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Abstract

The observation of the isotope effect of the high harmonic generation (HHG) of H2 presents

a challenge for TDDFT methods, since this effect is related to the dynamics of the ion created

in the tunneling ionization step of HHG and it depends on the harmonic order. As an initial

step towards describing this effect within current computational capacity, we benchmark a method

in which the nuclear and electronic degrees of freedom are separated and both treated quantum

mechanically. For the electrons two TDDFT formalisms are adopted. Although the ion-dynamics

effect is not described in our method, it reproduces the measured D2 to H2 HHG ratios up to

the 25th harmonic when the 35th is the classical cutoff. Beyond the 25th harmonic, however,

our results show substantial deviation and are sensitive to the laser intensity. A higher intensity

reproduces the experimental results.

Analysis reveals an R-dependent phase factor as the cause of the isotope effect in our calculation.

We isolate this phase factor and propose a SFA-phase model, which reproduces experimental data

including those for which the ion-dynamics model has to be further modified. We show that the

model that we propose is intrinsically related to the ion-dynamics model. Our model provides

a correction to the TDDFT approach when the ion-dynamics effect becomes significant. It also

indicates that the isotope effect is not only a probe for the ion created by the external field but

is ultimately a more useful probe for the ground state nuclear wave function. For all molecules

whose vertical ionization potential strongly depend on the nuclear geometry, HHG may serve as a

sensitive ultrafast probe of nuclear dynamics.

PACS numbers: 33.80.Rv,31.15.ee,33.80.Eh,33.90.+h
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I. INTRODUCTION

High harmonic generation (HHG) [1, 2] is a highly nonlinear strong field phenomenon that

has been intensively studied for its optical applications of creating XUV lasers and attosecond

pulses since its discovery. In recent years HHG of molecules is studied for its potential to

probe, with subfemtosecond temporal resolution, nuclear dynamics including vibration [3–7]

and dissociation [7]. The foundation of these applications is the sensitivity of HHG emission

to the nuclear geometry and motion. So far, the involvement of multiple molecular orbitals

[6, 7] and two-center interference [5, 7] have been proposed as causes for the large oscillation

of the HHG intensity in response to geometry changes in molecules. Further theoretical

studies that detail the relation between molecular structure and dynamics with their HHG

can contribute to the maturity of the application of HHG as a sub-femtosecond molecular

dynamics probe.

Currently quantitative prediction of HHG largely relies on the semiclassical Lewenstein

model [8]. This model is consistent with the well-accepted three-step model [9, 10], which

consists of the generation of a free electron through tunneling ionization, the acceleration of

this electron, and its recombination with the parent ion while emitting harmonics. Present

semiclassical methods usually ignore all excited states, the depletion of the ground state,

and the interaction between the active electron and the parent ion in the continuum. The

single active electron (SAE) approximation is usually further applied. As such, all the elec-

tronic structure information is embedded in the highest occupied molecular orbital (HOMO)

function and the ionization potential (Ip). Such calculations can resolve the alignment angle

dependent HHG signals [11] and thus reveal the relation between the tomography of the

HOMO and the HHG signal. The limitation of these methods is that the multielectron

dynamics, the effect of multiple orbitals, and the role of excited states cannot be studied. In

particular the role of multiple orbitals and multielectrons has been observed experimentally

[12, 13].

A quantum mechanical approach with all electrons included provides a more complete

description of the process, although such a method requires extremely large scale compu-

tation. This method has to be able to treat the ground and excited states together with

the continuum with sufficient accuracy. It also should be able to describe other strong field

processes that accompany HHG, including ionization and excitation. In this work we employ
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time dependent density functional theory (TDDFT) [14]. The advantage of TDDFT is that

it is in general less costly in terms of computation, while electron correlation is accounted

for to some extent.

