction has been investigated in the
literature, starting with the seminal works of London,
Penrose and Onsager, and others [10–13]. The conden-
sate fraction has, as the energy per particle, been ex-
panded in terms of the gas parameter ρ[as(0)]

3, N0/N =

1 − 8/(3
√
π)
√

ρ[as(0)]3 + · · · . Application of the local
density approximation shows that the condensate frac-
tion of the weakly-interacting Bose gas under spheri-
cally symmetric harmonic confinement scales as N/N0 =

1 − 5
√
π/8

√

ρ(0)[as(0)]3 + · · · , where ρ(0) denotes the
peak density [14].
This work considers N identical mass ma bosons un-

der spherically symmetric harmonic confinement with

angular trapping frequency ω. For a review article of
trapped gases, the reader is referred to Ref. [15]. In
the weakly-interacting regime, i.e., in the regime where
the two-body s-wave scattering length as(0) (expressed
in terms of aho) and the product of the two-body ef-
fective range re and [as(0)]

2 (expressed in units of a−3
ho )

are small, we determine expressions for the condensate
fraction N0/N ; here, aho denotes the harmonic oscillator

length, aho =
√

~/(maω). For trapped systems, the con-
densate fraction is related to the largest eigen value of the
one-body density matrix. In particular, the largest eigen
value or occupation number of the one-body density ma-
trix defines the condensate fraction. Our results are ob-
tained by applying time-independent perturbation theory
to the N -boson Hamiltonian with pairwise zero-range in-
teractions characterized by as(0) and re[as(0)]

2. The per-
turbative expressions are compared with highly accurate
numerical results for Bose gases with N = 2− 4 that in-
teract through a sum of short-range two-body model po-
tentials. This comparison confirms that the leading-order
term of the condensate depletion scales as (N−1)[as(0)]

2.
At sub-leading order, a non-universal correction appears,
i.e., a correction which is independent of as(0) and re
and which is not needed to reproduce the energy of the
finite-range system within an effective field theory ap-
proach [16, 17].

For the two- and three-boson systems, we go beyond
the weakly-interacting regime. For two harmonically
trapped bosons that interact through a regularized zero-
range interaction potential, we determine the occupa-
tion numbers as a function of the scattering length. For
the three-boson system, we consider the unitary regime
[1/as(0) = re = 0] and determine the occupation num-
bers as a function of the three-body phase or Efimov
parameter. The occupation numbers for the two- and
three-body systems show “oscillatory behavior” in the
positive energy regime if plotted as a function of the rel-
ative two-body energy and relative three-body energy,
respectively. In the two-particle case, the oscillations are



2

associated with the fact that the two-body s-wave phase
shift changes by 2π as the two-body energy changes by
about 2~ω. In the three-particle case, in contrast, the os-
cillations are associated with the fact that the three-body
Efimov phase goes through cycles of 2π as the three-body
energy changes.
The remainder of this paper is organized as follows.

Section II introduces the system Hamiltonian and defines
the one-body density matrix and the occupation num-
bers. Section III discusses the occupation numbers of
the trapped two-boson system. Section IV considers the
weakly-interacting regime of the N -boson system. Sec-
tion V considers the strongly-interacting three-boson sys-
tem. Lastly, Sec. VI concludes. Mathematical details are
relegated to Appendix A and Appendix B.

II. SYSTEM HAMILTONIAN AND

DEFINITIONS

We consider N identical mass ma bosons that inter-
act through a short-range interaction potential Vtb un-
der external spherically symmetric harmonic confinement
with angular trapping frequency ω. For this system, the
Hamiltonian H reads

H =
N
∑

j=1

Hho(rj) +
N
∑

j<k

Vtb(rjk), (1)

where Hho(rj) denotes the single-particle harmonic oscil-
lator Hamiltonian,

Hho(rj) =
−~

2

2ma
∇2

rj
+

1

2
maω

2r2j , (2)

and rj the position vector of the jth boson measured
with respect to the center of the trap. We consider three
different short-range model potentials Vtb(rjk), where
rjk = rj − rk.
Our two- and three-boson studies discussed in Secs. III

and V employ the regularized pseudopotential Vps [4],

Vps(rjk) =
4π~2as(k)

ma
δ(3)(rjk)

∂

∂rjk
rjk, (3)

where rjk = |rjk|. The operator (∂/∂rjk)rjk ensures that
the N -particle wave function ψ is well behaved when the
interparticle distance rjk goes to zero. In Eq. (3), as(k)
denotes the energy-dependent scattering length [18, 19],

as(k) = − tan(δ0(k))

k
, (4)

where k denotes the wave vector associated with the
scattering energy Erel

sc in the relative coordinate, k =
√

maErel
sc /~, and δ0(k) the energy-dependent s-wave

scattering phase shift. The “usual” (zero-energy) s-wave
scattering length is defined by taking the scattering en-
ergy to zero, i.e., as(0) = limk→0 as(k). In many cases,

the energy-dependence of as(k) is neglegible and as(k)
can be replaced by the zero-energy scattering length
as(0). In other cases (see Secs. III and IV), it is con-
venient to parameterize the energy dependence of as(k)
in terms of the effective range re and the shape or volume
parameter V [20],

1

as(k)
=

1

as(0)
− 1

2
rek

2 +
1

8
V k4 +O(k6) (5)

or

as(k) = as(0) +
1

2
[as(0)]

2rek
2 − 1

8
[as(0)]

2V k4 +O(k6).(6)

We note that as(0), re and V are only defined if the
two-body potential falls off faster than r−3

jk , r
−5
jk and r−7

jk ,

respectively, in the large rjk limit [21, 22]. The pseudopo-
tential given in Eq. (3) can alternatively be parametrized
through the boundary condition [23, 24]

[

∂(r12ψ(r12,R12,r3,··· ,rN ))
∂r12

r12ψ(r12,R12, r3, · · · , rN )

]

r12→0

= − 1

as(k)
, (7)

where R12 = (r1 + r2)/2. The limit r12 → 0 on the left
hand side of Eq. (7) is taken while keeping the coordi-
nates R12, r3, · · · , rN fixed. Analogous expressions hold
for the other interparticle distances.
In our perturbative calculations (see Sec. IV), in con-

trast, we write Vtb as a sum of the unregularized or bare
Fermi pseudopotential VF [25],

VF(rjk) =
4π~2as(0)

ma
δ(3)(rjk), (8)

and the zero-range potential V ′ [7, 17],

V ′(rjk) =
π~2[as(0)]

2re
ma

(

∇2
rjk
δ(3)(rjk) + δ(3)(rjk)∇2

rjk

)

,(9)

which accounts for the effective range dependence. The
first and second Laplacian in Eq. (9) act to the left and
right, respectively, and ensure that the pseudopotential
V ′ is Hermitian. While a pseudopotential that depends
on the shape parameter could be added, it is not con-
sidered here since it leads to higher order contributions
in a−nho than we are considering in Sec. IV. Since VF
and V ′ are not regularized, their use within perturbation
theory leads to divergencies, which can be cured within
the framework of renormalized perturbation theory by in-
troducing appropriate counterterms denoted by W . We
treat VF and V ′ in second- and first-order perturbation
theory (see Appendix A). This implies that W must
contain a term proportional to [as(0)]

2 that cures the di-
vergencies arising from VF ; no divergencies arise when
treating V ′ in first-order perturbation theory [16, 17].
Lastly, our numerical stochastic variational calcula-

tions (see Sec. IV) employ a short-range Gaussian po-
tential Vg with range r0 and depth V0,

Vg(rjk) = V0 exp

[

−
(

rjk√
2r0

)2
]

. (10)
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FIG. 1: (Color online) Scattering quantities for Gaussian
model potential Vg in the “weakly-interacting” and “strongly-
interacting” regimes. (a) The solid line shows the quantity
[as(0)]

2re/r
3
0 as a function of as(0)/r0 (weakly-interacting

regime). (b) The dashed line shows the quantity re/r0 as
a function of [as(0)/r0]

−1 (strongly-interacting regime). Dot-
ted lines are shown to enhance the readability of the graphs.

For a fixed r0, V0 is adjusted so as to generate potentials
with different two-body s-wave scattering lengths as(0).
Throughout, we limit ourselves to parameter combina-
tions such that Vg supports no two-body bound states
in free space. This implies that Vg is purely repulsive,
i.e., V0 > 0, for as(0) > 0. For as(0) < 0, we have
V0 < 0. The leading order and sub-leading order energy-
dependence of as(k), parameterized by re and V , respec-
tively, depend on r0.

The solid line in Fig. 1(a) shows the quantity
[as(0)]

2re/r
3
0 [see Eq. (6)] for the Gaussian model po-

tential as a function of the s-wave scattering length
as(0)/r0. It can be seen that [as(0)]

2re/r
3
0 goes to zero

as |as(0)/r0| → 0. Moreover, [as(0)]
2re/r

3
0 is positive

for small negative as(0)/r0 and negative for small posi-
tive as(0)/r0. When |as(0)| becomes infinitely large, the
deviations from universality depend on re [see Eq. (5)].
The dashed line in Fig. 1(b) shows the effective range
re/r0 for the Gaussian model potential as a function of
the inverse s-wave scattering length [as(0)/r0]

−1. The
effective range re/r0 is finite and positive as |as(0)| → ∞
and varies approximately linearly for small [as(0)/r0]

−1

with negative slope.

