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quasi-phase-matching

A. A. Rangelov and N. V. Vitanov
Department of Physics, Sofia University, 5 James Bourchier blvd., 1164 Sofia, Bulgaria

An efficient broadband sum frequency generation (SFG) technique using the two cascaded optical
parametric processes ω3 = ω1 + ω2 and ω4 = ω1 + ω3 is proposed. The technique uses chirped
quasi-phase-matched gratings, which, in the undepleted pump approximation, make SFG analogous
to adiabatic population transfer in three-state systems with crossing energies in quantum physics. If
the local modulation period first makes the phase match occur for ω3 and then for ω4 SFG processes
then the energy is converted adiabatically to the ω4 field. Efficient SFG of the ω4 field is also
possible by the opposite direction of the local modulation sweep; then transient SFG of the ω3 field
is strongly reduced. Most of these features remain valid in the nonlinear regime of depleted pump.

PACS numbers: 42.65.-k, 42.65.Ky, 42.79.Nv, 42.25.Kb

I. INTRODUCTION

Recent advances in quasi-phase-matching (QPM) tech-
niques [1, 2] have drawn analogies between optical para-
metric processes and two- and three-state quantum sys-
tems [3–5]. By using an analogy to stimulated Ra-
man adiabatic passage (STIRAP) in atomic physics [6–9]
Longhi proposed [3] a scheme in which the fundamen-
tal frequency field is directly converted into the third
harmonic without a transient generation of the second
harmonic. This proposal requires the continuous simul-
taneous phase matching of second harmonic generation
(ω + ω = 2ω) and sum frequency generation (ω + 2ω =
3ω); because this condition can be fulfilled only for a
specific frequency this technique is not broadband. Su-
chowski et al. [4, 5] used an aperiodically poled QPM
crystal to achieve both high efficiency and large band-
width in sum frequency generation (SFG) in the unde-
pleted pump approximation using ideas from the tech-
nique of adiabatic passage via a level crossing in quantum
physics [8, 10].

In this paper, we make use of the analogy between co-
herent population transfer in three-state quantum sys-
tems and the two simultaneous collinear second-order
parametric processes ω3 = ω1 + ω2 and ω4 = ω1 + ω3 =
2ω1 + ω2 to design a potentially highly efficient broad-
band SFG technique. To this end, we use linearly chirped
QPM gratings [11–13], which provide the analogy to level
crossings in atomic systems [14–16].

In our proposal there is no requirement for contin-
uous phase matching as in the STIRAP-like technique
proposed by Longhi [3] but we require phase mismatch
varying along the nonlinear crystal. This is far easier
to achieve than continuous phase matching, as has been
demonstrated already experimentally [4, 5]. We point
out here that the broadband generation in Refs. [4, 5]
is done in the undepleted pump approximation, i.e. in
the linear regime, and for a single SFG. We show here
that these ideas still work in the nonlinear regime of a
depleted pump (delivering much higher absolute intensi-
ties). Moreover, we extend the idea of Refs. [4, 5] from a

single SFG to simultaneous SFG processes; this is anal-
ogous to the extension of adiabatic passage from a two-
state quantum system to a three-state one, with three
level crossings and multiple evolution paths [8]. The
present paper therefore extends the idea of Refs. [4, 5]
for a single SFG linear process in the undepleted pump
approximation to simultaneous multiple SFG linear and
nonlinear processes in and beyond the undepleted pump
approximation.

II. CASCADED SUM FREQUENCY

GENERATION

The two simultaneous SFG processes ω3 = ω1+ω2 and
ω4 = ω1 + ω3, for a QPM crystal with susceptibility χ(2)

and local modulation period Λ(z) are described by the
set of nonlinear differential equations [1, 2]

i∂zE1 = Ω1

(

E∗

2E3e
−i∆1z + E∗

3E4e
−i∆2z

)

, (1a)

i∂zE2 = Ω2E
∗

1E3e
−i∆1z , (1b)

i∂zE3 = Ω3

(

E1E2e
i∆1z + E∗

1E4e
−i∆2z

)

, (1c)

i∂zE4 = Ω4E1E3e
i∆2z, (1d)

where z is the position along the propagation axis, c
is the speed of light in vacuum, and Ej is the electric

field of the j-th laser beam. Here Ωj = χ(2)ωj/4cnj

(j = 1, 2, 3, 4) are the coupling coefficients, while ∆1 =
n1ω1/c + n2ω2/c − n3ω3/c + 2π/Λ and ∆2 = n1ω1/c +
n3ω3/c − n4ω4/c + 2π/Λ are the phase mismatches for
the ω3 and ω4 SFG processes, where ωj and nj are the
frequency and the refractive index of the j-th laser beam.

