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We study theoretically lattice modulation experiments with ultracold fermions in optical lattices.
We focus on the regime relevant to current experiments when interaction strength is larger than the
bandwidth and temperature is higher than magnetic superexchange energy. We obtain analytical
expressions for the rate of doublon production as a function of modulation frequency, filling fac-
tor, and temperature. We use local density approximation to average over inhomogeneous density
for atoms in a parabolic trap and find excellent agreement with experimentally measured values.
Our results suggest that lattice modulation experiments can be used for thermometry of strongly
interacting fermionic ensembles in optical lattices.
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I. INTRODUCTION

Cold atoms provide a new platform in which one can
explore long standing open questions of strongly corre-
lated systems in condensed matter physics [1, 2]. In
particular, two-component Fermi mixtures in an opti-
cal lattice provide an ideal realization of the fermionic
Hubbard model, where two species of fermions – cor-
responding to the spin 1/2 – interact with an on-site
repulsion. This model is relevant for understanding
properties of electrons in several classes of novel quan-
tum materials including oxides and high-Tc superconduc-
tors [3, 4]. There are currently many efforts to probe the
low-temperature physics of such a model, with experi-
ments already demonstrating the Mott insulating behav-
ior expected in this model [5, 6].
An important feature of strongly correlated ultra-

cold atoms is that traditional probes used in solid state
physics are often not readily available. One thus needs
to understand how experimental techniques appropriate
for atomic ensembles can provide information on many-
body states. In this paper we focus on understanding
lattice modulation experiments with fermions in opti-
cal lattices. The technique of lattice modulation was
originally introduced for bosonic systems and absorbed
energy was measured as a function of modulation fre-
quency [7]. Measuring energy absorption, however, can
not be done accurately enough for strongly interacting
fermions. Thus an extension of this technique was pro-
posed, [8] and implemented [9], in which the number of
doubly occupied sites created by the lattice modulation
was measured. Recent experiments successfully reached
the regime of weak perturbations in which the number of
doublons created scales quadratically with the modula-
tion amplitude (Fermi’s golden rule) and the modulation
pulse duration [9].
While theoretical understanding of such experiments

with bosons is now relatively complete [10–12], the case
of fermions turned out to be more challenging. The main
difficulty is the presence of excitations at very different
energy scales: high energy charge excitations, so-called

doublons and holons, that have energies set by the on-
site repulsion U and fermion hopping strength J , and
magnetic excitations that have energies of the order of su-
perexchange energy J2/U . Understanding the interplay
of charge and spin degrees of freedom in the Hubbard
model is a long standing problem in condensed matter
physics [13, 14]. In the special case of half filling and fully
disordered spin states, analysis of lattice modulation ex-
periments has been performed previously [15, 16]. How-
ever, such analysis is not sufficient for quantitative com-
parison to experiments which are done with systems in
a parabolic potential that have a large number of atoms
outside of the incompressible Mott plateaus.
Furthermore such real-time dynamics at finite tem-

perature as seen in current experiments is problematic
for numerics. Monte-Carlo simulations [17] suffer from
the problems of analytic continuation. Density-matrix
renormalization group approaches, which can deal with
real time dynamics, are so far limited to one dimension.
Therefore, a comparison of dynamical quantities to ex-
periments is a non-trivial theoretical subject.
In this paper we develop another analytical approach

to calculate finite-temperature dynamics, i.e., the dou-
blon production rate (DPR), based on the slave-particle
technique [15, 18, 19]. This approach is particularly
adapted to the paramagnetic phase of the Hubbard
model, and can be applied to any filling of the band and
finite temperatures whose region is relevant to ongoing
experiments. It provides a remarkable agreement to the
experiments and allows for potential extensions.

This paper is organized as follows. We define the sys-
tem Hamiltonian, and introduce the slave particle rep-
resentation in Sec. II. In Sec. III, the spectral functions
of the slave particles are evaluated, and in addition the
spectral function of the original fermionic atom is also ob-
tained. In Sec. IV, we proceed with the estimation of the
doublon production rate based on the obtained spectral
functions in Sec. III, and the analytic formula of the DPR
spectrum is given. In Sec. V, the obtained analytic for-
mula is extended to an inhomogeneous system in a trap
by the local density approximation (LDA), and a com-
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parison with the experiment in Ref. [9] is implemented.
Finally, Sec. VI is devoted to the summary.