An important issue that is yet to be resolved, is the coupling between the electronic and

nuclear degrees of freedom. As the lightest molecule, hydrogen is particularly subject to

this problem. In 2006 Baker et al. [4] observed that D2 gives a stronger HHG signal than

H2 and that the ratio increases with the harmonic order. Lein had predicted this effect

earlier by assuming that the nuclear wave function propagates on the ion potential after

ionization in each half optical cycle [15]. The propagation time depends on the harmonic

order n. It is assumed that HHG only weakly depends on the interatomic distance R, so

that the R-dependence is ignored and an isotope-dependent nuclear correlation function is

factored out. The HHG signal is then reduced by the square of the nuclear autocorrelation

function at the time of recombination. Since D+
2 vibrates slower than H+

2 its HHG intensity

is larger. This model was applied to the experimentally selected short trajectories for which

the recollision time increases with the harmonic order [16], explaining why the signal ratio

increases with n.

Ignoring the R-dependence of the electron dynamics in Lein’s ion-dynamic model is the

crucial assumption that makes it possible to separate the electron and nuclear degrees of

freedom. In a 2008 followup experiment Baker et al. [5] remeasured the isotope effect

with different laser intensities and a longer pulse duration. They demonstrated that this

model had to be extended by postulating a dynamic two-center interference effect, which

is R-dependent. Only calculations that treat nuclei as well as electrons fully quantum

mechanically can describe the coupled electron and nuclear dynamics. Lein performed such

calculations on H2, where an effective potential is employed to reduce the electron dynamics

to two dimensions, but coupling to the nuclear degrees of freedom is treated exactly [15].

For larger molecules, however, full quantum calculations are prohibitively large.

In this study, instead of ignoring the R-dependence of HHG while approximating the

nuclear dynamics by having it adiabatically evolve on a Born-Oppenheimer ion potential,

we treat the R-dependence with our TDDFT method but assume a stationary nuclear wave

function. According to the ion-dynamics model, we should expect no isotope effect in this

treatment. However, as shown in Fig. 1, the nuclear wave function of the ground state

H2 and D2 are different and if HHG strongly depends on R, then an isotope effect may
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arise. This work is motivated by the following considerations: 1. For lower harmonics,

i.e. when the energy of the emitted photon is lower than Ip, a stationary nuclear wave

function should be valid, since the three step model does not apply here and the molecule

does not go through tunneling ionization. 2. According to the ion-dynamics model, the

nuclear autocorrelation function is close to one, when the recombination time τ(n) is small,

and it decreases with n. So we expect the error caused by ignoring the nuclear dynamics to

increase with n. By benchmarking the isotope effect calculated with our methods against the

experimental values, we can estimate the harmonic order, lower than which the stationary

nuclear approximation is valid. Such a study will shine light on the accuracy of TDDFT

calculations of HHG of other hydrogen containing molecules. 3. By understanding the

nature of the R-dependence, we may propose a model that empirically incorporate effects

of both the R-dependence and the ion-dynamics.

II. TIME DEPENDENT DENSITY FUNCTIONAL THEORY FOR MOLECULE

STRONG FIELD INTERACTIONS

A TDDFT method has been developed for treating diatomic molecules interacting with

a linearly polarized laser, whose polarization direction is parallel to the molecular axis [17–

19]. Later this work was extended to treat arbitrary polarization directions for the study

of the anisotropy of ionization and HHG [20–22]. We use the approach of Ref. [23], which

includes multiple electronically excited states, the depletion of the ground state, and the

interaction between the active electron and the parent ion in the continuum. The exchange

and correlation functionals we use here are LBα [24] and SIC [17], whose accuracy has been

extensively benchmarked [17, 18, 21, 23]. We refer to the TDDFT methods using these two

functionals as the TDLBα method and the TDSIC method, respectively.

Details of the TDSIC and TDLBα descriptions of a homonuclear diatomic molecule in an

intense laser field are given in previous articles [17, 18, 23]. Here we give a brief account of

their formalisms.