The higher-order energy-dependence of the s-wave
scattering length in the “weakly-interacting” and

“strongly-interacting” regimes is governed by the volume
parameter V . The quantity [as(0)]

2V/r50 [see Eq. (6)]
goes to zero as |as(0)| → 0, and is positive for small
as(0)/r0 < 0 and negative for small as(0)/r0 > 0. The
quantity V/r30 [see Eq. (5)] is finite and negative when
the s-wave scattering length diverges; V/r30 varies ap-
proximately linearly for small [as(0)/r0]

−1 with positive
slope.
Sections III-V present results for the occupation num-

bers nν , which are—for inhomogeneous systems—defined
by way of the one-body density matrix ρ(r′1, r1) [11, 26–
28],

ρ(r′1,r1) = N× (11)
∫

[ψ(r′1, r2, · · · , rN )]∗ψ(r1, r2, · · · , rN )d3r2 · · · d3rN
∫

|ψ(r1, · · · , rN )|2d3r1 · · · d3rN
.

The one-body density matrix ρ(r′1, r1) can be expanded
in terms of a complete orthonormal set,

ρ(r′1, r1) =
∑

ν

nνφ
∗
ν
(r1)φν(r

′
1), (12)

where ν collectively denotes the three quantum numbers
νλµ needed to uniquely label the functions φν(r1) of the
complete orthonormal set. If we use spherical coordi-
nates, ν is the radial label, λ the partial wave label and
µ the corresponding projection number. The quantities
φν(r1) and nν are called natural orbitals and occupa-
tion numbers, respectively. Our normalization is chosen
such that

∑

ν
nν = N . The largest occupation number

nν defines the condensate fraction N0/N of the N -boson
system, i.e., N0/N = max(nν/N).
In practice, it is convenient to define partial wave pro-

jections ρλµ(r
′
1, r1),

ρλµ(r
′
1, r1) =

∫

Y ∗
λµ(r̂

′
1)ρ(r

′
1, r1)Yλµ(r̂1)d

2r̂′1d
2r̂1, (13)

where d2r̂1 and d2r̂′1 denote angular volume elements.
The two-dimensional projections ρλµ(r

′
1, r1) can be diag-

onalized, yielding the occupation numbers nν = nνλµ
and the radial parts Pνλ(r1) of the natural orbitals
φν(r1), where Pνλ(r1) is defined through φν(r1) =
Pνλ(r1)Yλµ(r̂1).

III. TRAPPED TWO-BODY SYSTEM

The eigen energies and eigen states of the two-particle
Hamiltonian are most easily determined by transform-
ing the Schrödinger equation to center of mass and rel-
ative coordinates R12 and r12. In these coordinates,
the wave function ψ separates into the center of mass
wave function ψcm

QLM (R12) and the relative wave func-

tion ψrel
qlm(r12). The two-body energy then reads

E2 = Ecm
2 + Erel

2 , (14)
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FIG. 2: (Color online) Solid lines show the relative energies
Erel

2 with l = 0 for the trapped two-boson system interact-
ing through Vps, Eq. (17) with as(E

rel
2 ) replaced by as(0),

as a function of the s-wave scattering length as(0)/aho. The
dashed and dotted lines show Eq. (18) for i ≤ 1 and j = 0,
and i ≤ 4 and j = 0, respectively.

where

Ecm
2 = (2Q+ L+ 3/2)~ω (15)

and

Erel
2 = (2q + l + 3/2)~ω (16)

with Q = 0, 1, · · · , L = 0, 1, · · · and l = 0, 1, · · · . For
each L (l), the center of mass (relative) energy has a
2L + 1 (2l + 1) degeneracy that is associated with the
projection quantum number M (m). The allowed values
of q, and consequently the radial parts of the relative
wave function and the relative eigen energies, depend on
the functional form of the interaction potential Vtb.
For the energy-dependent zero-range potential Vps [see

Eq. (3)], the relative wave functions with l > 0 are not af-
fected by the interaction potential, implying q = 0, 1, · · · ;
in this case, the relative wave function coincides with the
harmonic oscillator wave function and the two-body en-
ergy is independent of the s-wave scattering length. For
l = 0, the relative eigen energies are obtained by solving
the transcendental equation [29]

√
2Γ(3/4− Erel

2 /(2~ω))

Γ(1/4− Erel
2 /(2~ω))

=
aho

as(Erel
2 )

, (17)

where the energy-dependent s-wave scattering length is
evaluated at the relative energy of the trapped system,
i.e., where we have set Erel

sc = Erel
2 [18, 19]. Solid lines in

Fig. 2 show the relative eigen energies with l = 0 obtained
by solving Eq. (17) with as(E

rel
2 ) replaced by as(0) as a

function of as(0)/aho. In general, the eigen energies of
the trapped two-body system need to be determined self-
consistently since Erel

2 appears on the left and right hand
sides of Eq. (17) [18, 19].
For |as(Erel

2 )/aho| ≪ 1, we Taylor expand Eq. (17)
around the non-interacting relative energies Eni

2,n, where

TABLE I: Expansion coefficients d
(i,j)
2,n , see Eq. (18), for

the weakly-interacting two-boson system with s-wave inter-
actions.

i j d
(i,j)
2,n

1 0 (−1)n+123/2/ [n! Γ (−n− 1/2)]

2 0 −4hn,1/ [n! Γ (−n− 1/2)]2

3 0 (−1)n+123/2
(

hn,2 + 3h2
n,1

)

/ [n! Γ (−n− 1/2)]3

4 0 − (8/3)
(

hn,3 + 6hn,2hn,1 + 8h3
n,1

)

/ [n! Γ (−n− 1/2)]4

2 1 1
2
(2n+ 3/2)d

(1,0)
2,n

3 1 1
2

(

d
(1,0)
2,n

)2

+ (2n+ 3/2)d
(2,0)
2,n

Eni
2,n = (2n + 3/2)~ω with n = 0, 1, · · · . Replacing

1/as(E
rel
2 ) by the right hand side of Eq. (5), we find

Erel
2 = Eni

2,n +

i+j≤4
∑

i=1,j=0,j<i

d
(i,j)
2,n

(

as(0)

aho

)i(
re
aho

)j

~ω

+ · · · .(18)

The next terms are proportional to [as(0)]
5, [as(0)]

4re,

[as(0)]
3r2e and [as(0)]

2V . The coefficients d
(i,j)
2,n can be

compactly written in terms of the quantity hn,p,

hn,p = Hn,p + (−1)pH−n−3/2,p, (19)

where Hn,p is a generalized harmonic number [30]. Ex-

plicit expressions for the coefficients d
(i,j)
2,n with i+ j ≤ 4

are reported in Table I. The effective range enters first in
combination with the square of the zero-energy scatter-
ing length. For the Gaussian potential Vg considered in
Sec. IV, the product [as(0)]

2re goes to zero as |as(0)| → 0
(see solid line in Fig. 1). Dashed and dotted lines in Fig. 2
show Eq. (18) with j = 0 for i ≤ 1 and i ≤ 4, respec-
tively. The Taylor expanded expressions for the ground
state with i ≤ 1 and i ≤ 4 agree with the exact eigen en-
ergy to better than 1% for −0.22 < as(0)/aho < 0.54 and
−0.67 < as(0)/aho < 0.52, respectively. The accuracy of
the Taylor expansion deteriorates more quickly for the
excited states. References [16, 17] discuss the structure
of Eq. (18) with i+ j ≤ 3 for the ground state as well as
extensions for N > 2.