A. Undepleted pump approximation

The coupled nonlinear equations (1) are often lin-
earized assuming that the incident pump field E1 is much
stronger than the other fields and therefore its ampli-
tude is nearly constant (undepleted) during the evolu-
tion. Then Eqs. (1) are reduced to a system of three
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linear equations,

i∂zA(z) = M(z)A(z), (2a)

M =





−∆1 Ω∗

p 0
Ωp 0 Ω∗

s

0 Ωs ∆2



 , (2b)

with A(z) = [A2(z), A3(z), A4(z)]
T , where

Ωp = E1

√

Ω2Ω3, (3a)

Ωs = E1

√

Ω3Ω4, (3b)

A2 = E1E2e
i∆1z

√

Ω3Ω4/2, (3c)

A3 = E1E3

√

Ω2Ω4/2, (3d)

A4 = E1E4e
−i∆2z

√

Ω2Ω3/2. (3e)

Upon the substitution z → t, Eq. (2) becomes identical
to the time-dependent Schrödinger equation for a three-
state quantum system in the rotating-wave approxima-
tion, which is studied in great detail [8]; the vector A(z)
and the driving matrix M correspond to the quantum
state vector and the Hamiltonian, respectively. We note
that the quantity |A(z)|2 = |A2(z)|

2+ |A3(z)|
2+ |A4(z)|

2

is conserved, like the total population in a coherently
driven quantum system. By definition, in the adiabatic
regime the system stays in an eigenvector of the “Hamil-
tonian” M. We assume that ∆1(z) and ∆2(z) change
linearly along z, which can be achieved, for example, by
varying the local modulation period Λ(z). Explicitly, we
assume that either ∆1 = δ1 − α2z and ∆2 = δ2 − α2z,
which is called “intuitive sweep” (for reasons that will be-
comes clear shortly) or ∆1 = δ1+α2z and ∆2 = δ2+α2z
which is called “counterintuitive sweep”. For the sake of
generality, we take hereafter α as the unit of coupling and
1/α as the unit of length. Then the three eigenvalues of
M will cross each other at three different distances zm
(m = 1, 2, 3), thereby creating a triangle crossing pat-
tern [14–16]. These crossings allow us to design recipes
for efficient broadband SFG, in analogy to adiabatic pas-
sage techniques in quantum physics [8–10, 14–16]. Be-
cause of the analogy to the Schrödinger equation the
condition for adiabatic evolution can be derived using
the Landau-Zener-Stückelberg-Majorana model [17–20]
and reads (for linear chirping and constant couplings):
|Ωx| & α, where Ωx is the relevant coupling at the re-
spective crossing.
Figure 1 plots the eigenvalues of M of Eq. (2) vs z.

Initially only the ω2 field is present, hence the vector
A = [A2, 0, 0]. If the evolution is adiabatic then there are
two possible paths that the system can follow (marked by
arrows). If the phase match for the ω3 generation pro-
cess occurs first (left frames of Fig. 1), then the energy
is converted first to the ω3 field and then to the ω4 field.
This “intuitive” two-step scheme extends the single-step
adiabatic passage scenario for SFG [4, 5]. Interestingly,
we find that efficient energy transfer directly to the ω4

field is also possible through the “counterintuitive” di-
rection of the local modulation period sweep when the
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FIG. 1: (Color online) Sequential SFG of ω4 field. Top frames:
Diagonal elements (solid lines) and eigenvalues (dashed lines)
of the driving matrix M of Eq. (2) for the “intuitive”
(left frames) and “counterintuitive” (right frames) phase mis-
match sweep. The field intensities are calculated numerically
from Eqs. (1)for δ1 = 10α, δ2 = 5α, Ω1 = Ω2 = Ω3 =
Ω4 = 5α. Middle frames: undepleted pump, |E1(zi)|

2 =
100|E2(zi)|

2, with zi = −40α−1; bottom frames: depleted
pump, |E1(zi)|

2 = 2|E2(zi)|
2.
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FIG. 2: (Color online) Efficiency of SFG of ω4 field vs the cou-
plings Ω1 and Ω2 obtained by numerical integration of Eqs. (1)
for “counterintuitive sweep” with δ1 = 10α, δ2 = 5α and
Ω3 = Ω4 = 5α. Left frame: undepleted pump, |E1(zi)|

2 =
100|E2(zi)|

2, with zi = −40α−1; right frame: depleted pump,
|E1(zi)|

2 = 2|E2(zi)|
2.

phase match for the ω4 generation process occurs first
(right frames of Fig. 1). Then the energy flows from the
ω2 field to the ω4 field with almost no energy transferred
to the intermediate ω3 field.
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B. Depleted pump

We have found by numerical integration of the non-
linear system (1) that the described scheme is also ap-
plicable beyond the undepleted pump approximation,
when the ω1 and ω2 fields have comparable energies; this
is demonstrated in the bottom frames of Fig. 1. Un-
fortunately, many optical parametric processes such as
|ω1−ω2|, 2ω1, 2ω2, ω1+2ω2 become possible in this case
and it is not easy to find the conditions for broadband
SFG of the ω4 field.
The contour plot in Fig. 2 demonstrates the robustness

of SFG of the ω4 field against parameter variations. SFG
for an undepleted pump (left frame) is remarkably robust
in confirmation of the simple analytic theory described
above. SFG for a depleted pump (right) is less robust
although relatively high SFG efficiency is still possible;
because then the simple eigenvalue arguments cannot be
used the interpretation is more difficult.

