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Strongly-Correlated Photons Generated by Coupling a Three- or Four-level System to a Waveguide

Huaixiu Zheng,∗ Daniel J. Gauthier, and Harold U. Baranger†

Department of Physics, Duke University, P. O. Box 90305, Durham, North Carolina 27708, USA

We study the generation of strongly-correlated photons by coupling an atom to photonic quantum fields
in a one-dimensional waveguide. Specifically, we consider athree-level or four-level system for the atom.
Photon-photon bound-states emerge as a manifestation of the strong photon-photon correlation mediated by the
atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed
multiphoton transmision (photon blockade) or enhanced multiphoton transmision (photon-induced tunneling).
As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed
system. We calcuate the second-order correlation functionof the transmitted field and observe bunching and
anti-bunching caused by the bound-states. Furthermore, wedemonstrate that the proposed system can produce
photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information
and are important for large-alphabet quantum communication.

PACS numbers: 42.50.Ct,42.50.Gy,42.79.Gn

I. INTRODUCTION

Strong coupling between light and atoms has been demon-
strated both in classical cavity quantum electrodynamics
(QED) systems [1–4] and in more recent circuit-QED experi-
ments [5–8]. This enables the generation of strong nonlinear
photon-photon interactions at the single-photon level, which
is of great interest for the observation of quantum nonlin-
ear optical phenomena [9–12], the control of light quanta in
quantum information protocols such as quantum networking
[13, 14], as well as the study of strongly correlated quan-
tum many-body systems using light [15–23]. For example,
both electromagnetically induced transparency (EIT) [11]and
photon blockade [9, 24, 25] have been observed in recent ex-
periments with trapped atoms in an optical cavity [26–28]
and with superconducting qubits in a microwave resonator
[29, 30]. Coherent transfer of quantum states between light
and stationary qubits has been demonstrated in both cavity-
QED [31] and circuit-QED [32, 33] systems. In a very recent
experiment, coherent transfer of photons between three res-
onators has been realized in a superconducting circuit [34].

Recently, an alternative waveguide-based QED system [35–
47] has emerged as a promising candidate for achieving strong
coupling between photons and atoms, motived by tremendous
experimental progress [8, 12, 29, 48–52]. The experimental
systems include a metallic nanowire coupled to a quantum
dot [12], cold atoms trapped inside a hollow fiber [48], a di-
amond nanowire coupled to a quantum dot [49], a 1D super-
conducting (SC) transmission line coupled to a qubit [8, 29],
and a GaAs photonic nanowire with embedded InAs quantum
dots [50, 51]. In particular, it has been experimentally demon-
strated that more than 90% of the spontaneously emitted light
has been guided into the desired waveguide mode [51], deep
into the strong-coupling [53] regime. Theoretically, single-
photon switches [38, 41, 44, 54] have been proposed based
on a waveguide QED scheme. An interesting photon-atom
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bound state and radiation trapping have been predicted based
on numerical calculations [40, 55]. It has also been shown the-
oretically that EIT [43, 45] and photon blockade [45] emerge
in a 1D waveguide system.

In this work, we consider using a waveguide-QED system
to generate strongly-correlated photons through couplingto a
three-level or four-level system (3LS or 4LS). Such strongly-
correlated photons can be used to study many-body physics
[18] as well as to implement large-alphabet quantum com-
munication protocols [56, 57]. Specifically, to probe the
strong photon-photoncorrelation mediated by the 3LS or 4LS,
we study photonic transport, second-order correlation, and
spectral entanglement of the correlated photon states. Fol-
lowing Refs. 42, 43, 45, and 58, and 59, we explicitly con-
struct the scattering eigenstates by imposing an open bound-
ary condition and setting the incident state to be a free plane
wave. In the multiphoton solutions, photon-photon bound-
states emerge, which have significant impact on the transport,
spectral entanglement, and second-order correlation func-
tion. While single-photon transport exhibits EIT, multiphoton
transport shows photon-induced tunneling and photon block-
ade. A highly entangled photon pair in frequency is obtained
by scattering a two-photon state off the 4LS. Finally, we study
the scattering of a coherent state wavepacket, whose number
statistics become non-Poissonian. Strong bunching and anti-
bunching appear in the second-order correlation function.