The electron density at electron coordinate r and time t is

ρ(r, t;R) =
∑

σ

Nσ
∑

i=1

ρiσ(r, t;R) =
∑

σ

Nσ
∑

i=1

ψ∗

iσ(r, t;R)ψiσ(r, t;R), (1)

where i is the orbital index, σ is the spin index. The spin orbital ψiσ satisfies the one-electron
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Schrödinger-like equation, in atomic units,

i
∂

∂t
ψiσ = Ĥ(r, t;R)ψiσ

=

[

−
1

2
∇2 + veff ,σ(r, t;R)

]

ψiσ, for i = 1, 2, ..., Nσ, (2)

where Nσ is the number of electrons that have σ spin. The effective potential veff ,σ of TDSIC

for a homonuclear diatomic molecule [17] is

vSICeff ,σ = −
Z

|R1 − r|
−

Z

|R2 − r|
+

∫

d3r′
ρ(r′, t;R)

|r− r′|
+ E(t) · r+ VSIC,σ(r, t;R), (3)

where E(t) is the electric field of the laser and for a dc field it is constant. R1 and R2 are

the coordinates of the two nuclei, with nuclear charges Z,

VSIC,σ =
∑

i

ρiσ(r, t;R)

ρσ(r, t;R)

{

viσ(r, t;R) +
[

V
i

SIC,σ(R, t)− viσ(R, t)
]}

, (4)

viσ = Vxc[ρ↑
(r, t;R), ρ

↓
(r, t;R)]−

∫ ∫ ∫

dr′
ρiσ(r

′, t;R)

|r− r′|
− Vxc[ρiσ(r, t;R), 0], (5)

and

V
i

SIC,σ = 〈ψiσ|VSIC,σ(r, t;R)|ψiσ〉, (6)

viσ = 〈ψiσ|viσ(r, t;R)|ψiσ〉. (7)

For TDLBα, we have

vLBα

eff ,σ = −
Z

|R1 − r|
−

Z

|R2 − r|
+

∫ ∫ ∫

dr′
ρ(r′, t;R)

|r− r′|
+ E(t) · r+ VLBα,σ(r, t;R), (8)

and

VLBα,σ = αvLSDA
xσ (r, t;R) + vLSDA

cσ (r, t;R)

−
βx2σ(r, t)ρ

1

3
σ (r, t;R)

1 + 3βxσ(r, t) ln{xσ(r, t;R) + [x2σ(r, t;R) + 1]
1

2}
, (9)

which contains two empirical parameters α and β. In Eq. (9), vLSDA
xσ and vLSDA

cσ are the LSDA

exchange and correlation potentials, which do not have the correct asymptotic behavior. The

last term is the gradient correction with xσ(r) = |∇ρσ(r)|/ρσ(r)
4/3, which ensures the proper

long-range asymptotic behavior vLBα
xcσ → −1/r as r → ∞.
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III. HHG POWER SPECTRUM CALCULATIONS

The numerical solution of the time-dependent equations is detailed in a recent publication

[23]. Once the electron density ρ(r, t;R) is obtained, the induced dipole moment and dipole

acceleration can be determined, respectively, as

d(R, t) =

∫

ρ(r, t;R)zd3r (10)

and

a(R, t) =
∑

σ

∫

ρσ(r, t;R)

[

−
∂Veff ,σ(r, t)

∂z
+

E(t) · r sin(ωt)

z

]

d3r. (11)

The HHG power spectrum is related to the Fourier transform of the respective time-

dependent dipole moment or dipole acceleration:

d(R, ω) =
1

tf − ti

∫ tf

ti

d(R, t)e−iωtdt, (12)

and

a(R, ω) =
1

tf − ti

∫ tf

ti

a(R, t)e−iωtdt = −ω2d(R, ω), (13)

where ω is the angular frequency of the emitting photon. For homonuclear diatomic

molecules, when ω = nω0, where ω0 is the angular frequency of the driving field and

n = 1, 3, 5, . . ., there is a spur of HHG emission. Numerically the density at the long range

is more important for the dipole while the density at the short range is more important for

the acceleration. Their agreement is proof of the quality of ρ(r, t;R) on the spatial grid.