We also expand around the strongly-interacting
regime. For |aho/as(Erel

2 )| ≪ 1, we expand Eq. (17)
around the relative energies Eunit

2,n at unitarity, where

Eunit
2,n = (2n + 1/2)~ω with n = 0, 1, · · · . Replacing
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TABLE II: Expansion coefficients d̃
(i,j)
2,n , see Eq. (20), for the

strongly-interacting two-boson system with s-wave interac-
tions.

i j d̃
(i,j)
2,n

0 0 0

1 0 (−1)n+123/2/ [2 n! Γ (−n+ 1/2)]

2 0 −4h̃n,1/ [2 n! Γ (−n+ 1/2)]2

3 0 (−1)n+123/2
(

h̃n,2 + 3h̃2
n,1

)

/ [2 n! Γ (−n+ 1/2)]3

0 1 − 1
2
(2n+ 1/2)d̃

(1,0)
2,n

1 1 −

[

1
2

(

d̃
(1,0)
2,n

)2

+ (2n+ 1/2)d̃
(2,0)
2,n

]

2 1 − 3
2

[

d̃
(1,0)
2,n d̃

(2,0)
2,n + (2n+ 1/2)d̃

(3,0)
2,n

]

0 2 1
4
(2n+ 1/2)

[

(

d̃
(1,0)
2,n

)2

+ (2n+ 1/2)d̃
(2,0)
2,n

]

1 2 1
4

[

(

d̃
(1,0)
2,n

)3

+ 6(2n+ 1/2)d̃
(1,0)
2,n d̃

(2,0)
2,n

+3 (2n+ 1/2)2 d̃
(3,0)
2,n

]

0 3 − 1
8
(2n+ 1/2)

[

(

d̃
(1,0)
2,n

)3

+ 3(2n+ 1/2)d̃
(1,0)
2,n d̃

(2,0)
2,n

+(2n+ 1/2)2 d̃
(3,0)
2,n

]

1/as(E
rel
2 ) by the right hand side of Eq. (5), we find

Erel
2 = Eunit

2,n +

i+j≤3
∑

i=0,j=0

d̃
(i,j)
2,n

(

as(0)

aho

)−i(
re
aho

)j

~ω

+
1

8

(

2n+
1

2

)2

d̃
(1,0)
2,n

V

a3ho
~ω + · · · . (20)

Similarly to the weakly-interacting case, we find it conve-

nient to express the expansion coefficients d̃
(i,j)
2,n in terms

of the function

h̃n,p = Hn,p + (−1)pH−n−1/2,p. (21)

Table II shows the expansion coefficients d̃
(i,j)
2,n with i+j ≤

3. Equation (20) contains contributions that are directly
proportional to the inverse scattering length 1/as(0), the
effective range re and the volume term. Which of these
terms dominates depends on the interaction potential.
Importantly, while the effective range diverges for the
Gaussian model potential in the |as(0)| → 0 limit, it re-
mains finite in the |as(0)|−1 → 0 limit [see dashed line in
Fig. 1(b)]. The next order terms in Eq. (20) are propor-
tional to [as(0)]

−irjeV
k with i+ j + 3k = 4.

Next we discuss the occupation numbers of the two-
boson system. The determination of the one-body den-
sity matrix for the two-boson system requires that the

0 2 4 60
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FIG. 3: (Color online) Occupation numbers per particle
nν00/N of the two-boson system interacting through Vps with
as(E

rel
2 ) replaced by as(0) as a function of the relative two-

body energy Erel
2 for Q = L = M = 0. (a) Solid, dashed

and dash-dotted lines show nν00/2 for ν = 0, 1 and 2, respec-
tively, on a linear scale. The dash-dot-dotted line shows the
leading-order depletion, i.e., the first two terms on the right
hand side of Eq. (22), near Erel

2 = 3~ω/2. (b) Lines show
nν00/2 for ν = 0 − 6, from top to bottom at Erel

2 = −5~ω,
on a log scale. Arrows mark the local maxima of nν00/2.
Near the non-interacting energies, (Erel

2 − Erel
2,n)/(~ω) is to a

good approximation directly proportional to the s-wave scat-
tering length as(0)/aho [see Eq. (18)], implying that the figure
can be read as a “scaled occupation number versus scattering
length” plot.

wave function ψ, written above in terms of the center
of mass and relative coordinates R12 and r12, be trans-
formed to the single particle coordinates r1 and r2. In
the following, we discuss the occupation numbers asso-
ciated with the one-body density matrix as a function
of the relative two-body energy Erel

2 , assuming that the
center of mass wave function is in the ground state, i.e.,
we set Q = L = M = 0. For two-boson systems in one
dimension, the one-body density matrix was calculated
as a function of temperature in Ref. [31]. Here, we con-
sider the zero temperature limit and restrict ourselves
to relative states with l = 0. The formalism developed,
however, can be straighforwardly applied to states with
finite l, Q, L and M . As detailed in Appendix B, the
one-body density matrix can be evaluated efficiently and
with high accuracy by expanding it in terms of single
particle harmonic oscillator functions.

We first consider the zero-range pseudopotential Vps
with as(E

rel
2 ) replaced by as(0). Figure 3 shows the

scaled occupation numbers nν00/2 for the trapped two-
boson system interacting through Vps as a function of the
relative two-body energy Erel

2 . In the non-interacting
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limit, the ground state with energy Erel
2 = 3~ω/2 is

characterized by a single natural orbital with projec-
tion λ = 0, i.e., the non-interacting two-boson system
in the ground state has a condensate fraction N0/N of 1.
As the interactions are turned on, i.e., as as(0) takes
on small positive or negative values corresponding to
Erel

2 > 3~ω/2 and Erel
2 < 3~ω/2, respectively, the occu-

pation number associated with the lowest natural orbital
depletes. Taylor-expanding the projected one-body den-
sity matrix around Erel

2 = 3~ω/2 (see Appendix B), we
find that the condensate fraction of the ground state of
the two-boson system depletes quadratically with as(0),

N0/2 = 1− 0.420004[as(0)/aho]
2

− 0.373241[as(0)/aho]
3

+ 0.406786[as(0)/aho]
4

+O([as(0)/aho]
5). (22)

The dash-dot-dotted line in Fig. 3(a) shows the first two
terms of Eq. (22), i.e., the leading-order dependence of
the depletion on as(0), in the weakly-interacting regime.
The higher-order corrections proportional to [as(0)]

i, i =
3 and 4, are analyzed in Sec. IV.
Figure 3 reveals oscillatory behavior of the scaled oc-

cupation numbers nν00/2 for Erel
2 > 3~ω/2. As the rel-

ative energy Erel
2 (Erel

2 > 3~ω/2) increases, the occu-
pation numbers go through “near deaths and revivals”,
with many of the occupation numbers crossing. When
a higher-lying non-interacting state is reached, one more
natural orbital with λ = 0 becomes macroscopically oc-
cupied. Similar structure is seen for λ > 0 (not shown).
For Erel

2 = 7~ω/2, e.g., five natural orbitals are occu-
pied. Two of these natural orbitals have λ = 0 with
nν00/2 = 1/4 (solid and dashed lines in Fig. 3), while
three natural orbitals (from the 2λ+1 degeneracy) have
λ = 1 with nν00/2 = 1/6. The largest occupation num-
ber per particle n000/2 takes on local maxima at the non-
interacting energies Erel

2 = 11~ω/2 and 19~ω/2 as well
as at Erel

2 ≈ 3.68~ω and 7.64~ω (see arrows in Fig. 3).
For Erel

2 < 3~ω/2, the scaled occupation number
n000/2 (see solid line in Fig. 3) decreases monotonically
with decreasing energy while many other natural or-
bitals become occupied, including natural orbitals with
λ > 0. In the limit of a deeply bound two-body state,
the relative two-body wave function becomes infinitely
sharply peaked, implying that infinitely many single-
particle states are required to describe the deeply-bound
two-boson system.
If the energy-dependence of the s-wave scattering

length is accounted for, the condensate fraction of
the two-boson system in the ground state near the
non-interacting regime depends not only on as(0), see
Eq. (22), but also on re. We find that the leading-order
effective range contribution to the condensate fraction is
−(3/2)×0.420004re[as(0)]

3/a4ho. The factor of 3/2 arises
since the scattering length as(0) has to be replaced, fol-
lowing Eq. (6), by [as(0)]

2rek
2/2, where the relevant en-

ergy scale for evaluating k2 is 3~ω/2 [see Eq. (18) for

n = 0].

IV. WEAKLY-INTERACTING TRAPPED

N-BOSON GAS

Subsection IVA determines the condensate fraction of
the lowest gas-like state of the N -boson system perturba-
tively in the weakly-interacting regime, and compares the
perturbative predictions with our results for finite-range
potentials. Subsection IVB parametrizes and quantifies
the non-universal corrections revealed through the com-
parison.

A. Perturbative treatment

We employ the formalism of second quantization and
rewrite the N -boson Hamiltonian as

H =
∑

a

Eaâ
†
aâa +

1

2

∑

abcd

Kabcdâ
†
aâ

†
bâdâc, (23)

where

Kabcd = (24)
∫∫

Φ∗
a(r1)Φ

∗
b(r2)Vtb(r1 − r2)Φc(r1)Φd(r2)d

3r1d
3r2.

