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The observation of nonperturbative high-harmonic generation in periodic solids has been inter-
preted in terms of a two step process comprising tunnel ionization and radiation from electrons
undergoing frequency modulated Bloch oscillations in a strong laser field (Ghimire et al., Nature
Physics 7, 138, 2011). Here we extend the model to include propagation effects. We show that the
predicted efficiency is limited by phase velocity mismatch for emission below the band gap and by
absorption above the band gap. The efficiency of harmonics is scales with the square of the carrier
density, suggesting that direct seeding could lead to higher yield. The emitted harmonics should
have a temporal profile consisting of a train of sub-cycle pulses with duration on the order of 650
attoseconds depending on the crystal thickness.

High-order harmonic generation (HHG) in the strong-
field limit is the standard route for producing attosec-
ond pulses [1, 2]. The typical interaction medium is a
dilute atomic gas [3, 4] although nonperturbative har-
monics have also been produced from molecules [5–7],
metal surfaces [8, 9] and plasma plumes [10–12]. Recently
we reported the first observation of nonperturbative har-
monics in a bulk crystal in the strong-field limit using
ultra-short mid-infrared (MIR) laser pulses centered at
3.25 µm [13]. In these experiments on ZnO, harmonics
up to the 25th order were observed in 1kHz repitition rate
without damaging sample for a maximum peak field of
0.6 V/Å—approaching the limit of the band gap per lat-
tice constant, but well below the relativistic limit[14, 15].

Bulk crystals have the potential for efficient conver-
sion due to the high density; however, the process cannot
simply be seen as the emission from a large number of
independent atoms. We expect the mechanism for non-
perturbative harmonic generation in periodic solids to
be fundamentally different than the atomic case due to
the built-in coherence between the multiple and closely
spaced sites. The single-atom high harmonics spectrum
cuts off in energy at Ip + 3.17Up, where Ip is the ioniza-
tion potential of the neutral atom and Up = e2E2

0/4mω
2

is the ponderomotive energy [16–18]. Gas phase exper-
iments have verified that so long as the ground state is
not depleted, the cutoff scales quadratically with both
the laser peak field [19] and the wavelength [20, 21]. The
single atom based picture of HHG is not valid in solids
because the excursion amplitude of a free electron in the
laser field, ∼32Å for a field of 0.6 V/Å and wavelength
of 3.25 µm, is many times the typical nearest neighbor
distance. The corresponding ponderomotive energy for a
free electron, ∼ 5 eV, also exceeds the typical energy scale
of the valence and conduction bands. Thus, for strong
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field processes such as HHG in solids, the influence of the
periodic potential on the electrons cannot be ignored—
or even treated in terms of a constant effective mass[22].
One important way the periodic potential manifests it-
self is in the linear scaling of the high energy cutoff of the
HHG with field [13]. It has also been predicted that the
HHG spectrum would have a imprint of the electronic
states in solids[13, 23, 24] .

The general features of the harmonic emission observed
in Ghimire et al. [13] are accommodated by a simple
two-step model comprising tunneling between valence
and conduction bands, and the radiation from a non-
linear intraband current. In this model, the nonlinear-
ity is due to a combination of anharmonic electron mo-
tion in the band along with the multiple Bragg reflec-
tions at the zone boundaries—which repeats every half
cycle of the laser field and radiates odd-multiples of the
drive laser frequency (i.e., frequency modulated Bloch
oscillations[25, 26]). Here, we discuss where the funda-
mental differences in the generation processes arise and
include one-dimensional propagation effects that allows
us to calculate the efficiency for any given harmonic order
in terms of a nonlinear conductivity. We discuss possible
routes to higher efficiency and their limitations, and we
show that because the harmonics are phase locked, at-
tosecond pulse trains and perhaps even isolated attosec-
ond pulses can be generated.

