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Abstract

In this Brief Report, an improved U(2) algebraic model is proposed to study

both stretching and bending vibrational spectra of a bent triatomic molecule.

The model with fewer parameters is used to reproduce the observed spectra of

hydrogen sulfide (H2S) with better precision than the U(4) algebraic model.

Furthermore, the tripartite entanglement dynamics is investigated for vibra-

tionally localized states in H2S. It is shown that the entanglement of a highly

excited state in the bending mode displays better quasi-periodicity than that

in the stretch. Those are useful for molecular vibrations and multipartite

quantum entanglement.
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In recent years, considerable research has been carried out to construct effective Hamil-

tonians for vibrationally highly-excited spectra in small polyatomic molecules [1–5] fostered

more experimental data by new spectroscopic techniques [1,2]. In particular, various models

based on the U(4) and U(2) algebras have been used for describing molecular vibrations and

rotations [3–7]. The rotation-vibration spectra of diatomic molecules are well described in

terms of an U(4) algebra [6]. It has been shown that this model can be successfully applied

to liner three- and four-atom molecules [7]. The U(4) algebraic model becomes, however,

quite complex when applied to molecules containing more than four atoms. The main ad-

vantage of the U(2) algebra is its extreme simplicity from a mathematical point of view.

Despite such simplicity, the U(2) algebraic model is particularly well suited to analyze the

stretching vibrational spectra [4], and is currently under further developments to incorporate

the bending modes [5]. Those works [3–5] are mostly concentrated on vibrational energy

levels with little attention to quantum dynamics. In the present Brief Report, an improved

U(2) model is proposed to study both stretching and bending vibrational spectra of a bent

triatomic molecule, where the Fermi resonance between stretching and bending modes is

considered. An application to the observed vibrational spectra of hydrogen sulfide (H2S)

[2] shows that the model with fewer parameters reproduces the experimental results with a

smaller standard deviation than the U(4) algebraic model [3].

More importantly, an effective Hamiltonian not only describes the observed vibrational

spectra [1–5] but also provides a possibility to investigate quantum entanglement dynamics

for molecular vibrations [8]. It has been demonstrated that the entanglement of initial states

with local-mode character is more regular than that of ones with normal-mode character [8].

Those studies [8] are significant for molecular quantum computing since the interplay of an-

harmonicity and the coupling is of importance in quantum computing based on vibrational

qubits [9]. More recently, the dynamical entanglement in polar symmetric top molecules has

been investigated [10]. Previous works [8,10] are, however, limited to the bipartite entan-

glement dynamics. Here the dynamical behaviors of tripartite entanglement quantified by

concurrence [11] are examined for the stretching and bending modes in the algebraic model

2 (March 23, 2012)



with parameters extracted from fitting to the experimental spectra of H2S. Such an exami-

nation can be regarded as an alternative with potential connections to actual experiments,

other than the systems more usually used in the field of tripartite entanglement in three

qubits [12].

We are concerned with both stretching and bending vibrational spectra of a bent tri-

atomic molecule, H2X. We introduce three Uα(2)(1 ≤ α ≤ 3) algebras for two stretches

(α=1, 2) and one bend (α = 3), which is generated by the operators {Nα, J+,αJ−,α, J0,α}

satisfying the following commutation relations,

[J0,α, J±,β] = ±δαβJ0,α, [J+,α, J−,β] = 2δαβJ0,α,

[Nα, J0,α] = 0, [Nα, J±,α] = 0,
(1)

where Nα is related with the Casimir operator of U(2),

2J2
0,α + J+,αJ−,α + J−,αJ+,α = Nα(Nα/2 + 1).

The local basis states for each bond are denoted by |Nα, vα〉. The action of J±,α on the

local states is given by J+,α |Nα, vα〉 =
√

vα(Nα − vα + 1) |Nα, vα − 1〉 and J−,α |Nα, vα〉 =
√

(vα + 1)(Nα − vα) |Nα, vα + 1〉. By means of the scale transformation,

Aα ≡ J+,α√
Nα

, A†
α ≡ J−,α√

Nα

, (2)

the commutation relations Eq.(1) can be rewritten as

[Aα, A
†
β] = δαβI0,α, [Aα, I0,β] = −2δαβ

Aα

Nα
,

[A†
α, I0,β] = 2δαβ

A
†
α

Nα
,

(3)

where I0,α = 1− 2vα/Nα.

