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The thermodynamic properties of the Unitary Fermi Gas (UFG) have recently been measured
to unprecedented accuracy by Ku et al. at the MIT. In particular, these measurements provide an
improved understanding of the regime below T/ǫF ≃ 0.20, where a transition into a superfluid phase
occurs. In light of this new development, we present an overview of state-of-the-art Auxiliary Field
Quantum Monte Carlo (AFQMC) results for the UFG at finite temperature, comparing with the
MIT data for the energy, chemical potential and density. These AFQMC results have been obtained
using methods based on the Hybrid Monte Carlo (HMC) algorithm, which was first introduced
within the context of Lattice QCD.
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The Unitary Fermi Gas (UFG) is defined as a two-
component many-fermion system in the limit of short in-
teraction range r0 and large s-wave scattering length a,
such that 0 ← kF r0 ≪ 1 ≪ kF a → ∞, with kF ≡

(3π2n)1/3 the Fermi momentum and n the particle num-
ber density (we choose units such that ~ = kB = 1). The
UFG also saturates the unitarity bound on the quantum
mechanical scattering cross section σ0(k) ≤ 4π/k2, where
k is the relative momentum of the colliding particles. The
UFG features special properties that arise from the fact
that it is characterized by a single length scale, given
by the inter-particle distance ∼ k−1

F , independently of
the details of the interaction. While the thermodynamic
properties of the UFG are universal [1], the lack of a read-
ily accessible dimensionless expansion parameter renders
the UFG a challenging many-body problem. Since the
proposal of the UFG as a model for dilute neutron mat-
ter by Bertsch [2] and its realization in ultracold atom
experiments (see Ref. [3] for a review of the experimental
situation), the UFG has received widespread attention,
from atomic physics [4] to nuclear matter [5] and rela-
tivistic heavy-ion collisions [6].

On the experimental side, the presence of a super-
fluid phase in the UFG below T/ǫF ≃ 0.15 was demon-
strated directly a few years ago through the creation of an
Abrikosov vortex lattice under rotation [7]. However, a
direct thermodynamic signature of the transition was not
unambiguously established until the recent high-precision
measurement at the MIT of the Equation of State (EoS)
of a homogeneous two-component UFG over a large tem-
perature range [8]. These measurements were performed
on trapped 6Li atoms (using a Feshbach resonance to
tune the system to the unitary limit), which enabled a
detailed study of the compressibility, density and pres-
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sure of the UFG. In addition, greatly refined empirical
results were obtained for the associated critical temper-
ature Tc/ǫF = 0.167(15), as well as for the “Bertsch pa-
rameter” ξ = 0.376(5), which characterizes the ground
state of the UFG. As precision data is now available for
the energy, chemical potential and density of the UFG
in a wide temperature range, an opportunity presents it-
self to compare these measurements with calculations in
various theoretical frameworks. Here, we focus on com-
paring the MIT data with the most recent Auxiliary Field
Quantum Monte Carlo (AFQMC) results.

The Hamiltonian that captures the physics of the uni-
tary limit can be written on a spatial lattice as

Ĥ ≡
∑

k,λ=↑,↓

k2

2m
â†λ(k) âλ(k)− g

∑

i

n̂↑(ri) n̂↓(ri), (1)

where λ denotes the spin projection, m the fermion mass
(we also set m = 1), and g the coupling constant. The
creation and annihilation operators satisfy fermionic an-

ticommutation relations, and n̂λ(ri) ≡ â†λ(ri) âλ(ri) de-
notes the number density operator at lattice position ri

for spin projection λ. The thermodynamic equilibrium
properties are obtained from the partition function

Z ≡ Tr exp[−β(Ĥ−µN̂)], (2)

where N̂ is the total particle number operator, µ the
chemical potential, and β ≡ 1/T the inverse temperature.

To evaluate expectation values of observables numer-
ically, we followed the path integral approach presented
extensively in Ref. [9], with recent improvements de-
scribed in Ref. [10]. The system is placed on a cubic
spatial lattice of extent L = Nxl with periodic bound-
ary conditions. The lattice spacing l (henceforth set to
unity) and extent L provide natural ultraviolet (UV) and
infrared (IR) momentum cut-offs, given by kmax = π/l
and k0 = 2π/L, respectively. The imaginary-time evo-

lution operator exp[−β(Ĥ − µN̂)] is expanded using a



2

Trotter-Suzuki decomposition with temporal lattice spac-
ing τ , and the interaction is represented by means of a
Hubbard-Stratonovich (HS) transformation [11]. As we
focus on the spin-symmetric case, the fermion sign prob-
lem is absent. The resulting path integral formulation
is an exact representation of Eq. (2) up to finite-volume
and discretization effects, which may be controlled by
varying the spatial lattice volume V ≡ N3

x and density
n. The thermodynamic and continuum limits are recov-
ered as V → ∞ and n → 0, respectively. The latter
requires great care, as too low densities may introduce
shell effects. As our lattice formulation is very similar
to Ref. [9], we shall restrict ourselves to describing three
modifications which significantly improve the results.