As in Ghimire et al. [13], we treat the nonperturbative
high-order harmonic generation in crystals in the strong-
field limit in a two-step model as illustrated in Fig. 1a :
i. ionization—a small fraction of electrons tunnel from a
previously occupied valence band to an unoccupied con-
duction band close to zone center near the peak of the
linearly polarized field; and ii. intra-band acceleration—
the strong field drives the electrons (and holes [27]) in the
band producing a nonlinear current that subsequently ra-
diate nonperturbative harmonics. We neglect stimulated
emission and nonlinear Rabi oscillations[28–30] and as-
sume that the harmonics are entirely due to the intra-
band current. The tunneling step therefore serves to seed
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FIG. 1: (color online) a. Schematic of the band-model for two step high harmonic generation in the strong-field limit. In
the first step a small fraction electrons from the valence band tunnel to the conduction band near zone center at the peaks of
the electric field (shown in b.). In the second step the carriers undergo nonlinear acceleration within the band which radiates
harmonics for a periodic drive. The corresponding velocity (c.) of the electron wave packet and trajectory (d.) in units of
eE0/m

∗ω and lattice spacing, d, respectively for parameters given in ref. [13].

carriers to the conduction band near the peak of the field.
Consider first the semi-classical motion of a single elec-

tron wavepacket in a cosine band

ε(q) =
h̄2

m∗0d
2

(1− cos(qd)), (1)

where m∗0 is the band effective mass at zone center and d
is the lattice spacing. In the presence of a strong harmon-
ically varying laser field, E(t) = E0 cos(kz − ωt) propa-
gating along the z-axis, the electron wave-vector (relative
to its value at t = 0),

q(t) = − e
h̄

∫ t

0

E(t′)dt′ =
eE0

h̄ω
sin(kz − ωt) + q(0). (2)

Thus, the group velocity,

vg =
1

h̄

∂ε(q)

∂q
=

h̄

m∗0d
sin
(ωB

ω
sin(kz − ωt) + q(0)

)
, (3)

where ωB = eE0d/h̄ is the Bloch frequency correspond-
ing to the peak field (i.e., the rate at which electrons
traverse the Brillouin zone in a DC field in the absence
of scattering).

The group velocity is time varying and anharmonic,
exhibiting frequency components at odd harmonics of the
fundamental. This is made explicit when we recast (3)

in terms of its Bessel function (Jacobi-Anger) expansion,
which for q(0) = 0 is

vg =
eE0

m∗0ω

∞∑
s=1

1

2s− 1

[
J2s−2

(ωB

ω

)
+ J2s

(ωB

ω

)]
× sin ((2s− 1)(kz − ωt)).

(4)

Equation (4) reduces to the perturbative limit when
ωB � ω, where the electrons make small oscillations
about the zone center. Here the anharmonic terms in
the group velocity are due to the finite dispersion in the
effective mass, i.e. the nonparabolicity of the band. For
higher fields the oscillations are no longer small com-
pared to the length of the Brillouin zone and the dis-
persion can become substantial. For high enough fields,
i.e. ωB

>∼ 2ω, the electrons traverse the entire Brillouin
zone and undergo periodic Bragg scattering at the zone
boundaries within a half laser cycle. Here the frequency
content scales nonperturbatively, extending to roughly
(2s−1)ω = ωB after which it drops rapidly with increas-
ing order. Thus we see that in the high field limit, the
high-energy cutoff is linearly proportional to the electric
field and effectively independent of drive frequency.

The above results can be extended for an arbitrary
band. We write the electronic band dispersion in terms
of the Fourier expansion of the direct lattice [31], ε(q) =
c0/2 +

∑∞
p=1 cp cos(pqd). In this case the general form of



3

group velocity,

vg =
eE0

m∗0ω

∞∑
p,s=1

p2bp
2s− 1

[
J2s−2

(
p
ωB

ω

)
+ J2s

(
p
ωB

ω

)]
× sin ((2s− 1)(kz − ωt)),

(5)

where bp = cp/
∑
p2cp = cpd

2m∗0/h̄
2 are scaled Fourier

coefficients [13]. The main difference is that the addi-
tional dispersion in the effective mass leads to higher fre-
quency content than in a purely cosine band, extend-

ing the cutoff to an integer number of the Bloch fre-
quency depending on the steepness of the band. As
was done in ref. [13], we take ωB = 5ω and dispersion
(ε(q) = 2.5(1 − 0.95 cos qd − 0.05 cos 3qd) [eV]), where

d =
√

3a/2 ≈ 2.8 Å which approximates the first con-
duction band of ZnO along Γ–M [32].The group velocity
at z=0 is plotted in Fig.1c for normalized field in Fig.1b.
Note that the higher frequency components occur near
the peak of the field where the effects of both the Bragg
scattering and the high spatial harmonics of the band can
be seen clearly.