Here, the Φa(r) denote the single particle harmonic os-
cillator wave functions with eigen energy Ea; in spherical
coordinates, we have Ea = (2na+ la+3/2)~ω. The oper-
ators âa and â†a obey bosonic commutation relations and
respectively annihilate and create a boson in the single
particle state Φa. We model the interaction Vtb by the
sum VF + V ′ (see Sec. II), and employ the counterterms
derived in Refs. [16, 17] to cure divergencies. Since the
Φa(r) are known, the matrix elements Kabcd for this in-
teraction model can be evaluated either analytically or
numerically [16, 17]. The low-energy Hamiltonian given
in Eq. (23) has previously been used to derive pertur-
bative energy expressions up to order a−3

ho for the har-
monically trapped N -boson system [17]. In particular,
VF and V ′ were treated at the level of third- and first-
order perturbation theory. Comparison with energies for
systems with finite-range interactions validated the for-
malism and showed that the derived perturbative energy
expressions, which depend on as(0) and re, provide an ex-
cellent description in the weakly-interacting regime [17].
To determine the condensate fraction, we construct the

matrix 〈â†pâq〉, where p and q run over all possible single-

particle state labels. The expectation value 〈â†pâq〉,

〈â†pâq〉 =
〈ψ(k)

0 |â†pâq|ψ
(k)
0 〉

〈ψ(k)
0 |ψ(k)

0 〉
, (25)

is calculated with respect to the many-body ground state

wave function ψ
(k)
0 , determined within kth-order pertur-

bation theory. The ground state wave function ψ
(k)
0 is
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expressed as a superposition of the unperturbed many-

body wave functions ψ
(0)
j ,

|ψ(k)
0 〉 =

∑

j

b
(k)
j |ψ(0)

j 〉, (26)

where the expansion coefficients b
(k)
j are determined by

the matrix elements Kabcd. The subscript j collectively
labels the non-interacting or unperturbed many-body
states (in particular, 0 labels the ground state). Once
the matrix 〈â†pâq〉 is constructed, we diagonalize it ana-

lytically (see Appendix A). Up to order a−3
ho , i.e., treating

the second-order perturbation theory wave function, we
find

N0/N = 1− 0.420004(N − 1)

[

as(0)

aho

]2

+
[

− 0.373241(N − 1)

+ 0.439464(N − 1)(N − 2)
]

[

as(0)

aho

]3

+ · · · . (27)

The prefactors are discussed in the context of Table III.
We interpret the terms proportional to (N − 1) and
(N − 1)(N − 2) as being due to two-body and three-
body scattering processes, respectively. In Eq. (27), the
terms proportional to [as(0)]

2 and [as(0)]
3 arise when

treating the potential VF, together with the appropri-
ate counterterm, in first- and second-order perturbation
theory. Treating VF in third-order perturbation theory
(not pursued here), three terms proportional to [as(0)]

4

that contain the factors (N − 1), (N − 1)(N − 2) and
(N − 1)(N − 2)(N − 3), respectively, are expected to
arise.
The potential V ′ gives rise, in first-order perturbation

theory, to the two-body term −(3/2) × 0.420004(N −
1)re[as(0)]

3/a4ho. This result agrees with that obtained
by Taylor-expanding the full two-body density matrix
and determining its largest eigen value (see last para-
graph of Sec. III). No three-body term arises at order
re[as(0)]

3. Since the leading-order effective range depen-
dence is of order a−4

ho , it is not included in Eq. (27).
To assess the applicability of our perturbatively de-

rived result, Eq. (27), we calculate the condensate frac-
tion for small N -boson systems interacting through
the Gaussian model potential Vg, Eq. (10), with small
|as(0)|/aho. For N = 2, we solve the relative Schrödinger
equation using standard B-spline techniques. For N = 3
and 4, we use the stochastic variational approach [32, 33],
which expands the relative eigen functions in terms of a
set of fully symmetrized basis functions whose widths
are chosen semi-stochastically. The widths are optimized
by minimizing the ground state energy. The optimized
ground state wave function is then used to construct the
projected one-body density matrix ρ00(r

′
1, r1) on a grid

in the r′1 and r1 coordinates. The projected one-body
density matrix is diagonalized numerically to find the

-0.01 0 0.01
a

s
(0)/a

ho

0.9998

0.9999

1.0000

N
0/N

-0.01 0 0.01
a

s
(0)/a

ho

0

2×10
-6

N
0/N

-(
N

0/N
)(2

)

(a)

(b)

FIG. 4: (Color online) Condensate fraction N0/N of the
weakly-interactingN-boson system as a function of as(0)/aho.
(a) Squares and circles show the condensate fraction forN = 2
and 3 bosons interacting through the shape-dependent Gaus-
sian model potential Vg with r0 = 0.01aho. Solid and dashed
lines show Eq. (27) for N = 2 and 3, respectively. (b) Squares

and circles show the quantity N0/N − (N0/N)(2) for N = 2
and 3 using the same data as in panel (a). Solid and dashed
lines show the [as(0)/aho]

3 term of Eq. (27) for N = 2 and 3.

natural orbitals and their occupation numbers. The re-
sulting condensate fraction for N = 3 has an estimated
numerical error of order 10−7 or smaller for the parame-
ter combinations considered. The numerical error is due
to the facts that (i) we use a finite basis set, (ii) we con-
struct ρ00(r

′
1, r1) on a grid with finite grid spacings, and

(iii) our grid terminates at finite r′1 and r1 values. For
N = 3, we use around 120 basis functions and 625 lin-
early spaced grid points in r′1 and r1 between r0/2 and
5.5aho.

Squares and circles in Fig. 4(a) show the condensate
fraction N0/N for the N = 2 and N = 3 systems inter-
acting through Vg with r0 = 0.01aho as a function of the
zero-energy s-wave scattering length as(0). For compari-
son, solid and dashed lines show our perturbative results
up to order a−3

ho . It can be seen that the numerically de-
termined condensate depletions for the finite-range inter-
action potential change approximatically quadratically
with the scattering length. To investigate the correc-
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tion proportional to [as(0)/aho]
3, squares and circles in

Fig. 4(b) show the quantity N0/N − (N0/N)(2), where
(N0/N)(2) = 1− (N − 1)0.420004[as(0)/aho]

2, for N = 2
and 3 [the data for N0/N are the same as those shown in
Fig. 4(a)]. For comparison, the solid and dashed lines
show the perturbatively predicted [as(0)/aho]

3 depen-
dence for N = 2 and 3. It can be seen that the per-
turbative prediction does not provide a good description
of the sub-leading dependence of the depletion. Similar
behavior is observed for N = 4 (not shown). We find that
neither the inclusion of the re[as(0)]

3 nor of the [as(0)]
4

terms can explain the discrepancy. As shown in the next
subsection, the discrepancy displayed in Fig. 4(b) is due
to non-universal contributions.

B. Non-universal contributions

To better connect the results obtained by applying per-
turbation theory to the low-energy Hamiltonian, Eq. (23)
with Vtb = VF +V ′, with the results for the Hamiltonian
with finite-range interactions, we first consider the two-
body system. Noting that the perturbative results for the
condensate fraction agree with the results obtained by
Taylor-expanding the exact one-body density matrix for
the two-body system with regularized zero-range inter-
action [i.e., noting that Eq. (27) agrees with Eq. (22) for
N = 2 and the orders considered], we compare the one-
body density matrix ρ(r′1, r1) for the two-body system in-
teracting through Vps with the one-body density matrix
ρfr(r

′
1, r1) for the two-body system interacting through a

finite-range potential.
Since the regularized zero-range potential reproduces

the relative two-body energy of systems with finite-range
interactions with high accuracy [18, 19], we assume that
the relative two-body energies Erel

2 agree for the two
interaction models. We denote the normalized relative
wave function of the energetically lowest-lying gas-like
state for the finite-range potential by ψrel,fr(r12) and
that for the regularized zero-range model potential by
ψrel
q00(r12) [see Eq. (B2)]. It is instructive to write ψrel,fr

as

ψrel,fr(r12) = ψrel
q00(r12) + δψ(r12). (28)

Inserting Eq. (28) into ρfr(r
′
1, r1) and assuming the ab-

sence of center of mass excitations, we find

ρfr(r
′
1, r1) ≈ ρ(r′1, r1) + 2δρ(r′1, r1), (29)

where ρ(r′1, r1) is given in Eqs. (B1) and (B16), and

δρ(r′1, r1) = (30)
∫

[ψcm
000(R

′
12)δψ(r

′
12)]

∗ψcm
000(R12)ψ

rel
q00(r12)d

3r2

+

∫

[ψcm
000(R

′
12)ψ

rel
q00(r

′
12)]

∗ψcm
000(R12)δψ(r12)d

3r2

with r′12 = r′1 − r2 and R′
12 = (r′1 + r2)/2; r12 and R12

are defined in Sec. II. In writing Eq. (29), the term pro-
portional to |δψ|2 has been neglected.
To determine the condensate fraction, we expand

δρ(r′1, r1) in terms of non-interacting single particle har-
monic oscillator functions; this approach is analogous
to that discussed in detail in Appendix B for ρ(r′1, r1).
A fairly straightforward analysis shows that the main
correction to the condensate fraction arises from the
((0, 0, 0), (0, 0, 0)) element of δρ(r′1, r1). It follows that
the largest occupation number nfr

000 for the finite-range
potential can be written as

nfr
000

2
≈ n000

2
+ δc00, (31)

where

δc00 =

∞
∑

i=0

2−2i(C∗
i Di + CiD

∗
i ). (32)

In Eq. (31), n000/2 = N0/2 denotes the condensate frac-
tion of the two-body system interacting through the reg-
ularized zero-range potential [see Eq. (22)]. The coeffi-
cients Ci are defined in Eq. (B8) and the Di denote the
overlaps between the non-interacting harmonic oscillator
functions and δψ,