We separate electronic and nuclear motion and treat both quantum mechanically. The

spectral density, in atomic units, is computed as

S(ω) =
3

2πc3
|〈χ(R)|a(R, ω)|χ(R)〉|2 =

3

2πc3
| 〈a(ω)〉 |2, (14)

where c is the speed of light. The nuclear wave function χ(R) is computed with the sinc-

function DVR method [25, 26] for the ground state potential of H2 [27]. We calculate the

dipole acceleration on an equally spaced grid with 50 points for 0.6 ≤ R ≤ 3.0 a0, by running

TDDFT calculations on each point. We then evaluate the integral numerically, with equal

weights for each grid point. A TDDFT calculation for a single value of R takes about 2

hours on a workstation.
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IV. HHG OF H2 AT FIXED INTERNUCLEAR DISTANCES

We consider a linearly polarized laser field with a sin2 pulse shape, 20 optical cycles in

pulse length, and a laser intensity of 2×1014 W/cm2 at a wavelength of 800 nm. The electric

field polarization is parallel to the molecular axis. This parallel orientation significantly

reduces the size of the computation because the axial symmetry is conserved.

In Fig. 2 we show |a(Req, ω)|
2 calculated with the TDSIC and TDLBα methods together

with | 〈a(ω)〉 |2 for the odd harmonics. The two methods agree reasonably well. The largest

differences occur in the “multiphoton regime”, in which the photon energy of the harmonic

is less than the vertical ionization potential. The difference in the electronic structure

obtained by the two TDDFT methods is the cause of the differences. The electronic structure

difference is also reflected in the vertical Ips shown in Fig. 1, calculated as the absolute value

of energy of the highest occupied orbital. The TDLBα functional is optimized to reproduce

the full CI Ip values, therefore we expect TDLBα to be more accurate.

The minimum number of photons it takes to ionize is 11 at the equilibrium distance.

The difference between the two methods is minimal above the 11th harmonic (H11) for

|a(Req, ω)|
2. The classical cutoff energy is given by Ec = Ip +3.17Up, with Up = F 2/4ω2

0. In

this case it is the 35th harmonic (H35). In our calculated spectrum in Fig. 2 H35 resembles

a cutoff, as the peaks decrease to a minimum at H41. However, they increase again at

H43 followed by a second plateau with a cutoff at H55. To explain the structure of H43

and above, we postulated the following two-electron dynamics mechanism [23]. While one

electron tunnels out and gains a kinetic energy equivalent to 3.17Up, the ion experiences

a multiphoton excitation from the 2Σ+
g ground state to the 2Σ+

u first excited state. Upon

recombination, the H2 molecule returns to the ground electronic state, releasing a photon

that should be H43. Above H55 the second electron ionizes as well, blocking the two-electron

mechanism of exciting one electron while ionizing the other. This is the reason for the second

cutoff at H55. Note that this only occurs with the fixed-nuclei calculation at Req.

The HHG for Req and for the ground vibrational state differ substantially and particularly

so at high harmonics. The second plateau of |a(Req, ω)|
2 disappears. Overall | 〈a(ω)〉 |2 is

much lower, and the difference between |a(Req, ω)|
2 and | 〈a(ω)〉 |2 increases with ω. Close to

H35, | 〈a(ω)〉 |2 is smaller by two orders of magnitude than |a(Req, ω)|
2. These comparisons

suggest significant R-dependence of |a(R, ω)|2.
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To examine the R-dependence of the dipole acceleration, we plot the magnitudes and

phases of a(R, ω), calculated with the TDLBα method, as a function of R in Fig. 3. Each

curve corresponds to one harmonic emission. The TDSIC method produces similar features,

although there are small quantitative differences as a result of different electronic structures

[23].

Figure 3 (a) shows the harmonics in the multiphoton regime. Amplitudes of the 5th-11th

harmonics each have a peak near the multiphoton resonance between the ground and an

excited state [23]. Accurate electronic structures of both the ground and excited states are

needed in this regime. For the TDDFT method, the choice of TDXC functional is crucial

here. Between our two methods, TDLBα is more accurate.

The harmonics in Figs. 3 (b) and (c) have energies higher than the vertical Ip. The slopes

of the phases as function of R are large here. Note that the phases are presented in units

of 2π, which means that curves in panels (b) and (c) have 2–4 cycles of phase changes in

the presented R range. Broad peaks are the main feature of |a(R, ω)| in Fig. 3 (b). They

are due to the multiphoton resonances that can be seen in panel (a). Values of a(R, ω) near

R = Req make the largest contribution to S(ω).