First, the bare lattice coupling constant g correspond-
ing to the unitary regime is determined by means of
Lüscher’s formula [12] as in Ref. [13]. This procedure
yields g ≃ 5.14 in the unitary limit. Our lattice Hamil-
tonian contains g as the sole parameter characterizing
the interaction. Finite-range effects are induced by the
presence of the UV cutoff of the lattice. In order to min-
imize such discretization effects, the dilute limit should
be approached as closely as possible. Recent theoretical
developments [14–16] have explored the use of improved
transfer matrices and operators, with multiple param-
eters tuned to unitarity. The implementation of such
methods is an objective of future AFQMC calculations.

Second, we use a compact, continuous HS transforma-
tion referred to as “Type 4” in Ref. [17], which found
it superior with respect to acceptance rate, decorrelation
and signal-to-noise properties than the more conventional
unbounded and discrete HS transformations [18].

Third, we update σ using Hybrid Monte Carlo (HMC),
which combines Molecular Dynamics (MD) evolution of
σ with a Metropolis accept/reject step [19]. The result
is the Determinantal Hybrid Monte Carlo (DHMC) al-
gorithm, introduced in Ref. [10]. In DHMC, global MD
updates of σ take place via introduction of a momentum
field π conjugate to σ, such that the dynamics is given
by the Hamiltonian

H ≡
∑

i

π2
i

2
− log det

[

(1 + U [σ])
2
]

, (3)

where U [σ] encodes the dynamics of the fermion degrees
of freedom (for more details on U , see e.g. Ref. [9]). The
DHMC algorithm produces greatly enhanced decorrela-
tion between successive MC samples for all temperatures
and lattice sizes, and removes the necessity to spend an
increasing number of decorrelation steps at larger V (note
that the computational cost of a full sweep of the lattice
scales as ∼ V in a local algorithm such as DMC). This
is replaced by a fixed number of operations, typically of
O(102), required to produce one MD “trajectory”, inde-
pendently of V .

The DHMC algorithm allows for an extension of the
AFQMC analysis beyond the capabilities of DMC, which
is currently limited to Nx ≃ 10 in the spatial lattice
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FIG. 1: (Color online) AFQMC results for the total energy
E in units of the energy of a free Fermi gas (upper panel)
and the chemical potential µ in units of the Fermi energy
(lower panel) as a function of T/ǫF . Results are shown for
Nx = 8 (green squares), Nx = 10 (red circles), Nx = 12
(purple triangles), Nx = 14 (blue inverted triangles), and
Nx = 16 (black asterisks), where V ≡ N3

x is the (spatial)
lattice volume.

extent, n ≃ 0.1 in particle number density, and N ≃ 100
in the particle number. The improved scaling of the CPU
time has allowed us to study lattices up to Nx = 16, while
simultaneously maintaining a relatively large number of
particles, N ≃ 45, 75, 110 and 160 for Nx = 10, 12, 14
and 16, respectively, which corresponds to densities in
the range n ≃ 0.040−0.045. The Nx = 8 data (which are
not identical to Ref. [9]), correspond to N ≃ 35 and n ≃
0.070, which was not reduced further in order to avoid
shell effects. We generated ≃ 200 uncorrelated snapshots
of σ for each value of T/ǫF , which yields a statistical
uncertainly of ≃ 1% for the observables. Expressions for
the AFQMC computation of the latter were obtained by
differentiating Z with respect to β and µ as conventional
in thermodynamics, with the exception that Z is replaced
by its discretized form in terms of the HS field.

In Fig. 1, we present AFQMC results (for various lat-
tice sizes) for the total energy E in units of the energy
of a free Fermi gas E

FG
= 3/5NǫF , and for the chemical

potential µ in units of ǫF as a function of T/ǫF . Before
comparison with the MIT data [8], we performed an ex-
trapolation to the infinite volume limit Nx → ∞. This
required interpolation of the data series for each value
of Nx, as the physical temperature T/ǫF is not known
beforehand. Apart from this minor complication, the ex-
trapolation to infinite volume is greatly facilitated by the
lack of a systematic variation in the results with the lat-
tice volume above Nx ≃ 10. Since we have not performed
an extrapolation to the continuum limit (which requires
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FIG. 2: (Color online) Energy E/EFG (red dots), as obtained
by Ku et al. [8]. Our AFQMC results extrapolated to infinite
volume are shown by open (black) circles. The results for
Nx = 8 (open blue squares) were obtained with the DMC
algorithm in Ref. [9]. The green square shows the QMC result
of Ref. [20] for ξ at T = 0. Inset: Vicinity of the superfluid
phase transition at Tc/ǫF ≃ 0.15.

n → 0), our results may be affected to some degree by
systematic errors due to the effective range r

eff
. Our re-

sults currently reach kF reff ≃ 0.3 which is non-negligible
and may produce significant deviations, in particular at
low T/ǫF as shown by Carlson et al. in Ref. [20].