Di =

∫

[ψrel,ni
i00 (r12)]

∗δψ(r12)d
3r12. (33)

Realizing that the i = 0 terms in Eq. (32) dominate and
using the leading-order behavior of C0, i.e., C0 ≈ 1 [see
Eqs. (B19) and (B20)], we find

δc00 ≈ 2Re(D0). (34)

For the finite-range potentials considered in this paper,
we find that Eqs. (32) and (34) deviate by less than 0.2 %.
In the following, we refer to D0 as the “non-universal
two-body parameter”.
Figure 5 illustrates the behavior of the integrand that

determines the non-universal two-body parameter D0 for
two different two-body energies, i.e., for Erel

2 = 1.498~ω
[negative as(0)] and E

rel
2 = 1.502~ω [positive as(0)], for

the Gaussian model potential with r0 = 0.01aho. In

particular, Fig. 5(a) shows the product (ψrel,ni
000 )∗δψ and

Fig. 5(b) the ratio ψrel,fr/ψrel
q00. Figure 5 reflects the pres-

ence of the two characteristic length scales of the prob-
lem. The behavior in the small r12 region, shown in the
insets of Figs. 5(a) and 5(b), is governed by the details of
the two-body interaction potential. Near r12 ≈ 5r0, the

behavior of (ψrel,ni
000 )∗δψ and ψrel,fr/ψrel

q00 changes notably.

For r12 & 5r0, the ratio ψrel,fr/ψrel
q00 approaches a con-

stant that is slightly larger (smaller) than 1 for negative
(positive) as(0). The small deviations of the ratios from
one are a consequence of the fact that the wave func-
tions of the trapped system are normalized to one. Since
the wave functions for the finite range interaction po-
tential deviate from those for the zero-range interaction
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FIG. 5: (Color online) Analysis of the integrand that deter-
mines the non-universal parameter D0 [see Eq. (33)] for the
finite-range model potential Vg with r0 = 0.01aho for two dif-
ferent relative two-body energies. The solid and dotted lines
correspond to Erel

2 = 1.498~ω and Erel
2 = 1.502~ω, respec-

tively. Panel (a) shows the integrand [ψrel,ni
000 (r12)]

∗δψ(r12) in
the large r12 region, i.e., for r12 ∈ [0.03aho, 3aho] (log-linear
scale), while the inset shows the absolute value of the in-

tegrand |[ψrel,ni
000 (r12)]

∗δψ(r12)| in the small r12 region (log-
log scale). Panel (b) and the inset of (b) show the ratio
ψrel,fr/ψrel

q00 in the large and small r12 regions, respectively
(log-linear scale).

potential in the small r12 region, the ratio ψrel,fr/ψrel
q00

needs—in general—to differ from one in the large r12
region. The “divergence” of the ratio ψrel,fr/ψrel

q00 near
r12 = 0.002aho for as(0) > 0 [see dotted line in the inset
of Fig. 5(b)] reflects the fact that the zero-range potential
supports a deeply-bound negative energy state, which in-
troduces a node at small r12 in the wave function that
describes the energetically lowest-lying gas-like state. A
corresponding bound-state is not supported by the purely
repulsive Gaussian model potential, leading to an infinite
ratio ψrel,fr/ψrel

q00 at the node of ψrel
q00.

The non-universal two-body parameter D0 is the trap
analog of the two-body scattering quantity u0 introduced
by Tan [see Eq. (114a) of Ref. [9]]. It is important to
note, however, that D0 depends on the wave function
difference for all r12 and on the non-interacting harmonic
oscillator ground state wave function while the u0 defined

-0.01 0 0.01
a

s
(0)/a

ho

0

2×10
-6

4×10
-6

N
0/N

-(
N

0/N
)(3

)

FIG. 6: (Color online) Squares and circles show the residual

N0/N − (N/N0)
(3) for N = 2 and 3 as a function of as(0) for

the Gaussian model interaction Vg with r0 = 0.01aho. Solid
and dashed lines show the quantity (N − 1)δc00 for N = 2
and 3, respectively [34].

by Tan depends only on the wave function difference in
the small r12 region, i.e., out to a few times r0. Indeed,
we find that the contribution to D0 that accumulates
in the inner region (r12 . 10r0) can be of comparable
magnitude to the contribution that accumulates in the
outer region (r12 & 10r0).

Since the dependence of the condensate fraction on the
quantity D0 arises at the two-body level, the D0 term
needs to be multiplied by N − 1 for systems with N > 2.
Figure 6 compares the condensate fractions for the N = 2
and 3 systems interacting through the finite-range Gaus-
sian model potential Vg with the predicted behavior for
the condensate fraction. Specifically, squares and circles
show the difference N0/N − (N0/N)(3) for N = 2 and 3
between the numerically determined condensate fraction
N/N0 and the perturbative result (N0/N)(3), which in-
cludes all terms on the right hand side of Eq. (27) up to
order a−3

ho . According to our discussion above, we expect
that the residuals are well approximated by (N − 1)δc00
(shown by solid and dashed lines in Fig. 6). Indeed, Fig. 6
shows that the residuals for N = 2 and 3 are well de-
scribed by the non-universal corrections. We find similar
results for N = 4 (not shown). Our calculations demon-
strate that two Hamiltonians that are characterized by
the same energy give rise to condensate fractions that dif-
fer. Related findings have previously been discussed in
Refs. [9, 35, 36]. The leading order difference between the
condensate fractions for the harmonically trapped few-
boson systems described by the two Hamiltonians can be
parameterized by the non-universal two-body parameter
D0, a parameter not needed to match the energies of the
two Hamiltonians.
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V. THREE TRAPPED BOSONS AT UNITARITY

The previous section discussed the condensate fraction
of weakly-interacting trapped N -boson systems, which
can be expressed in terms of as(0), re and a non-universal
two-body correction parametrized through D0. It is well
known that the properties of the three-boson system
not only depend on two-body parameters, but also on a
three-body parameter [37–39]. In the weakly-interacting
regime, however, the dependence on the three-body
parameter appears at higher order than considered in
Sec. IV. In the strongly-interacting regime, in contrast,
the dependence on the three-body parameter is generally
quite pronounced.

At unitarity, i.e., for diverging as(0), the trapped
three-boson system with zero-range s-wave interactions
supports two distinct classes of eigen states: (i) universal
states whose properties are fully governed by the two-
body scattering parameters, and (ii) non-universal states
whose properties depend, in addition to the two-body
scattering parameters, on a three-body parameter. In the
following, we determine the occupation numbers for the
non-universal three-boson states in a trap at unitarity as
a function of the three-body parameter. The momentum
distribution of Efimov trimers in free-space was discussed
in Ref. [42].

The three-boson wave function ψ(r1, r2, r3) with rela-
tive orbital angular momentum l = 0 for zero-range in-
teractions with diverging s-wave scattering length as(0),
and vanishing re and V , under external isotropic confine-
ment can be written as [40, 41]

ψ(r1, r2, r3) = S
[

R−5/2F (R)ϕ(α)ψcm
QLM (R123)

]

. (35)

Here, R denotes the hyperradius and α the hyperan-
gle, R2 = r212/2 + 2r212,3/3 and tanα =

√
3r12/(2r12,3)

with r12 = |r1 − r2| and r12,3 = |(r1 + r2)/2 − r3|. In
Eq. (35), ψcm

QLM (R123) denotes the harmonic oscillator
wave function in the center of mass coordinate R123,
R123 = (r1 + r2 + r3)/3; as in Sec. III, we assume
that the center of mass wave function is in the ground
state, i.e., we set Q = L = M = 0. The operator S
ensures that the three-boson wave function is symmet-
ric under the exchange of any of the three boson pairs,
S = 1 + P12 + P23 + P31 + P12P23 + P12P31, where Pjk
is the operator that exchanges particles j and k. The
hyperangular wave function ϕ(α) takes the form ϕ(α) =
sin[(α − π/2)s0]/ sin(2α), where s0 equals 1.00624ı [37–
39]. The fact that the separation constant s0, which
arises when solving the hyperangular Schrödinger equa-
tion, is imaginary is unique to the l = 0 channel and
tightly linked to the fact that a three-body parameter is
needed.