We are able to express the stretching and the bending vibrational Hamiltonian as

H = ωs (A
†
1A1 + A†

2A2) + ωb A
†
3A3

+ λs (A
†
1A2 + A†

2A1) + λss A
†
1A1A

†
2A2

+ λsb1 (A†
1A2 + A†

2A1)A
†
3A3

+ λsb2 (A†
1A1 + A†

2A2)A
†
3A3

+ λsb3 [(A†
1 + A†

2)A3A3 + A†
3A

†
3(A1 + A2)],

(4)
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where ωs, λs, and λss are the stretch coupling parameters, ωb is the bend one, and λsb1,

λsb2, λsb3 are the ones between stretches and bend with the last one for the Fermi resonance.

The model has a conserved quantum number (polyad), P = v1 + v2 +
1
2
v3, where vα is the

quantum number of vibrational mode α.

Now we apply the model to the vibrational spectra of H2S since its complete spectra

were studied in terms of U(4) model [3]. For the convenience of comparison with the results

in [3], we choose the same observed overtone spectra of H2S that are taken from Ref. [2]. In

the best fitting the two vibron number, N1(N2=N1) and N3, are respectively taken to be 54

and 198. The obtained parameters are listed in Table 1.

The calculated vibrational energy levels of H2S are presented in Table 2, where we give

a compilation of the observed experimental data (Eobs) with normal-mode label (ν1ν2ν3)

and the difference (∆Ecal =Eobs− Ecal) with our results. For comparison the differences

between the experimental data and the calculated results [3] are included in Table 2, where

the standard deviation (σ) between observed and calculated energy levels is defined by,

σ2 =
1

No −Np

No
∑

i=1

(

E
(i)
cal − E

(i)
obs

)2
, (5)

where No is the number of observed data and Np is the number of parameters used in the

fitting. The standard deviation (σ) in the improved model is 1.78 cm−1 with 7 parameters,

while that [3] is 3.18 cm−1 with 9 parameters, indicating that the model with fewer param-

eters has a well performance in reproducing the experimentally known vibration spectra of

H2S. Similar conclusions can be applied to other bent triatomic molecules and polyatomic

molecules, and results will be discussed elsewhere [13].

Using the algebraic Hamiltonian parameters in Table 1, we explore the tripartite entan-

glement dynamics for pure vibrational states in H2S. The tripartite entanglement is measured

in terms of the concurrence C(t) defined by [11]

C(t) =
√

3− Tr(ρ21 + ρ22 + ρ23), (6)

where the reduced density matrix ρα of subsystem α is obtained by tracing over the other two

vibrational subsystems from the full density matrix. As an example, we consider two kinds of
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initial states, which are localized states in one stretching and the bending mode, respectively.

Figure 1 shows the time evolution of the concurrence for initial states |8, 0, 0〉, |15, 0, 0〉,

|16, 0, 0〉, and |0, 0, 30〉, where |v1, v2, v3〉=|v1〉⊗|v2〉⊗|v3〉 with vα being the quantum number

on vibrational mode α. It is seen that within a given polyad P = n, the entanglement of

the bending-vibrationally localized state (|0, 0, 2n〉) exhibits better periodicity than that

of the stretching one (|n, 0, 0〉) with the larger maximal magnitude. For the two kinds of

localization states, the oscillating magnitude of the entanglement for a stretching-localized

state decreases as n increases, which is contrary to that for a bending-localized state. The

concurrence for bending-vibrationally localized state (|0, 0, 2n〉) can be explained by