III. THIRD HARMONIC GENERATION

Third harmonic generation (THG) is an important spe-
cial case of cascaded SFG, which is readily treated in the
adiabatic regime. The respective equations are derived
from Eqs. (1),

i∂zAω = ΩωA
∗

ωA2ωe
−i∆1z +ΩωA

∗

2ωA3ωe
−i∆2z , (4a)

i∂zA2ω = Ω2ωA
2
ωe

i∆1z +Ω2ωA
∗

ωA3ωe
−i∆2z, (4b)

i∂zA3ω = Ω3ωAωA2ωe
i∆2z, (4c)

where (zi = 0)

Ωω = Eω (0)χ(2)ω/4cnω, (5a)

Ω2ω = Eω (0)χ(2)ω/2cn2ω, (5b)

Ω3ω = 3Eω (0)χ(2)ω/4cn3ω, (5c)

Aω (z) = Eω (z) /Eω (0) , (5d)

A2ω (z) = E2ω (z) /Eω (0) , (5e)

A3ω (z) = E3ω (z) /Eω (0) . (5f)

Figure 3 shows simulations of THG obtained by nu-
merical integration of Eqs. (4) for the nonlinear optical
crystal Lithium Tantalate (LiTaO3) [21]. We use typi-
cal wavelengths of Nd:YAG laser: 1050 nm (top frame),
1060 nm (middle frame) and 1070 nm (bottom frame).
To maintain adiabatic conditions we choose the local pol-
ing period to vary slowly from 6.00 µm to 6.59 µm along
a crystal length of 120 mm. Figure 3 shows that high
THG efficiency is achieved for a relatively broad wave-
length window. This window can be enlarged further if
one increases the length of the crystal or simultaneously
increases the final poling period and the intensity of the
initial fundamental field.
As it is seen from Fig. 3, the second harmonic is ab-

sent during the evolution and nearly complete transfer of

0

0.2

0.4

0.6

0.8

1.0

|A
2ω

|2

|A
3ω

|2
|A

ω
|2

N
or

m
al

iz
ed

 In
te

ns
iti

es

0

0.2

0.4

0.6

0.8

1.0

0 30 60 90 120

|A
2ω

|2

|A
3ω

|2

|A
ω
|2

Propagation distance z (units of mm)

N
or

m
al

iz
ed

 In
te

ns
iti

es

0

0.2

0.4

0.6

0.8

1.0

|A
2ω

|2

|A
3ω

|2

|A
ω
|2

N
or

m
al

iz
ed

 In
te

ns
iti

es
FIG. 3: (Color online) Fundamental, second-harmonic and
third-harmonic fields vs. propagation distance z for input
intensity of 25 GW/cm2. Equations (4) are solved numeri-
cally for LiTaO3 crystal with local poling period that vary
slowly from 6.00 µm to 6.59 µm for three different wave-
lengths: (Top frame) 1050nm; (Middle frame) 1060nm; (Bot-
tom frame) 1070nm.

energy to the third harmonic takes place. Because there
is no second harmonic then the problem of overlapping
fundamental with the second harmonic is not present and
the proposed THG technique can be used for nanosecond
as well as picosecond pulses. Another advantage that is
even more interesting is that the conversion to the third
harmonic will remain efficient even when the crystal is
not transparent for the second harmonic frequency, in
agreement with recent experimental results [22].
Figure 4 demonstrates the efficiency of THG as a func-

tion of the input intensity of the fundamental. A typical
adiabatic increase [8, 9] of the efficiency toward unity is
observed as the initial fundamental input intensity in-
creases.

IV. CONCLUSION

We have used the analogy between the time-dependent
Schrödinger equation and the SFG equations in the unde-
pleted pump approximation to propose an efficient broad-
band SFG technique. A local modulation period sweep
along the light propagation direction creates crossings
in the phase matching between different parametric pro-
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FIG. 4: (Color online) Efficiency of third harmonic gener-
ation for 1060nm wavelength vs the input intensity of the
fundamental. The other parameters are as in Fig. 3.

cesses, which in combination with adiabatic evolution
conditions allow efficient and robust SFG of the desired
frequency ω4 = 2ω1 + ω2. While the physical picture is
transparent in the undepleted pump approximation, the
basic feature of the SFG process remain largely intact
in the general regime of depleted pump. Chirped QPM
gratings offer robustness against variations of the param-
eters of both the crystal and the electric fields, which
include the crystal temperature, the wavelengths of the
input electric fields, the crystal length and the angle of
incidence.

The present work can be viewed as a generalization of
the idea of Suchowski et al. [4] from a single SFG to si-
multaneous SFG processes in and beyond the undepleted
pump approximation. This work is also a broadband al-
ternative to the (narrowband) STIRAP-based third har-
monic generation proposal of Longhi [3].
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