The hyperradial wave function F (R) can be conve-
niently expressed in terms of the Whittaker function
W [41], i.e., F (R) = R−1/2WErel

3
/2,s0/2(R

2/a2ho). The

relative three-body energy Erel
3 is related to the three-

-5 0 5
E
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3
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FIG. 7: (Color online) Occupation numbers per particle
nν00/N [ν = 0 (solid line) and ν = 1 (dashed line)] for the
non-universal l = 0 state of the three-boson system at uni-
tarity as a function of the relative three-body energy Erel

3 ;
the three-body energy can be converted to the three-body
parameter via Eq. (36).

body or Efimov phase θ through [40]

θ = arg





Γ
(

1
2 − Erel

3

2~ω + s0
2

)

Γ(1 + s0)



 . (36)

The physical meaning of θ becomes clear when look-
ing at the small R/aho behavior of F (R), F (R) →√
R sin(Im(s0) ln(R/aho)+θ). This expression shows that

the three-body phase determines what happens when
three particles come close together. The small R/aho
behavior can be thought of as being imposed by a short-
range three-body force or a boundary condition of the
hyperradial wave function in the R/aho → 0 limit [39].
To determine the occupation numbers of the non-

universal three-boson states as a function of Erel
3 , we sam-

ple the density |ψ(r1, r2, r3)|2 using Metropolis sampling.
As discussed in Ref. [28], this approach introduces a sta-
tistical error that can be reduced by performing longer
random walks. Throughout our random walk, we sample
the projected one-body density matrix ρ00(r

′
1, r1). Diag-

onalizing ρ00(r
′
1, r1) at the end of a run yields the occu-

pation numbers.
Figure 7 shows the two largest occupation numbers

per particle nν00/3 as a function of Erel
3 . It can be seen

that the occupation numbers of the non-universal state
depend quite strongly on the relative three-body energy
or, equivalently, the three-body phase θ. The maximum
of the lowest occupation number per particle n000/3 is
0.82 and occurs at Erel

3 = 3~ω/2; the occupation num-
ber per particle n100/3 is minimal at this energy. In-
terestingly, the occupation numbers show oscillations (or
“shoulders”) similar to those discussed in the context of
Fig. 3 for the two-body system. In Figure 3, we change
the relative two-body energy, which is related to the s-
wave scattering length through Eq. (17). In Fig. 7, we
change the relative three-body energy, which is related
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to the three-body phase through Eq. (36). For both the
two- and three-body systems, Eqs. (17) and (36) can be
related to the short-range boundary condition of the re-
spective radial or hyperradial part of the relative wave
function.
For comparison, we also calculated the largest occupa-

tion number per particle of the projected one-body den-
sity matrix ρ00(r

′
1, r1) for selected universal three-boson

states (see Ref. [41] for the relevant wave functions).
The largest occupation number per particle of the en-
ergetically lowest-lying universal three-boson state with
l = 0 and Erel

3 = 4.465~ω at unitarity is n000/3 = 0.295.
The largest occupation numbers per particle of the en-
ergetically lowest lying states with l = 1 and l = 2
at unitarity are n000/3 = 0.199 and 0.421, respectively.
For these states, the energies are Erel

3 = 2.864~ω and
Erel

3 = 2.823~ω, respectively. For the universal states
considered, the largest occupation number n000 is no-
tably smaller than N .

VI. CONCLUSIONS

We have determined and interpreted the occupation
numbers of few-boson systems under isotropic harmonic
confinement. In the weakly-interacting regime, our anal-
ysis is based on a low-energy Hamiltonian—characterized
by the s-wave scattering length as(0) and the effective
range re—that has previously been proven to correctly
describe the energy of few-boson systems up to order
a−3
ho [17]. The present paper shows that this low-energy

Hamiltonian correctly describes the leading order deple-
tion of harmonically trapped few-boson systems but that
it does not fully capture the corrections to the leading
order depletion.
Our final expression for the condensate fraction reads

N0/N = 1− 0.420004(N − 1)

[

as(0)

aho

]2

+
[

− 0.373241(N − 1)

+ 0.439464(N − 1)(N − 2)
]

[

as(0)

aho

]3

+
[

0.406786(N − 1) + γ
(4)
3 (N − 1)(N − 2)

+ γ
(4)
4 (N − 1)(N − 2)(N − 3)

]

[

as(0)

aho

]4

+ 2(N − 1)Re(D0)

− (3/2)× 0.420004(N − 1)
re[as(0)]

3

a4ho
+ · · · , (37)

where the non-universal two-body parameter D0 is de-

fined in Eq. (33). The coefficients γ
(4)
3 and γ

(4)
4 arise when

treating VF in third-order perturbation theory; the deter-
mination of their numerical values is beyond the scope of
this paper. We have confirmed the expression for the

condensate fraction, Eq. (37), through comparison with
numerical results for a few-body Hamiltonian with finite-
range two-body potentials. Our work demonstrates that
the occupation numbers are not fully determined by the
parameters of the “usual” effective range expansion, but
rather depend on an additional property of the two-body
wave function (i.e., non-universal physics). A similar re-
sult is expected to hold for the momentum distribution.
Our findings are not only of importance for cold atomic
Bose gases but also for nuclear systems, for which the
use of low-energy Hamiltonians has become increasingly
more popular during the past decade or so [43].
We have also considered the strongly-interacting

regime. Our results show that the occupation numbers
for non-universal states of the three-boson system un-
der isotropic harmonic confinement depend strongly on
the three-body parameter. This finding suggests that
the occupation numbers and momentum distribution of
strongly-interacting Bose gases at unitarity may depend
on three-body physics. In view of recent experimental
work [44–46], it would be interesting to extend the treat-
ments of Refs. [47, 48], which predict—accounting only
for two-body physics—that three-dimensional Bose gases
at unitarity fermionize. In particular, it would be in-
teresting to determine how, if at all, this fermionization
picture changes if three-body physics is accounted for.
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Appendix A: Perturbative treatment and

diagonalization of one-body density matrix

This appendix provides details regarding the perturba-
tive treatment of the condensate fraction of the N -boson
system and the diagonalization of the associated matrix.
We start with the Hamiltonian H given by Eq. (23).

We first neglect the effective range dependent potential
V ′, i.e., we consider only the bare Fermi pseudopotential
VF, Eq. (8), and the counterterm W used to cure diver-
gencies [16, 17]. The matrix elements Kabcd can then be
written as

Kabcd = Fabcd

[

as(0)

aho
+ ν

(

as(0)

aho

)2
]

~ω, (A1)

where

Fabcd = 4πa3ho

∫

Φ∗
a(r1)Φ

∗
b(r1)Φc(r1)Φd(r1)d

3r1 (A2)

and

ν =

√

2

π
(1− ln 2) +

√

π

2
β
(2)
2 . (A3)
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The coefficient β
(2)
2 was calculated in Ref. [17] and is

listed in Table III. It diverges and cures the divergencies
that arise when treating VF in second-order perturbation
theory.
The matrix 〈â†pâq〉 is evaluated by substituting

Eq. (26) into Eq. (25). In order to get the matrix ele-
ments up to order a−3

ho , we need to employ second order

perturbation theory. The expansion coefficients b
(2)
j of

the non-normalized second-order wave function ψ
(2)
0 read

b
(2)
0 = 1 (A4)

and

b
(2)
j =−

〈ψ(0)
j |VF +W |ψ(0)

0 〉
E

(0)
j − E

(0)
0

+
∑

j′ 6=0

〈ψ(0)
j |VF +W |ψ(0)

j′ 〉〈ψ(0)
j′ |VF +W |ψ(0)

0 〉
(E

(0)
j − E

(0)
0 )(E

(0)
j′ − E

(0)
0 )

−
〈ψ(0)

j |VF +W |ψ(0)
0 〉〈ψ(0)

0 |VF +W |ψ(0)
0 〉

(E
(0)
j − E

(0)
0 )2

(A5)

for j not equal to the ground state labeled by 0. In the

denominators appearing in Eq. (A5), the E
(0)
j denote the

unperturbed eigen energies corresponding to the j’s un-
perturbed eigen state. The numerators are conveniently
expressed in terms of the matrix elements Fabcd.

The indices p and q of 〈â†pâq〉 run over all possible sin-
gle particle state labels. We employ spherical coordinates
and write p = (n′

1, l
′
1,m

′
1) and q = (n1, l1,m1). We find

that the matrix is block diagonal, i.e., 〈â†n′

1
l′
1
m′

1

ân1l1m1
〉 =

0 for l′1 6= l1 or m′
1 6= m1. In the following, we consider

the submatrix with l′1 = l1 = m′
1 = m1 = 0. We denote

the matrix elements by cn′

1
n1

and write

cn′

1
n1

=

3
∑

k=0

c
(k)
n′

1
n1
xk +O(x4), (A6)

where x = as(0)/aho. Considering symmetry and keeping
terms up to order x3, we find

〈â†n′

1
00ân100〉 =













1 + c
(2)
00 x

2 + c
(3)
00 x

3 c
(1)
10 x+ c

(2)
10 x

2 + c
(3)
10 x

3 · · · c(1)A0x+ c
(2)
A0x

2 + c
(3)
A0x

3

c
(1)
10 x+ c

(2)
10 x

2 + c
(3)
10 x

3 c
(2)
11 x

2 + c
(3)
11 x

3 · · · c
(2)
A1x

2 + c
(3)
A1x

3

...
...