Figure 3 (c) shows the harmonics near the classical cutoff H35. The amplitude |a(R, ω)|

increases by one order of magnitude between 0.5 and 3.0 a0. This increase can be explained

by the vertical Ip, which decreases for larger R. Multiphoton resonances and, possibly, two-

photon processes cause structures in |a(R, ω)| at short distances and in the range from 2.2

to 2.5 a0. For R > 2 a0, the slopes of the phases tend to zero, which is consistent with the

decrease of the slope of Ip at larger R shown in Fig. 1. We also notice that the slopes of the

phases in Fig. 3 increase with the harmonic order.

V. ISOTOPE EFFECT CALCULATION

From the R-dependent dipole accelerations we compute | 〈a(ω)〉 |2 and the spectral den-

sities for the v = 0 vibrational states of D2 and H2 according to Eq. (14). The ratios of

these spectral densities are shown in Fig. 4 (solid black line) up to the classical cutoff en-

ergy. Even though the vibrational wave function of D2 is only slightly narrower than the H2

wave function, as shown in Fig. 1, the rapid phase-variation of a(ω,R) results in a larger

spectral density for D2. Except for H35, the ratio increases with the harmonic order. In

8



Fig. 4 we also include the experimentally observed ratios and error bars that we took from

figure 3B of the 2006 paper by Baker et al. [4]. These experimental results correspond to

similar laser parameters: λ = 775 nm, an estimated intensity of 2×1014 W/cm2, and a setup

in which the harmonic signal is dominated by the so called short trajectories [16]. For the

lower harmonics the experimental error bars are the smallest and the agreement with our

calculations is the best. Around H31 our calculated ratio is larger, but we also find that

here the results are particularly sensitive to the parameters: increasing the laser intensity

to 2.5×1014 W/cm2 (the red dashed line) brings the calculated results close to the observed

values. Also, changing the laser frequency to λ = 1064 nm (the blue dash-dot line) mainly

affects the results for the higher harmonics. Results for calculations with the TDSIC method

are not shown, but we found that they are in close agreement with the TDLBα results.

VI. A STRONG FIELD APPROXIMATION PHASE MODEL

Although the amplitude |a(ω,R)| also has a strong R-dependence, it has a much smaller

effect on the spectral density ratio (SDR) than the phase. Ratios recalculated without the

phase variation against R are very close to 1. We also notice that the phase variation shown

in Fig. 3 agrees very well with a strong field approximation (SFA) expression [7, 28]

φSFA(ω,R)− φSFA(ω,R0) ≈ [Ip(R)− Ip(R0)]τ(ω). (15)

Here Ip(R) is the R-dependent vertical ionization potential (see Fig. 1) and τ(ω) is the

recollision time. This approximation has the advantage that it applies to the contribution

from the short trajectories [16], matching the conditions of the available experimental data

[4, 5]. We thus make a relatively simple SFA model, in which we take the amplitude as

R-independent and obtain the R-dependence of the phase using Eq. (15). The recollision

time was included in figure 3B of Ref. [4]. With τ(ω) from that figure, and the constant

amplitude dropping out of the equation, we compute the SDR as

SD2
(ω)

SH2
(ω)

=

∣

∣

∣

∣

〈χD2
(R)|eiφSFA(ω,R)|χD2

(R)〉

〈χH2
(R)|eiφSFA(ω,R)|χH2

(R)〉

∣

∣

∣

∣

2

. (16)

The result is labeled “SFA-phase” in Fig. 4. It is in remarkable close agreement with

experiment. We also include the original theoretical result which was obtained with the ion-

dynamics theory of Lein [15]. In this theory the R-dependence of phase and amplitude is not
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taken into account. Instead, the isotope effect arises from the nuclear motion of the H+
2 ion

while one electron is traveling in the continuum and we label the curve as “Ion-dynamics”.

Considering only the R-dependent phase and considering the ion-dynamics but ignoring

the R-dependence seem to be two independent approaches, and yet the agreement between

our SFA-Phase model and Lein’s ion-dynamics model suggest that they are intrinsically

related. In the ion-dynamics model, the ion is assumed to move on the Born-Oppenheimer

ground state ion potential surface, which also determine the R-dependent phase in the SFA-

phase model. Indeed Eq. (16) is equivalent to

SDR =

∣

∣

∣

∣

〈χD2
(R)|e−iIp(R)τ(ω)|χD2

(R)〉

〈χH2
(R)|e−iIp(R)τ(ω)|χH2

(R)〉

∣

∣

∣

∣

2

, (17)

and e−iIpτ |χ〉 is a short-time approximation of the TD ion wave packet.