II. SLAVE PARTICLE REPRESENTATION

We consider the Hubbard model H0 = HK +Hat with

HK = −J
∑

σ,〈i,j〉

c†iσcjσ, (1a)

Hat = −µ
∑

j,σ

njσ + U
∑

j

nj↑nj↓, (1b)

where c†jσ and njσ = c†jσcjσ are, respectively, a creation
and number operator of a spin-σ fermions at a jth site.
We use the following slave-particle representation:

c†j↑ = b†j↑hj + bj↓d
†
j , c†j↓ = b†j↓hj − bj↑d

†
j , (2)

where b†jσ, h†
j and d†j are, respectively, creation oper-

ators of a slave boson of spin-σ state (Schwinger bo-
son), holon and doublon at a site j. They satisfy the

(anti-) commutation relations, [biσ, b
†
jσ′ ] = δi,jδσ,σ′ and

{hi, h
†
j} = {di, d

†
j} = δi,j . The enlarged Hilbert space

is projected onto the physical one by the following con-
straint at every site:

∑

σ

b†jσbjσ + h†
jhj + d†jdj = 1. (3)

Equation (2) allows to rewrite the Hamiltonian (1) as

HK = J
∑

〈i,j〉

[

Fji(h
†
ihj − d†idj) + (A†

ijdjhi + h.c.)
]

, (4)

Hat =
∑

j

[

ǫdj d
†
jdj + ǫhjh

†
jhj +

∑

σ

ǫbj b
†
jσbjσ − λj

]

, (5)

where Fji =
∑

σ b
†
jσbiσ and A†

ij = b†i↑b
†
j↓−b†j↓b

†
i↑ mean the

hopping of slave bosons and the creation of spin singlet
pair, respectively. The local potentials of a slave boson,
holon and doublon are, respectively, defined as ǫbj = λj ,

ǫhj = µ + λj and ǫdj = U − µ + λj . The constraint (3) is
implemented via the Lagrange multiplier λj .

III. DIAGRAMMATIC ANALYSIS

A. Atomic limit

We start with the atomic limit (J/U = 0). Then the ki-
netic term (4) which describes the scattering among slave
particles vanishes. Since the atomic Hamiltonian (5) is
quadratic, the atomic propagators at jth site are easily
obtained as

G
(0)
bσ (rj , iωn) =

1

iωn − ǫbj
, G

(0)
d/h(rj , iνn) =

1

iνn − ǫ
d/h
j

,

(6)

where ωn and νn are the Matsubara frequency for bosons
and fermions, respectively. Note that the atomic limit
propagators of slave bosons are independent of the spin.
This means that the atomic limit exhibits spin-incoherent
paramagnetism. Hereafter we set ~ = 1.
Let us suppose the mean-field (MF) λj to be deter-

mined by the atomic limit. Namely, the self-consistent
equation for λj corresponds to the statistical average of
the constraint (3) in the atomic limit:

2b(ǫb,j) + f(ǫh,j) + f(ǫd,j) = 1, (7)

where the prefactor 2 comes from the spin degrees of free-
dom. f(ǫ) and b(ǫ) are, respectively, the Fermi and Bose
distribution functions. One can expect that if the effect
of the kinetic energy HK is small, i.e., at relatively high
temperature compared to the kinetic energy, the valid-
ity of this treatment should be guaranteed. We thus use
the MF assumption for the Lagrange multiplier: λj → λ.
Simultaneously the local potentials are also replaced by
the homogeneous ones: ǫxj → ǫx where x = b, h, d. Cor-
responding to the MF treatment for the Lagrange multi-
plier, the atomic propagators also become independent of
sites: For example, the replacement of λj → λ leads the

slave boson propagator G
(0)
bσ (rj , iωn) → Ḡb(iωn) where

the site-independent propagator is defined as

Ḡb(iωn) =
1

iωn − ǫb
. (8)

Let us solve the self-consistent equation (7). For
kBT/U ≪ 1, Eq. (7) can be simplified, and solved an-
alytically as follows:

λ = kBT log
3 +

√

9 + 8(e−(U−µ)/kBT + e−µ/kBT )

2
. (9)

As discussed below, Eq. (7) is numerically solved, and we
compare the numerical result with Eq. (9). The obtained
λ leads the estimation of the slave particle densities. The
density of each slave particle is given by the MF solution
λ: nMF