. . .
...

c
(1)
A0x+ c

(2)
A0x

2 + c
(3)
A0x

3 c
(2)
A1x

2 + c
(3)
A1x

3 · · · c
(2)
AAx

2 + c
(3)
AAx

3













. (A7)

The upper left element is 1, with small corrections pro-
portional to x2 and x3. The leading-order contribution
of the other elements in the first row and first column is
proportional to x. The leading-order contribution of the
rest of the matrix elements is proportional to x2.
We diagonalize the matrix by solving

det(M) = det(〈â†n′

1
00ân100〉 − ΞI) = 0 (A8)

through application of the Leibniz formula for determi-
nants [49]. In Eq. (A8), I denotes the (A + 1)× (A+ 1)
identity matrix and Ξ the eigen value we are seeking. The
product of the diagonal elements can be written as

A+1
∏

i=1

Mii =(−Ξ)A+1 +

[

1 +

A
∑

j=0

(

c
(2)
jj x

2 + c
(3)
jj x

3
)

]

(−Ξ)A

+

A
∑

j=1

(

c
(2)
jj x

2 + c
(3)
jj x

3
)

(−Ξ)A−1 +O
(

x4
)

.

(A9)

The other terms involve the product of the diagonal ele-
ments with the first and kth diagonal elements replaced

by M1k and Mk1. For k = 2, for example, we have

M12M21

M11M22

A+1
∏

i=1

Mii =

(

c
(1)
10 x+ c

(2)
10 x

2 + c
(3)
10 x

3
)2 A
∏

j=2

(

c
(2)
jj x

2 + c
(3)
jj x

3 − Ξ
)

=
[

(c
(1)
10 )

2x2 + 2c
(1)
10 c

(2)
10 x

3
]

(−Ξ)A−1 +O
(

x4
)

. (A10)

Summing over all contributions with k ≥ 2, we find

A+1
∑

k=2

M1kMk1

M11Mkk

A+1
∏

i=1

Mii =

A
∑

j=1

[

(c
(1)
j0 )

2x2 + 2c
(1)
j0 c

(2)
j0 x

3
]

(−Ξ)A−1 +O
(

x4
)

.

(A11)

Combining Eqs. (A9) and (A11) yields the eigen value
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equation up to order x3,

(−Ξ)A+1 +

[

1 +

A
∑

j=0

(

c
(2)
jj x

2 + c
(3)
jj x

3
)

]

(−Ξ)A

+

A
∑

j=1

[

c
(2)
jj x

2 + c
(3)
jj x

3 + (c
(1)
j0 )2x2

+ 2c
(1)
j0 c

(2)
j0 x

3

]

(−Ξ)A−1 = 0. (A12)

Equation (A12) can be reduced to a quadratic equation in
Ξ. Taking A to infinity, the largest eigen value coincides
with the condensate fraction,

N0/N = 1 +



c
(2)
00 +

∞
∑

j=1

(c
(1)
j0 )

2



x2 (A13)

+



c
(3)
00 +

∞
∑

j=1

2c
(1)
j0 c

(2)
j0



x3 +O
(

x4
)

.

The coefficients c
(k)
mn are determined by Eqs. (25), (26),

(A4), and (A5), and can be expressed in terms of infinite
sums involving the matrix elements Fabcd (see Table III).

Evaluating the coefficients c
(k)
mn, Eq. (A13) becomes

N0/N = 1− γ
(2)
2 (N − 1)

[

as(0)

aho

]2

+

[

γ
(3)
2 (N − 1)

+ γ
(3)
3 (N − 1)(N − 2)

] [

as(0)

aho

]3

, (A14)

where γ
(3)
2 = −2γ

(3)
2,1 − 4γ

(3)
2,2 − 2γ

(3)
2,3 and γ

(3)
3 = −4γ

(3)
3,1 −

4γ
(3)
3,2 + 8γ

(3)
3,3 + 4γ

(3)
3,4 . The superscript and the first sub-

script of the coefficient γ
(k)
i,j denote respectively the orders

of as(0)/aho and the multi-body scattering process that

γ
(k)
i,j is associated with. The second subscript simply la-

bels the various sums (see Table III). To evaluate γ
(3)
3,4 ,

we use the expression

γ
(3)
3,4 =

(

2

π

)3/2 [
π2

24
+ ln 2− 1

2
ln2 2

]

×
[

√

4

3
+ ln(8 − 4

√
3)− 1

]

−
∞
∑

j=1

∞
∑

k=1

21/2−2j−2kΓ(j + k + 3/2)

j2kπ2j!k!
. (A15)

If we insert the numerical values of the coefficients γ
(k)
i,j

from Table III, we obtain Eq. (27) of the main text.
To understand how the effective range contributes to

the depletion of the condensate fraction, we treat the

TABLE III: Expressions for and numerical values of the coef-

ficients γ
(k)
i,j that enter into Eq. (A14). The representation of

the γ
(k)
i,j in terms of infinite sums, derived within the pertur-

bative framework, are listed in column 2. For completeness,

we also list the coefficient β
(2)
2 , which enters into the countert-

ermW needed to cure the divergencies arising from VF. ∆ǫab
denotes a dimensionless energy; in spherical coordinates, we
have ∆ǫab = 2na + la + 2nb + lb. The sums are over all vec-
tor indices with the restrictions a 6= 0, b 6= 0 and c 6= 0

(e.g., the sum that determines γ
(2)
2 is

∑

=
∑

a 6=0,b6=0
, where

a = 0 corresponds to na = la = 0). The numerical values

for the coefficients are given in column 3: γ
(2)
2 , γ

(3)
2,1 , γ

(3)
2,2 , γ

(3)
2,3

and γ
(3)
3,4 are obtained by evaluating Eqs. (B29), (B30), (B31),

(B32), and (A15) while γ
(3)
3,3 is obtained by evaluating the in-

finite sum numerically (the numerical uncertainty is reported
in round brackets). In terms of the α coefficients defined in

Ref. [17], we have γ
(2)
2 = (α

(3)
4,3 − 2α

(3)
5 )/α

(1)
2 .

infinite sum numerical value

β
(2)
2

∑ F00abFba00

∆ǫab
+ 2

∑ F000aFa000

∆ǫa0
diverges

γ
(2)
2

∑ F00abFba00

∆ǫ2
ab

0.420004291120

γ
(3)
2,1 F0000

∑ F00abFba00

∆ǫ3
ab

0.073250101788

γ
(3)
2,2

∑ F000aFa00bFb000

∆ǫa0∆ǫ2
ab

0.005269765990

γ
(3)
2,3 (1− ln 2)

√

2
π
γ
(2)
2 0.102830963978

γ
(3)
3,1 γ

(3)
2,1 0.073250101788

γ
(3)
3,2 γ

(3)
2,2 0.005269765990

γ
(3)
3,3

∑ F00abFb00cFca00

∆ǫac∆ǫ2
ab

0.067074(1)

γ
(3)
3,4

∑ F000aFa0bcFcb00

∆ǫa0∆ǫ2
bc

0.054238116273

potential V ′ in first-order perturbation theory. The
derivation outlined above generalizes straightforwardly
and yields the leading-order effective range dependence
of the condensate fraction discussed in Sec. IVA.

Appendix B: Determination of one-body density

matrix for N = 2

This appendix summarizes the evaluation of the one-
body density matrix for the two-boson system with regu-
larized δ-function interaction in a spherically symmetric
harmonic trap. We start with Eq. (11) and write the
two-body wave function as a product of the center-of-
mass wave function ψcm

QLM (R12) and the relative wave

function ψrel
qlm(r12). In the following, we assume that the

two-body wave function is normalized and restrict our-
selves to states with Q = L =M = l = m = 0, yielding

ρ(r′1, r1) = 2

∫

[ψcm
000(R

′
12)ψ

rel
q00(r

′
12)]

∗×

ψcm
000(R12)ψ

rel
q00(r12)d

3r2. (B1)

To evaluate Eq. (B1), we follow a three-step process:
(i) We expand the relative wave function in terms of a
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complete set of non-interacting harmonic oscillator wave
functions in the relative coordinates. (ii) We expand the
non-interacting relative and center of mass wave func-
tions in terms of non-interacting single particle harmonic
oscillator wave functions. (iii) We integrate over r2.
Step (i): The relative wave function reads [29]

ψrel
q00(r12) =

N rel
q√
4π
U

(

−q, 32 , 12
[

r12
aho

]2
)

e
−

1
4

(

r12
aho

)

2

, (B2)

where U is the confluent hypergeometric function and the
normalization constant N rel

q is given by

N rel
q =

√

22q Γ(−1− 2q) a−3
ho π−1/2 23/2

1/q + π cot(πq)− ψ(−q − 1/2) + ψ(q)
. (B3)

Here, ψ is the digamma function and the non-integer
quantum number q is determined by the s-wave scatter-
ing length via Eqs. (16) and (17). In the non-interacting
limit, we have

ψrel,ni
i00 (r12) =

N rel,ni
i√
4π

L
(1/2)
i

(

1
2

[

r12
aho

]2
)

e
−

1
4

(

r12
aho

)

2

(B4)

with

N rel,ni
i =

√

i! a−3
ho

Γ(i + 3/2)
√
2
. (B5)

In Eq. (B4), the L
(1/2)
i denote the associated Laguerre

polynomials. Using the generating function of the con-
fluent hypergeometric function [29],

Γ(−q)U
(

−q, 32 , x
)

=
∞
∑

i=0

L
(1/2)
i (x)

i− q
, (B6)

the interacting wave function ψrel
q00(r12) can be ex-

panded in terms of the non-interacting wave functions

ψrel,ni
i00 (r12),

ψrel
q00(r12) =

∞
∑

i=0

Ciψ
rel,ni
i00 (r12), (B7)

where

Ci =
N rel
q

N rel,ni
i Γ(−q)(i − q)

. (B8)

Inserting the right hand side of Eq. (B7) into Eq. (B1),
the one-body density matrix reads

ρ(r′1,r1) = 2

∞
∑

i=0

∞
∑

i′=0

C∗
i′Ci× (B9)

∫

[ψcm
000(R

′
12)ψ

rel,ni
i′00 (r′12)]

∗ψcm
000(R12)ψ

rel,ni
i00 (r12)d

3r2.