In a 2008 follow up experiment by Baker et al. [5] the isotope effect on HHG in D2/H2

was measured for a driving laser field of 800 nm with intensities of (3.0±0.1) × 1014 and

(2.2±0.2)× 1014 W/cm2 [5]. In Fig. 5 we show the experimental data from figure 1a and 1b

of this paper as a function of the harmonic order. The results for the lower laser intensity

(from figure 1b) are shown in black, and for the higher intensities (from figure 1a) in red.

Although the error bars sometimes overlap, the HHG isotope ratio seem to be higher for the

lower intensity. Again, the SFA recollision times τ(ω) were reported in the original work

and we used them in our SFA-phase model. The results are shown as black and red solid

lines for the lower and higher intensity. Up to H35 the results of the SFA-phase model are

within the experimental error bars and reproduce the intensity dependence of the ratios very

well. For higher harmonics the experimental error bars increase, but the ratios seem to drop

above H41 for the experiment with the higher intensity. We note that our calculations with

the TDLBα method at 2.5× 1014 W/cm2 (Fig. 4) show a similar trend.

In figures 1a and 1b of Ref. [5] results for three different SFA based theories were shown.

The best results there are included in our Fig. 5, the solid dark green line with filled circles

corresponds to the lower intensity and the dashed green line to the higher intensity. The

intensity dependence of the experiment is not reproduced. This theory included the effect

of the parent ion-dynamics and a “dynamic two-center interference” effect. If either of these

effects was not included no agreement with experiment was found. In Ref. [5] a scaling

factor of 0.85 for the theoretical results was mentioned, which we do not include in our
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SFA-phase model. The SFA-phase model has better agreement with experimental data in

this case, indicating that it is not simply an approximation of the ion-dynamics model. We

look forward to seeing future experimental data on the intensity dependence of the isotope

effect, which is predicted by the SFA-phase model but not the ion-dynamic model. So far

this model allows us to make the following approximation for molecular HHG:

|a(ω)|2 ≈
∣

∣〈χ|eiIp(R)τ(ω)|χ〉
∣

∣

2
|a(ω,Req)|

2. (18)

Note that the factor
∣

∣〈χ|eiIp(R)τ(ω)|χ〉
∣

∣

2
is equal to

∣

∣〈χ|e−iIp(R)τ(ω)|χ〉
∣

∣

2
. When Ip(R) is flat

and χ(R) is sharp, e.g. the case in which the molecule only consists of heavy atoms, this

factor is close to one. In our case, this formula agrees well with Eq. (14) up to H25 when

I = 2 × 1014 W/cm2. The difference is within 7%. For H27-H35, the difference elevates to

20–40%. For larger intensity such as I = 2.5 × 1014 W/cm2 the agreement is significantly

improved. The amount of computation involved in this formula is significantly less than that

of Eq. (14) and it reproduces the measured isotope effect as well as the SFA-phase model

does. In addition, this formula applies to not only TDDFT but to other methods as well,

including SFA methods.

From Eq. (18) it is clear that if the vertical Ip is not flat as a function of nuclear geometry

around the equilibrium structure, then HHG should be a sensitive prove of the ground state

wave function. In our case it can distinguish the subtle difference between χH2
and χD2

vibrational wave functions shown in Fig. 1.