σ = b(ǫb) for a slave boson, nMF
h = f(ǫh) for a

holon and nMF
d = f(ǫd) for a doublon. The temperature

and chemical potential dependency of them are shown
in Fig. 1. In the temperature region shown in Fig. 1,
the results analytically given by Eq. (9) are in precise
agreement with ones given by the numerically solved λ.
It means that in such a regime we may always employ
Eq. (9) as a solution of the MF self-consistent equa-
tion (7). On the other hand, the densities in the atomic
limit can be exactly calculated as shown in Appendix A.
Here we take the exact densities to be nσ, nh and nd, and
their temperature and chemical potential dependency is
also shown in Fig. 1. The exact result allows us to discuss
the temperature and chemical potential regime justifying
the slave particle approach. From the comparison made
in Fig. 1, the slave particle technique is found to agree
with the exact result in the temperature and chemical po-
tential region where nMF

σ = 1/2 and nMF
h = nMF

d = 0. In
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other words the slave particle technique is expected to be
reasonable when the system is near a Mott insulator, and
such temperature as a benchmark is below kBT/U ≈ 0.1.

B. The finite hopping

We now consider a finite but small hopping by taking
the infinite series of diagrams produced by the scattering
HK among the slave particles, based on the non-crossing
(NC) approximation [13, 14]. This approximation can be
also regarded as a certain type of high temperature series
expansion (HTSE) [20], but in our formalism the Wick
theorem is still applicable due to the quadratic Hamilto-
nian (5), and a particular infinite series of kinetic energy
perturbation can be taken. Based on the NC approxima-
tion the self-energy diagrams constructed by full propa-
gators, shown in Fig. 2, are considered.
Since one is in a temperature regime higher than the

anti-ferromagnetic exchange∼ 4J2/U , we apply the spin-
incoherent assumption to the slave boson propagator.
Namely, the slave boson propagators in the diagrams of
Fig. 2 are replaced by the atomic one (8),

G̃bσ(k, iωn) → Ḡb(iωn). (10)

The doublon and holon propagators are left full ones:
namely, by using the Dyson equation the full propagators
are written as

G̃d/h(k, iνn) = G̃
(0)
d/h(k, iνn)

+ G̃
(0)
d/h(k, iνn)Σ̃d/h(k, iνn)G̃d/h(k, iνn).

(11)

Unlike the standard MF theory, the dynamical fluctua-
tion of the slave bosons is retained here, which is neces-
sary to describe the doublon/holon excitation. The NC
diagram Fig. 2 (b) couples the self-consistent equations
of the doublon and holon self-energy. However, the con-
tribution is negligibly small because it is a far off-shell
diagram in this case such as Mott state. Consequently
the self-consistent equations of the self-energy Fig. 2 (a)
are decoupled and one can obtain in momentum space,

Σ̃d(k, iνn) =
W 2

4

1

N

∑

p

G̃d(p, iνn). (12)

with W =
√

8zb(ǫb)[b(ǫb) + 1]J2 corresponding to a half
band width for the holon and doublon as we will see
below. z is a coordination number, and N is the total site
number of the system. Note that due to the momentum
dependence of the rhs the self-energy should be given as
a local quantity: Σ̃d(k, iνn) = Σd(iνn). Consequently

the propagator also turns out to be local: G̃d(k, iνn) =
Gd(iνn). Thus the self-consistent equation (12) is easily
solved through the Dyson equation (11) as follows:

Σd(iνn) =
iνn − ǫd − i

√

W 2 − (iνn − ǫd)2

2
. (13)

Through the analytic continuation the doublon spec-
tral function, which is equivalent to the density of state
(DOS) in this case, is also obtained. In this approxima-
tion, a semi-circle type DOS is formed:

Ad(ω) =
4

W

√

1−

(

ω − ǫd
W

)2

. (14)

One can also obtain the self-energy and spectral func-
tion of the holon in the same way. The forms are the
same as what is obtained by the replacement ǫd → ǫh in
Eqs. (13) and (14). The holon spectral function is found
to reasonably reproduce the result of Brinkman and Rice
on single hole dynamics in a Mott insulator. [13] The
chemical potential dependency of the band width W is
shown in Fig. 3.
Using the representation (2), via the Matsubara

Green’s function of the original fermion, the DOS (spec-
tral function) is represented as

Aσ(ω) =

[

b(ǫb) + f(ǫb − ω)

]

Ah(ǫb − ω)

+

[

b(ǫb) + f(ǫb + ω)

]

Ad(ǫb + ω). (15)

As expected, the doublon and holon spectral functions,
Ad and Ah, give the upper and lower Hubbard band,
respectively. The spectral function as a function of J/U
and the chemical potential is shown in Fig.4.