In Fig. 2, we compare our AFQMC results (extrap-
olated to infinite volume) with the measured energy E
of the homogeneous UFG. The overall agreement is sat-
isfactory throughout the range of temperatures studied.
At low T/ǫF , AFQMC slightly overpredicts the experi-
mental data. Our new results show a noticeable improve-
ment over the results of Ref. [9] with Nx = 8, likely due
to decreased finite volume and effective range effects. In
contrast to the case of E/E

FG
, our results for µ/ǫF in

Fig. 3 deviate noticeably from experiment at low T/ǫF ,
where µ/ǫF ≃ 0.38 at T/ǫF ≃ 0.1. AFQMC overpre-
dicts this by ≃ 5%, which clearly exceeds the statisti-
cal uncertainty. However, the larger lattices used here
represent a dramatic improvement over Ref. [9], in par-
ticular above Tc/ǫF ≃ 0.15. Nevertheless, the discrep-
ancy below Tc/ǫF cannot be accounted for at present.
In Fig. 4, we show the particle number density rela-
tive to the temperature-dependent density of the non-
interacting Fermi gas. Again, a discrepancy at low T/ǫF
is found, which is analogous to that observed for µ/ǫF .

While the agreement between our AFQMC calculation
and the data of Ref. [8] is satisfactory in general, notable
discrepancies persist. We have achieved a significant re-
duction of the density from n ≃ 0.1 to n ≃ 0.04, with
a concomitant decrease in discretization (finite-range)
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FIG. 3: (Color online) Chemical potential µ in units of ǫF
as measured by Ku et al. [8]. The notation for the AFQMC
results is identical to Fig. 2. The (green) square shows the
result of Ref. [20] assuming µ/ǫF (T = 0) = ξ.

effects. Nevertheless, since finite-range effects scale as
∼ n1/3, this still only implies an effective reduction from
n1/3 ≃ 0.46 to ≃ 0.34. The possibility that the discrep-
ancies between our AFQMC data and experiment are due
to residual finite-range effects can therefore not be ruled
out at present.

As the region where the discrepancies are largest ap-
pears to be at very low T/ǫF (at least for E/E

FG
and

µ/ǫF ), the task of performing calculations at significantly

lower values of n1/3 for such temperatures is extremely
demanding, indeed largely beyond the capabilities of ex-
tant algorithms. In this situation, accounting for the
finite-range effects by improving the transfer matrix (as
in Refs. [14, 15]) provides a systematic way to remove the
finite-range effects from both the action and the observ-
ables at a given density, without modifying the temper-
ature scale of the calculation. Preliminary results have
appeared in Ref. [16]. Another source of error under in-
vestigation is the Trotter-Suzuki step τ . This was found
to be a small effect for the Tan contact in Ref. [10], as
well as for the energy in Ref. [15].

In spite of these shortcomings, the introduction of
HMC into the AFQMC study of the UFG has largely
solved the issue of sufficiently large spatial lattice dimen-
sion Nx and particle number N , which in turn has allowed
calculations with a large particle number at lower densi-
ties. DHMC studies for Nx > 16 are in progress. These
improvements will also apply to calculations away from
the unitary limit. Finally, we would like to stress that the
AFQMC method is entirely ab initio - once the coupling
g is fixed by solving the two-body problem, no tuning
with respect to experiment is required. While a more
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FIG. 4: (Color online) Density n(µ, T ) of the UFG (red cir-
cles) as obtained by Ku et al. [8], normalized to the density
n0(µ, T ) of a non-interacting Fermi gas. The notation for
the AFQMC results is identical to Fig. 2. The Diagrammatic
MC results of Refs. [21, 22] (filled up and down triangles)
and the BDMC results of Ref. [23] are shown as well (filled
squares). Inset: Vicinity of the superfluid phase transition at
Tc/ǫF ≃ 0.15.

sophisticated analysis of the systematic errors cannot be
provided at this point in time, the fact that theory and
experiment agree reasonably well for both E/E

FG
and

µ/ǫF over a wide range of temperatures is both remark-
able and encouraging.
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