VII. PROBING NUCLEAR DYNAMICS

Since the HHG signal is particularly sensitive to the shape of the nuclear wave function of

the molecule it can in principle be used as an ultrafast probe of nuclear dynamics. To illus-

trate this, we construct a time-dependent wave function χ(R, t) = c0χ0(R) + ei∆ǫtc1χ1(R),

where χ0 and χ1 are the ground and first excited vibrational states of H2, respectively, with

energy difference ∆ǫ and we substitute it in Eq. (18) to compute

|a(ω, t)|2 =
∣

∣〈χ(R, t)|eiIp(R)τ(ω)|χ(R, t)〉
∣

∣

2
|a(ω,Req)|

2. (19)

Note the nuclear dynamics here is different from the ion dynamics in Lein’s model, which

we think is accounted for to certain extent in Eq. (19). In Fig. 6 we plot |a(ω, t)|2 for
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c21 = 1− c20 = 0.1 in the left panels and c21 = 0.5 in the right panels. The vibrational period

T = 8 fs. There are peaks at t = T/2 for H3–H35, and for H9 and above there are peaks

at t = T as well. The scale of oscillation increases with c21 and roughly increases with the

harmonic order as well. In particular S(33ω0, T/2)/S(33ω0, 0.15T ) = 48.9 for c21 = 0.1 and

S(25ω0, T/2)/S(25ω0, 0.21T ) = 577.9 are the largest oscillations in the left and right panels

respectively.

VIII. SUMMARY

In summary we first benchmark a theory for HHG using experimental measurements of

the isotope effect of the hydrogen molecule. In this theory the electronic and nuclear dy-

namics are separated and both are treated quantum mechanically. In such a treatment the

dynamics of the ion during the HHG process, which depends on the harmonic order is not

described. Accurate description of the ion dynamics in intense fields requires full quantum

treatment of both the nuclei and electrons in intense fields, which is presently computa-

tionally unfeasible for molecules larger than H2. Results of methods in which electrons are

treated by TDDFT reproduce experimental data up to H25 while H35 is the classical cutoff.

Our calculations indicate that the R-dependent phase is another factor that contributes

to the isotope effect, as well as to the sensitivity to the nuclear wave function and dynamics.

This phase factor can be modeled by using a SFA formalism. The SFA-phase model thus cre-

ated reproduces experimentally measured data, including those for which the ion-dynamics

model has to be further modified by a factor of “dynamic two center interference”. It re-

sembles a short time approximation of Lein’s model, but originates from the R-dependence

of HHG rather than the ion dynamics. It differs from the ion-dynamics model in predicting

the intensity dependence of the isotope effect. As such we recommend further experimental

work to clarify this point. This model provides an empirical way for TDDFT methods to

calculate HHG of molecules. It involves much less computation than using Eq. (14). For

hydrogen containing molecules, it is likely to be more accurate in calculating harmonics that

are near cutoff and a little less accurate for harmonics far below the cutoff.
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(1989).

[3] N. L. Wagner, A. Wuest, I. P. Christov, T. Popmintchev, X. Zhou, M. M. Murnane, and H. C.

Kapteyn, Proc. Natl. Acad. Sci. 103, 13279 (2006).

[4] S. Baker, J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, C. C. Chiril, M. Lein, J. W. G.

Tisch, and J. P. Marangos, Science 312, 424 (2006).

[5] S. Baker, J. S. Robinson, M. Lein, C. C. Chirilă, R. Torres, H. C. Bandulet, D. Comtois, J. C.
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Figure 1: (Color online) The vertical Ip calculated by full CI, LBα, and SIC methods together with

the ground vibrational wave functions of H2 and D2.
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methods.
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Figure 3: (Color online) The amplitudes in atomic units and phases in units of 2π of a(R,ω) for

ω = 3ω0, 5ω0, ..., 35ω0, as a function of R, calculated with the TDLBα method.
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at two intensities, compared to experiment [4]. The black solid line and the dashed red line are

calculated for 800 nm lasers. The blue dash-dot line is for 1064 nm 2×1014 W/cm2 lasers. The

magenta line with triangles is the result of the SFA-phase model, and the green dashed line with

circles is the result of Lein’s ion-dynamics model [15]. The unit of intensity I is 1014 W/cm2.
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Figure 6: (Color online) The dipole acceleration squared, |a(t, ω)|2, for harmonics ω =

3ω0, 5ω0, . . . , 35ω0, as a function of the delay time t between the preparation of the vibrational

wave packet and the HHG generating pulse. The three panels on the left correspond to a wave

packet which consists of 10% v = 1 (|c1|
2 = 0.1) and the panels on the right correspond a wave

packet with equal contributions for v = 0 and v = 1 vibrational states.
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