IV. DOUBLON PRODUCTION RATE

We calculate the DPR induced by the amplitude mod-
ulation of an optical lattice potential using the above for-
malism. The amplitude modulation of the optical lattice
potential, V (t) = V0 + δV cos(ωt), modifies both J and
U as J → J [1 + δJ cos(ωt)] and U → U [1 + δU cos(ωt)]
where δJ and δU are dimensionless modulation pertur-
bation parameters and given as a function of δV . How-
ever, it is possible to map the two parameter modu-
lations problem to single parameter one of either J or
U . [8, 10, 11, 15] Namely, the modulation perturbation
to be discussed here can be written as

Hmod(t) = δF cos(ωt)HK, (16)

where δF = δJ − δU . [21] Within the second-order per-
turbation in terms of δF , the DPR defined as the time
averaged growth rate of atoms forming doublons is given
as [8]

PD(ω) = −
(δF )2

U
ωℑχR

K(ω), (17)

where χR
K(ω) = −i

∫∞

0 dt eiωt〈[HK(t), HK(0)]〉. As shown
in Appendix B, we represent the correlation function
χK(τ) = −〈TτHK(τ)HK(0)〉 without vertex corrections
in the slave-particle description [22],
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FIG. 1. (color online). The slave particle densities as a function of temperature for different chemical potentials: (a) the slave
boson, (b) holon and (c) doublon density. The chemical potentials are chosen as follows: µ/U = 0.5, 0.2, 0.1 and 0 from the
top to bottom. The MF results nMF

σ , nMF

h and nMF

d given by the slave particle technique and the exact results in the atomic
limit, nσ, nh and nd, are compared. nMF

σ , nMF

h and nMF

d are calculated numerically and analytically. The solid, dashed and
dotted lines, respectively, denote the exact result by the atomic limit calculation, the slave particle approach (A3).

FIG. 2. The NC diagrams giving the doublon self-energy. The
solid, double dotted and dashed lines, respectively, denotes
the full propagators of the doublon, holon and slave bosons.
The left diagram (a) describes the scattering between a dou-
blon and slave boson. The right diagram (b) represents the
higher energy scattering to a holon than the left (a). Thus, as
long as charge excitations of energy ∼ U are taken for large
U , the diagram (b) would be irrelevant. The holon self-energy
is also given by the same type of diagrams.

χK(τ) = −2J2
∑

〈i,j〉

[

Γh
ij(τ)Ḡb(τ)Ḡb(−τ) + Γd

ij(τ)Ḡb(τ)Ḡb(−τ)−
(

Ḡb(−τ)
)2

Gh(τ)Gd(τ) −
(

Ḡb(τ)
)2

Gh(−τ)Gd(−τ)

]

,

(18)

where ΓX
ij(τ) = 〈Tτx

†
i (τ)xj(τ)x

†
j(0)xi(0)〉 (x = d or h) is a two-particle Green’s function of a doublon (X = d) and

holon (X = h). The diagrams corresponding to the terms in Eq. (18) are illustrated in Fig. 5. Without the ver-
tex correction, the two-particle propagators are contracted to a single particle propagators by the Wick expansion:
ΓX
ij(τ) = −GX(τ)GX(−τ). Through the Fourier transform of χK(τ) and analytic continuation, one can straightfor-

wardly obtain the real-time kinetic energy correlation function in frequency domain. As a result, the imaginary part
of the correlation function is given as

ℑχR
K(ω)

−NW 2/8
=

∫

dν

2π

(

f(ν − ω)− f(ν)

)(

Ah(ν)Ah(ν − ω) +Ad(ν)Ad(ν − ω)

)

+ 2 sinh(ǫb)

∫

dν

2π

[

b(2ǫb) + f(ν)

][{

f(2ǫb − ν)− f(2ǫb − ν + ω)

}

Ad(ν)Ah(2ǫb + ω − ν)−

(

ω → −ω

)]

.

(19)
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FIG. 3. (color online). The doublon/holon band width
W/

√
zJ as a function of kBT for µ/U = 0.5. The chemical

potential dependence of the band width for kBT/U = 0.01
(solid), 0.05 (dashed), 0.1 (dashed-dotted) and 0.5 (dotted) is
also shown in the inset.