Step (ii): To facilitate the integration over r2 in
Eq. (B9), we expand the product of the non-interacting
relative and center of mass wave functions in terms of
single particle states,

∑

Mm ψ
cm
QLM (R12)ψ

rel,ni
ilm (r12)〈L,M, l,m|Λ,Π〉 =

∑

n1l1m1

∑

n2l2m2
〈〈n1, l1, n2, l2; Λ|Q,L, i, l; Λ〉〉 ×

〈l1,m1, l2,m2|Λ,Π〉Φn1l1m1
(r1)Φn2l2m2

(r2), (B10)

where 〈〈· · · 〉〉 denotes a Talmi-Moshinsky coefficient [50,
51], 〈· · · 〉 a Clebsch Gordon coefficient and Φnlm(r) the
single particle harmonic oscillator wave function,

Φnlm(r) = Rnl(r)Ylm(r̂) (B11)

with

Rnl(r) = N sp
nl

(

r

aho

)l

L(l+1/2)
n

(

r2

a2ho

)

e
−

1
2

(

r
aho

)

2

(B12)

and

N sp
nl =

√

2 n! a−3
ho

Γ(n+ l + 3/2)
. (B13)

In Eq. (B10), Λ denotes the total angular momentum
quantum number to which the two-particle state on the
left hand side is coupled and Π the corresponding pro-
jection quantum number. For the state of interest, we
have Λ = 0 since L = l = 0. Correspondingly, we have
Π = 0. This implies that the sums on the left hand
side of Eq. (B10) reduce to a single term with Clebsch-
Gordon coefficient 〈0, 0, 0, 0|0, 0〉 = 1. For Λ = Π = 0,
the Clebsch-Gordon coefficient on the right hand side of
Eq. (B10) is only non-zero if l2 = l1 and m2 = −m1,
which eliminates the sums over l2 and m2 and yields
〈l1,m1, l1,−m1|0, 0〉 = (−1)l1−m1(2l1 + 1)−1/2. Using
these constraints for the quantum numbers, the Talmi-
Moshinsky bracket on the right hand side of Eq. (B10)
reduces to [52]

〈〈n1, l1,n2, l1; 0|0, 0, i, 0; 0〉〉 =
(−1)l1

2i

√

2l1 + 1
i!

n1! n2!

N sp
n1l1

N sp
n2l1

N sp
00N

sp
i0

. (B14)

Energy conservation implies that i is constrained to take
the values i = n1 + n2 + l1 in Eq. (B14). Applying
Eq. (B10) twice to the integrand of Eq. (B9), with the
associated restrictions on the quantum numbers, we find

ρ(r′1,r1) = 2
∑

n′

1
l′
1
m′

1
n′

2

∑

n1l1m1n2

[(2l1 + 1)(2l′1 + 1)]−1/2×

(Cn′

1
+n′

2
+l′

1
)∗Cn1+n2+l1 (−1)l1−m1+l

′

1
−m′

1×
〈〈n1, l1, n2, l1; 0|0, 0, n1 + n2 + l1, 0; 0〉〉 ×
〈〈n′

1, l
′
1, n

′
2, l

′
1; 0|0, 0, n′

1 + n′
2 + l′1, 0; 0〉〉 ×

[Φn′

1
l′
1
m′

1
(r′1)]

∗Φn1l1m1
(r1)×

∫

[Φn′

2
l′
1
−m′

1
(r2)]

∗Φn2l1−m1
(r2)d

3r2, (B15)
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where the sums over i and i′ have been eliminated due
to the energy conservation constraint.
Step (iii): The integration over r2 only gives non-

vanishing contributions if n′
2 = n2, l

′
1 = l1 and m′

1 = m1.
We thus obtain

ρ(r′1, r1) = 2
∑

n′

1
l1m1

∑

n1

cl1n′

1
n1
[Φn′

1
l1m1

(r′1)]
∗Φn1l1m1

(r1),

(B16)

where

cl1n′

1
n1

=
∞
∑

n2=0

(Cn′

1
+n2+l1)

∗Cn1+n2+l1

2l1 + 1
×

〈〈n1, l1, n2, l1; 0|0, 0, n1 + n2 + l1, 0; 0〉〉×
〈〈n′

1, l1, n2, l1; 0|0, 0, n′
1 + n2 + l1, 0; 0〉〉. (B17)

The projected one-body density matrix ρλµ(r
′
1, r1),

Eq. (13), can now be calculated readily. In the following
we consider the case where λ = 0 and drop the super-
script of cl1n′

1
n1

for notational convenience. We find

ρ00(r
′
1, r1) = 2

∑

n′

1
n1

cn′

1
n1
Rn′

1
0(r

′
1)Rn10(r1), (B18)

where the cn′

1
n1

can be interpreted as elements of a
symmetric coefficient matrix whose eigen values are the
scaled occupation numbers nν00/2. The nν00/2 are
shown in Fig. 3.
In the weakly-interacting regime, we obtain analytic

expressions for the occupation numbers of the ground
state by expanding around q = 0. Using Eq. (17) with
re = 0, we rewrite the cn′

1
n1

in terms of x = as(0)/aho
as opposed to q. Our goal is to obtain the condensate
fraction of the weakly-interacting two-body ground state
up to fourth order in x. Extending the analytical pro-
cedure discussed in Appendix A, this requires that we
calculate c00 up to fourth order in x, cj0 up to third or-
der, and cjj up to second order. Inspection of Eq. (B17)
shows that the as(0)-dependence of cn′

1
n1

comes from the
Cn1+n2

and (Cn′

1
+n2

)∗ coefficients. We write

Cj ≈ C
(0)
j + C

(1)
j x+ C

(2)
j x2 + C

(3)
j x3 + C

(4)
j x4 +O(x5).

(B19)

The C
(k)
j ’s needed to evaluate the condensate fraction up

to order x4 are

C
(0)
0 = 1, (B20)

C
(1)
0 = 0, (B21)

C
(2)
0 =

1

8π

(

h0,2 + h20,1
)

, (B22)

C
(3)
0 = − 1

3(2π)3/2
(

h0,3 + 3h0,2h0,1 + 2h30,1
)

, (B23)

and

C
(4)
0 =

1

128π2

(

12h0,4 + 48h0,3h0,1 + 17h20,2

+ 106h0,2h
2
0,1 + 53h40,1

)

, (B24)

and, for j > 0,

C
(0)
j = 0, (B25)

C
(1)
j = −N

sp
00

N sp
j0

(

1

j
√
2π

)

, (B26)

C
(2)
j = −N

sp
00

N sp
j0

(

1

j
√
2π

)2

(1− jh0,1) , (B27)

and

C
(3)
j = −N

sp
00

N sp
j0

(

1

j
√
2π

)3[

1− 2jh0,1 (B28)

+
j2

4

(

3h0,2 + 7h20,1
)

]

.

The hn,p are defined in Eq. (19). Using the notation
introduced in Eq. (A14), we find

γ
(2)
2 = −2C

(2)
0 − 3

8π
4F3(1, 1, 1, 5/2, 2, 2, 2, 1/4), (B29)

γ
(3)
2,1 = − 3

4(2π)3/2
5F4(1, 1, 1, 1, 5/2, 2, 2, 2, 2, 1/4)

+
h301

6(2π)3/2
+

h01h02
2(2π)3/2

+
h03

3(2π)3/2
,(B30)

γ
(3)
2,2 =

∞
∑

j=1

∞
∑

k=1

21/2−2j−2kΓ(j + k + 3/2)

4jk(j + k)π2 j! k!
, (B31)

γ
(3)
2,3 = − 1√

2π
h0,1γ

(2)
2 , (B32)

and

γ
(4)
2 = 0.406786416075. (B33)

In Eqs. (B29) and (B30), qFp denotes the generalized

hypergeometric function. The numerical values of γ
(2)
2 ,

γ
(3)
2,1 , γ

(3)
2,2 and γ

(3)
2,3 are listed in Table III.

The approach discussed above can be extended to ac-
count for the effective range dependence of the conden-
sate fraction, yielding the result discussed in the last
paragraph of Sec. III.
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