The trajectory of an electron wavepacket which is initially at q and t = 0 is given by,

x(t, z) =
eE0

m∗0ω
2

∞∑
p,s=1

p2bp
(2s− 1)2

[
J2s−2

(
p
ωB

ω

)
+ J2s

(
p
ωB

ω

)]
× (1− cos ((2s− 1)(kz − ωt))) . (6)

We plot the trajectory in Fig. 1d in the units of nearest neighbor distance d. The effect of the Bragg scattering on
the trajectory is to localize the electron wave packet[33]. In contrast to the atomic case where the maximum excursion
increases with the field, in the periodic solid, the electron wavepacket becomes more localized about the cores with
increasing field once ωB

>∼ ω. In the atomic case the further the electron is accelerated from the core, the more
energy it gains in the field such that the ponderomotive energy is proportional to the square of the electric field and
inversely with the square of the drive frequency. For solids in low peak fields, the effective mass approximation may
be appropriate and the ponderomotive energy of an electron in the band can be considered to be U∗p = e2E2/4m∗0ω

2,
analogous to the atomic case. However, for high enough fields where the dispersion in the effective mass becomes
appreciable, the ponderomotive energy deviates from the quadratic dependence with field, showing oscillatory behavior
confined by the electronic bandwidth [34].

In order to calculate the efficiency of the harmonic generation, we consider the total electric field (in complex
notation) as E(z, t) =

∑∞
s=1E2s−1(z)ei(k2s-1z−ω2s−1t), with ω2s−1 = (2s − 1)ω and look for solutions to the one

dimensional coupled wave equations [35],

∂2E2s−1

∂z2
− µ0ε0(1 + χ(ω2s−1))

∂2E2s−1

∂t2
= µ0

∂j2s−1

∂t
. (7)

We treat the nonlinearity only in the intra-band current and assume that higher orders of the polarizability can be
neglected. This is reasonable when the drive photon energy is well below the gap (approximately 9 photons in ref.
[13]) . To leading order, this means that we ignore “χ(3)” processes such as self-phase modulation and self-focusing.
These effects are mitigated in the experiment by tight focusing of the drive laser on the exit of the crystal. Because
the interaction length turns out to be small compared to the Rayleigh range, we consider only one dimensional
propagation. The nonlinear current density in (7) provides the source of the harmonics. For simplicity we assume a
steady-state carrier density N . We can then write the (2s− 1)th component of the current as

j2s−1(t) = Nevg,2s−1 ≡ σ̃2s−1E1(z)ei(2s−1)(kz−ωt), (8)

which is accurate to second order in the width of how the carriers are distributed about the zone center, near the
peak of the field. Thus from (5), the (2s− 1)th component of the (complex) conductivity is

σ̃2s−1(ω, ωB) = − Ne2

im∗0(2s− 1)ω

∞∑
p=1

p2bp

[
J2s−2

(
p
ωB

ω

)
+ J2s

(
p
ωB

ω

)]
, (9)

where we have neglected the additional contribution of the current from the harmonics acting back on the carriers. In

the limit that there is no depletion of the pump E1(z) = E0 and for slowly varying amplitudes such that
∣∣∣∂2E2s−1

∂z2

∣∣∣�∣∣∣k2s−1
∂E2s−1

∂z

∣∣∣,
∂E2s−1

∂z
= −µ0σ̃2s−1ω2s−1

2k2s−1
E0e

i∆k2s−1z (s ≥ 2), (10)
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where we define ∆k2s−1 = (2s− 1)k − k2s−1. After integration we find,

E2s−1

E0
= − µ0σ̃2s−1ω2s−1

2k2s−1i∆k2s−1

(
ei∆k2s−1z − 1

)
(s ≥ 2). (11)

Thus the efficiency of the (2s− 1)th harmonic is

I2s−1

I1
= −

µ2
0σ

2
2s−1c

2λ2

16π2(2s− 1)2|n2s−1|2|∆n2s−1|2
∣∣∣ei 2π(2s−1)

λ ∆n2s−1z − 1
∣∣∣2 , (12)

where n2s−1 =
√

1 + χ(ω2s−1) is the complex index of refraction at frequency (2s − 1)ω and ∆n2s−1 = n1 − n2s−1,
which is effectively independent of the carrier density when the drive frequency is much greater than the plasma
frequency.