FIG. 4. (color online). The spectral function of the original
fermion as a function of kBT/U for µ/U = 0.5 and J/U = 0.02
(top panel), µ/U for kBT/U = 0.1 and J/U = 0.02 (middle
panel) and J/U for kBT/U = 0.1 and µ/U = 0.5 (bottom
panel).

V. COMPARISON WITH EXPERIMENTS

Let us compare our result (19) with the experimental
data. We employ a set of the parameters evaluated in
the 40K atom experiment [9]: the hopping J/~ = 2π×85
[Hz] and the interaction U/~ = 2π× 5400 [Hz]. In terms
of the optical lattice potential, the depth, modulation
rate and lattice constant are, respectively, taken to be
V0 = 10ER where ER is a recoil energy, δV/V0 = 0.1 and
a = 532 [nm]. The lattice modulation is translated into
δF ≈ −0.32 in hopping modulation. The LDA is used to
take into account the effect of the harmonic trap poten-
tial Vtrap(r) whose frequency is (ωx/2π, ωy/2π, ωz/2π) =
(56, 61, 139)[Hz]. In the LDA, we replace the chemi-
cal potential of the homogeneous case by the local one,

µ(r) = µ0 − Vtrap(r) where µ0 is self-consistently deter-
mined to give the total trapped atom number 8×104. In
our framework, temperature is treated as a free parame-
ter so that we determine the temperature by a fit of the
DPR spectrum intensity at ω = U/~, which is obtained
in the experiment.

The temperature dependence of the DPR spectrum at
ω = U/~ is shown in the inset in Fig. 6, and kBT/U ≈
0.052 in this system is determined.[23] The determined
temperature is in the region to justify the slave particle
approach, which is discussed in Sec. III, and the theory is
thus expected to work well. Furthermore, using the ob-
tained temperature, we plot the DPR spectrum in Fig. 6.
The agreement is remarkably good. In addition to giv-
ing access to the lineshape it means that via our theory
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FIG. 5. The diagrams contributing to the considered correlation function (18): The diagrams (a), (b), (c) and (d) correspond
to the first, second, third and fourth terms. The solid, double dotted and dashed lines denotes the doublon, holon and slave
boson propagators, respectively.

FIG. 6. (color online). The DPR spectrum as a function of
modulation frequency. The solid line and points denote the
theoretical and experimental results, respectively. The tem-
perature necessary to draw the theoretical curve is determined
in the inset; the temperature dependence of the theoretically
given DPR at ω = U/~ and the temperature is determined
from the crossing point to the experimental data (dotted line),
which is kBT/U ≈ 0.052.

one can use the shaking method as a good thermometer
in low temperature regime [24], since the curve giving
the amplitude versus temperature (the inset in Fig. 6)
is reasonably smooth and steep. To check this point we
compare in our case the temperature determined by the
fitting of the shaking curve with other estimates from en-
tropy calculations [25] and find that the two results are
perfectly consistent.

VI. CONCLUSION AND SUMMARY

In this paper, we have described the charge excita-
tion of strongly correlated fermionic systems in the spin-
incoherent paramagnetic regime by a slave-particle rep-
resentation and diagrammatic approach from the atomic
limit. This method allows to take the finite temperature
and trapping into account. Based on the spectrum func-
tions of the doublon and holon, the analytical form of
the DPR spectrum as a second-order response of the op-
tical lattice modulation has been given, and extended to
the homogeneous system of the trapped atom cloud by
using the local density approximation. In addition, sub-
stituting the parameters evaluated in the experiment [9],

a comparison with the experiment has been made. Al-
though temperature has not been directly measured in
experiments, it has been determined as an optimization
parameter which is controlled to fit the experimental
data. The result has been in agreement with the exper-
imental data, which shows that one can use the lattice
modulation spectroscopy as a thermometer.
Our method has potential extension such as SU(N)

higher symmetric atom systems realized in alkaline-
earth-metal atom experiments. [26–29]
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Appendix A: The slave particle density in the

atomic limit

In order to clarify the parameter regime to justify the
slave particle approach, we make a comparison with the
exact calculation in the atomic limit. Then we focus on
the single site occupations as a function of temperature
and chemical potential, which is identical to the densities
of the slave boson, holon and doublon.
Let us perform the atomic limit calculation. We con-

sider the atomic Hamiltonian (1b). Then the partition
function is calculated as

Zatom = 1 + 2x+ x2y (A1)

where x = eµ/KBT and y = e−U/kBT . To calculate
the densities of the slave boson, holon and doublon,
we introduce the projection operators. In the original
fermion picture, the projection operators of the slave bo-
son, holon and doublon state are, respectively, written as
pσ = nσ − n↑n↓, ph = (n↑ − 1)(n↓ − 1) and pd = n↑n↓.
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They obviously obeys the constraint
∑