C(t) = 8
√
2B

√
1− 24B2, (7)

where B = | c(a−b−d+Ω)
8c2+(a−b−d+Ω)2

sin(Ωt
2
)| with c = λsb3

N3

√

2n(2n+ 1)(N3 − 2n + 1)((N3 − 2n + 2),

a = 2ωb

N3
n(2n + 1)(N3 − 2n + 1), b = ωs +

ωb+λsb2

N3
(2n− 2)(N3 − 2n + 3), d = λs +

λsb1

N3
(2n−

2)(N3−2n+3), and Ω =
√

8c2 + (a− b− d)2. Thus, the quasi-period is approximately given

by T = 2π
Ω
. The analytic calculation of T is respectively 0.072 and 0.093 ps for n=8 and 15,

which is quite agreement with the corresponding result 0.070 and 0.095 ps in Fig.1 (b). The

oscillating magnitude of the entanglement for a bending-localized state indeed increases as

n increases. In the case of n = 1, the analytical and numerical calculations are identical. In

addition, the influence of Fermi resonance parameter (λsb3) on the magnitude and period can

be understood from the expression Eq.(7), that is, both magnitude and period become larger

with a smaller λsb3. However, once λsb3 is set to be zero, there is no tripartite entanglement

among three vibrational modes (C(t) = 0). It is straightforward to investigate tripartite

entanglement dynamics with vibrational excitation in other states and molecules.

In summary, we have introduced an improved U(2) model for the description of both

stretching and bending vibrations in a bent triatomic molecule. Fitting observed data of H2S

indicates that the improved model with fewer parameters reproduces the data with better

precision than the U(4) model [3]. Furthermore, we have studied the tripartite entanglement

dynamics measured by the concurrence for three vibrational modes in H2S. It is shown that
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the entanglement of bending-vibrationally localized state (|0, 0, 2n〉) is better periodic than

that of the stretching one (|n, 0, 0〉), which has been analyzed in an approximate expression

of the concurrence. We believe that those properties are useful for the understanding of

highly excited vibrations [1–5] as well as molecular quantum entanglement dynamics [8,10].

It is possible to take the rotational degrees of freedom into account in the model, and

exploit its influence on the four-partite entanglement when the rotation is taken as the fourth

subsystem. In this case, the explicit expression of multipartite concurrence has been given

in [11]. It should be remarked that for a multipartite pure state the generalized concurrence

is not unique. For instance, Mintert and coworkers [14] have proposed several inequivalent

alternatives. Moreover, it is worthwhile to investigate nonlinear dynamics [15] from the

algebraic model for H2S.
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Table 1 Parameters (cm−1) in the model for H2S

ωs ωb λs λss λsb1 λsb2 λsb3

2622.81 1183.57 −6.83 −2.64 1.71 −21.59 1.23
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Table 2 Observed and calculated energy levels (cm−1) of H2S

(ν1ν2ν3)
a Ea

obs ∆Eb
cal ∆Ecal

(010) 1182.57 0.27 0.99

(020) 2353.96 −0.44 1.19

(100) 2614.30 0.11 1.60

(001) 2628.46 0.26 1.17

(030) 3513.79 −0.61 0.98

(110) 3779.17 0.37 0.56

(011) 3789.27 −0.13 0.62

(040) 4661.68 1.08 0.73

(120) 4932.70 1.80 −1.03

(021) 4939.23 0.63 −0.70

(200) 5145.12 −1.38 1.62

(101) 5147.36 0.86 1.28

(002) 5243.10 1.10 1.78

(050) 5797.24 5.74 0.84

(130) 6074.58 5.78 −2.75

(031) 6077.60 3.50 −2.42

(210) 6288.14 −2.36 0.51

(111) 6289.17 −1.43 0.55

(012) 6388.73 2.83 −4.25

(121) 7420.09 −0.31 −0.71

(300) 7576.30 1.10 −0.09

(201) 7576.30 1.00 −0.15

(102) 7751.90 −0.90 1.25

(003) 7779.20 −0.50 0.84

(310) 8697.30 −3.70 0.80

(211) 8697.16 −4.04 0.77

(400) 9911.05 3.75 −3.15

(202) 10194.48 0.08 −1.06

(311) 11008.78 −7.12 1.66

σ 3.18 1.78
a Normal-mode label and observed data taken from [2].

b Calculated in [3].
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FIGURES
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Figure 1. Concurrence C(t) for initial states: (a) |8, 0, 0〉 (solid line) and |15, 0, 0〉 (dotted line),

(b) |0, 0, 16〉 (solid line) and |0, 0, 30〉 (dotted line), where vα in state |v1, v2, v3〉 is the quantum

number on vibrational mode α in H2S.
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