In what follows, we consider the case of ZnO with
laser parameters as in Ghimire et al. [13], λ =3.25µm,
ωB = 5ω and a 500µm thick crystal. We assume a mod-
est carrier density of N = 1 × 1019cm−3, such that the
laser frequency is well above the plasma frequency. The
index of refraction was estimated from ref. [36] for ener-
gies below 5 eV and from ref. [37] for energies above 5 eV.
The nonlinear conductivity, σ2s−1 = <{σ̃2s−1}, as calcu-
lated by (9) is reproduced in Fig. 2a. Fig. 2b. shows
the calculated efficiency for these conditions. Similar to
the conductivity, the efficiency shows multiple plateaus
and a high energy cutoff corresponding to 3ωB (due to
the particular choice of dispersion). The large efficiency
of the third harmonic is due in part to the very small
phase mismatch well below the gap, and suggests that
for high enough carrier density depletion could become
important. Because the conductivity scales as the in-
verse of the harmonic energy, we see from (9) and (12)
that in the nonperturbative limit, the efficiency at fixed
photon energy (and thus the cutoff energy) is effectively
independent of the drive wavelength. In contrast, for
the atomic case the cutoff energy is quadratic with the
wavelength, but the single atom efficiency is dramatically
reduced due to diffraction (spreading) of the returning
wavepacket [20, 21, 38].

The harmonic emission is limited by absorption above
the gap and phase mismatch below the gap, such that the
effective generation length is much less than the crys-
tal thickness in ref [13]. Fig. 3a shows the calculated
efficiency as a function of crystal thickness for the 5th

harmonic, which is well below the gap. Here it is the
phase mismatch between the harmonic and the funda-
mental that limits the efficiency. In this case, the coher-
ence length is approximately 8 µm. Fig. 3b shows the
larger phase mismatch for the 7th harmonic with coher-
ence length approximately 3 µm. In this case, the finite
absorption just below the gap limits the efficiency after
a couple coherence lengths. Above the band-gap, the
efficiency (12) is effectively limited by absorption,

I2s−1

I1
= −

µ2
0σ

2
2s−1c

2λ2

16π2(2s− 1)2|n2s−1|2|∆n2
2s−1|

. (13)

as seen in Figs. 3c and 3d for the 15th and the 21st har-

monics respectively. In addition, because the 21st har-
monic falls above the upper cutoff, the efficiency drops
dramatically compared to the 15th which is in the upper
plateau region as shown in Fig. 2. While the propagation
of the below bandgap harmonics is modulated mainly by
the coherence length the above band gap harmonics are
absorption limited, the later could be produced only near
the exit face in case of a relatively thick crystal, such as
in Ghimire et al. [13]. We do not consider below gap
absorption due to photon assisted tunneling which will
reduce the efficiency for the harmonics just below the
band gap[22].