σ pσ+ph+pd = 1.
Taking the statistical average of these projection opera-
tors, we obtain the following exact result of slave particle
densities:

nσ = 〈pσ〉 =
x

1 + 2x+ x2y
, (A2a)

nh = 〈ph〉 =
1

1 + 2x+ x2y
, (A2b)

nd = 〈pd〉 =
x2y

1 + 2x+ x2y
. (A2c)

On the other hand, in the case of the slave particle
approach combined with the MF solution of the Lagrange

multiplier λ, the slave particle densities are given as

nMF
σ = b(ǫb), (A3a)

nMF
h = f(ǫh), (A3b)

nMF
d = f(ǫd), (A3c)

where ǫb = λ, ǫh = µ + λ and ǫd = U − µ + λ, and
λ is a solution of the MF constraint equation (7). For
kBT/U ≪ 1 the MF Lagrange multiplier λ is analytically
obtained as shown in Eq. (9). The comparison of the
exact result (A2) and the MF approach (A3) is shown in
Fig. 1.

Appendix B: Calculation of the kinetic-energy

correlation function

Here we show the calculation of the kinetic energy cor-
relation function χK(τ) in detail, and derive Eq. (18)
given in Sec. IV. Using the expression of the kinetic en-
ergy Hamiltonian (4), the correlation function χK(τ) is
straightforwardly written as

χK(τ) = −J2
∑

〈i,j〉,〈l,m〉

[

〈TτFji(τ)Fml(0)〉〈Tτ [h
†
i (τ)hj(τ)− d†i (τ)dj(τ)][h

†
l (0)hm(0)− d†l (0)dm(0)]〉

+ 〈TτA
†
ij(τ)Alm(0)〉〈Tτdj(τ)d

†
m(0)〉〈Tτhi(τ)h

†
l (0)〉+ 〈TτAij(τ)A

†
lm(0)〉〈Tτh

†
i (τ)hm(0)〉〈Tτd

†
j(τ)dl(0)〉

]

,

(B1)

where the correlation functions between the operators Fji and Aml have been supposed to be zero because the slave
bosons do not condense in this case. The autocorrelations for Fji and Aml should be finite, and in the calculation
the spin-incoherent assumption (10) is applied in the same way as in Sec. III. As a result, the autocorrelations are
calculated as follows:

〈TτFji(τ)Flm(0)〉 = 2δj,lδi,j Ḡb(−τ)Ḡb(τ), (B2)

〈TτAij(τ)A
†
lm(0)〉 = −2 (δj,lδi,m + δj,mδi,l) Ḡb(τ)Ḡb(τ). (B3)

As seen in Sec. III the doublon and holon propagators turn out to be local: Namely,

〈Tτhi(τ)h
†
j(0)〉 = iδi,jGh(τ), (B4)

〈Tτdi(τ)d
†
j(0)〉 = iδi,jGd(τ). (B5)

We substitute Eqs. (B2)- (B5) into Eq. (B1), and then the correlation function is rewritten as

χK(τ) = −2J2
∑

〈i,j〉

[

Ḡb(−τ)Ḡb(τ)

(

Γh
i,j(τ) + Γd

i,j(τ)

)

−
(

Ḡb(−τ)
)2

Gh(τ)Gd(τ) −
(

Ḡb(τ)
)2

Gh(−τ)Gd(−τ)

]

, (B6)

where the following two particle correlation functions
have been defined as

Γh
i,j(τ) = 〈Tτh

†
i (τ)hj(τ)h

†
j(0)hi(0)〉, (B7)

Γd
i,j(τ) = 〈Tτd

†
i (τ)dj(τ)d

†
j(0)di(0)〉. (B8)
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U. Schollwöck, Phys. Rev. Lett. 97, 050402 (2006).

[13] W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 1324
(1970).

[14] C. L. Kane, P. A. Lee, and N. Read, Phys. Review. B
39, 6880 (1989).

[15] R. Sensarma, D. Pekker, M. D. Lukin, and E. Demler,
Phys. Rev. Lett. 103, 035303 (2009).
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