Because the harmonics are phase locked, there is the
potential for generating ultrashort pulses. In Fig. 4a we
plot the expected temporal profile and the propagation of
high-order harmonics inside a 150 µm thick ZnO crystal.
The modulation along the direction of crystal thickness,
in about 55 µm, is due to the phase mismatch between
the drive laser primarily the third harmonic. The tem-
poral profile of harmonics is a train of attosecond pulses
consisting of a main peak every half laser cycle along with
side peaks. In Fig. 4b we show a lineout of the temporal
profile of the harmonics at a crystal thickness of 1 µm.
The main peaks have a duration on the order of 650 at-
toseconds. The relative strength of the side peaks with
respect to the main peak could be optimized to some ex-
tent by effectively changing the thickness of the sample.
This may be performed in the experiments by translating
the sample with respect to the waist of the laser beam
or using a wedged sample. An isolated attosecond pulse
may be obtained by using a half cycle driving pulse [39]
or by spectrally filtering the near cutoff harmonics in
the case of a few cycle driving pulse [1, 40]. Alterna-
tively, the generation can be effectively confined to half
the laser cycle even in the case of relatively long (many
cycle) driving pulses by the method of polarization gating
[41, 42]. In this method the polarization of the driving
pulse is varied, by a set of birefringent waveplates, such
that the state of polarization changes rapidly from circu-
lar to linear and back to circular, and the width of the
linearly polarized portion is controlled by the thickness
of the waveplates. In the case of circular polarization the
tunneling events are distributed uniformly over the laser
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FIG. 2: a. Calculated nonlinear conductivity for ZnO for band dispersion given in the text for ωB = 5ω in units of (Ne2/m∗0ω).
b. Corresponding efficiency for the high-order harmonics calculated for a 500µm crystal driven at 3.25µm fundamental and a
carrier density, N = 1 × 1019cm−3.

cycle, -π > ωt > +π, unlike the laser phase dependent
ionization in a linearly polarized pulse. This corresponds
to a lower efficiency in HHG by a factor of J2

0 (ωB
ω ) com-

pared to the linearly polarized case when propagating
along one of the axes of a cubic crystal. The high-energy
cutoff also shifts to a lower energy as ωB is reduced by
a factor of

√
2 compared to the case of linear polariza-

tion for the same intensity. Additionally, the tunneling
rate would be much lower in case of the circular polariza-
tion (for the same intensity) which reduces the electron
density in the conduction band. This leads to a highly re-
duced yield in the low orders and no emission in the high
orders, consistent with our experimental results [13].

The quadratic dependence on the carrier density could
mean that for high enough density the efficiency may be
able to exceed the the atomic case. This naturally sug-
gests that the tunneling process be replaced by either
doped or metallic samples, or even seeded by photoion-
ization. This has the additional advantage of better con-
trol of the process, allowing, for example, the production
of efficient circularly polarized harmonics from a circular
polarized drive that is otherwise not possible when rely-
ing on the tunneling dynamics. Of course at high enough
densities, the distribution of the phase of the emission
from the individual carriers will result in a reduction in
the quadratic growth due to partial destructive interfer-

ence; however, the efficiency will continue to grow until
half filling. Well before this condition is reached, we ex-
pect that the drive laser will be reflected from the plasma,
at least for crystal thickness large compared to the skin-
depth. For a cosine band, we find the plasma frequency
in the high field limit is given by

ω2
p =

Ne2

m∗0|n1|2
[
J0

(ωB

ω

)
+ J2

(ωB

ω

)]
, (14)

and the extension to a non-cosine band is straightfor-
ward. This puts an upper level on the carrier density in
ref. [13] of N ∼ 4 × 1020cm−3 (a factor of 40 greater
than considered here) given that most of the MIR light
is transmitted in those experiments.

In conclusion, we have demonstrated in detail how non-
perturbative high order harmonics could arise in a peri-
odic solid by considering a simple one dimensional band
model. The harmonic generation process is due to the
nonlinear acceleration of carriers that tunnel between va-
lence and conduction band in the strong laser field. The
process is distinct from the atomic case in that the influ-
ence of the (periodic) potential cannot be ignored even
as the field approaches the limit of the band-gap per
lattice constant. The radiation occurs throughout each
laser half cycle and could be a new route to attosecond
pulse generation. Periodic Bragg scattering (Bloch oscil-
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FIG. 4: (color online) a. Temporal profile of the harmonics as a function of propagation inside a 150 µm thick crystal which
is dominated by the below gap harmonics. b. A lineout showing an attosecond pulse train at the exit of a 1 µm thick crystal.

lations) lead to localization of the electron wavepackets
about the cores and a high energy cutoff in the radiated
harmonics that scales linearly with field. The efficiency
is limited by phase matching below the band-gap and
by the absorption of harmonics above the band-gap. We
further show that the efficiency depends on the square

of the carrier density suggesting that heavily doped ma-
terials or seeding could be a route to higher efficiency,
limited by reflection of the pump by the plasma.
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