This paper is organized as follows. In Sec. II, we intro-
duce the model Hamiltonian, identify relevant experimental
systems, and solve for the scattering eigenstates for one-,
two- and three-photon states. With the scattering eigenstates,
the asymptotic output states from scattering Fock states off

the 3LS or 4LS are obtained in Sec. III. In Sec. IV, we study
the photonic transport of Fock states and analyze the effect
caused by the photon-photon bound-states. In Sec. V, we cal-
culate the spectral entanglement for the two-photon case and
demonstrate that highly entangled photon pairs are obtained.
In Sec. VI, the signatures of photon correlation are revealed
in the number statistics and second-order correlation function
after scattering a coherent state wavepacket. Finally, we con-
clude in Sec. VII. Some results related to photon blockade in
the 4LS were reported previoiusly in Ref. 45.
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FIG. 1. (color online) Sketch of the atom-waveguide system:(a) aΛ-
type three-level system, (b) anN-type four-level system, (c) photons
(yellow) in a 1D waveguide coupled to an atom (blue), which can
be either the 3LS in (a) or the 4LS in (b). The transitions|1〉 ↔ |2〉
and |3〉 ↔ |4〉 are coupled to the waveguide modes with strengthV.
The transition|2〉 ↔ |3〉 is driven by a semiclassical control field with
Rabi frequencyΩ and detuning∆. Here,ωc is the frequency of the
control field.

II. SYSTEM, HAMILTONIAN, AND SCATTERING
EIGENSTATES

We consider the scattering problem of photons in a one-
dimensional waveguide side-coupled to a single atom, as
shown in Figure 1. By“atom” we mean a local emitter with
discrete levels, which could be formed from natural atoms,
quantum dots, trapped ions, or superconducting qubits.

Here, two types of local emitter are considered: a driven
Λ−type 3LS and anN-type 4LS. The single-photon dynam-
ics for the 3LS was previously studied in Ref. 41 and a two-
photon solution was found in Ref. 43 in the limit of weak con-
trol field. Here, without assuming a weak control field, we
solve the scattering problem for both the 3LS and 4LS in the
general case. We mainly focus on the photon-photon correla-
tion induced by the atom: physically, the interesting physics
originates from the interplay of quantum intereference in the
1D waveguide and interaction effects induced by the atom.
Such interaction can be understood by treating the atom as
a bosonic site and the ground and excited states as zero and
one boson states, respectively. Unphysical multiple occupa-
tion is removed by adding an infinitely large repulsive on-
site interaction term [40], which is the underlying mechanism
responsible for the formation of photon-photon bound states
[36, 37, 42, 43, 45]. The proposed system could be realized
either in optical systems [12, 50, 51, 60, 61] or in microwave
superconducting (SC) circuits [8, 29, 62–64]. For the optical
systems, the driven 3LS and 4LS have been studied in both the
trapped ion [65] and cavity systems [27, 28, 66, 67]. For the
microwave SC systems, the 3LS and 4LS have already been
realized using SC qubits [29, 62, 64, 68–70].

We start with the Hamiltonian in the rotating wave approxi-
mation, describing a continuum photonic field in a 1D waveg-

uide coupled to a single atom [36, 41–43, 45]

H = Hwg+Hatom+Hc,

Hwg =

∫

dx(−i)~c

[

a†R(x)
d
dx

aR(x)−a†L(x)
d
dx

aL(x)

]

, (1)

wherea†R,L(x) is the creation operator for a right- or left-going
photon at positionx andc is the group velocity of photons.
For the drivenΛ−type 3LS,

H(Λ)
atom=

∑

j=2,3

~

(

ǫ j −
iΓ j

2

)

| j〉〈 j|+ ~Ω
2

(

|2〉〈3|+h.c.
)

,

H(Λ)
c =

∫

dx~Vδ(x)
{

[a†R(x)+a†L(x)]|1〉〈2|+h.c.
}

. (2)

For theN-type 4LS,

H(N)
atom=

4
∑

j=2

~

(

ǫ j −
iΓ j

2

)

| j〉〈 j|+ ~Ω
2

(

|2〉〈3|+h.c.
)

, (3)

H(N)
c =

∫

dx~Vδ(x)
{

[a†R(x)+a†L(x)](|1〉〈2|+ |3〉〈4|)+h.c.
}

.

Here, the energy reference is the energy of the ground state
|1〉, andǫ2 = ω21, ǫ3 = ǫ2−∆, andǫ4 = ǫ3+ω43, whereω21
andω43 are the|1〉↔ |2〉, and|3〉↔ |4〉 transition frequencies,
respectively. In the spirit of the quantum jump picture [71],
we include an imaginary term in the energy level to model
the spontaneous emission of the excited states at rateΓ j to
modes other than the waveguide continuum.The spontaneous
emission rate to the 1D waveguide continuum is given byΓ =
2V2/c (from Fermi’s golden rule). Notice that the use of the
rotating wave approximation is justified by the fact that~Γ≪
~ω21, which is the case in current experiments [8, 29, 50–52].

It is convenient to transform the right/left modes to
even/odd modes: a†e(x) = a†R(x) + a†L(−x)/

√
2 and a†o(x) =

a†R(x)− a†L(−x)/
√

2. This decomposes the Hamiltonian into
two decoupled modes. The even mode couples to the atom
and the odd mode is free:H = He+Ho with

He=

∫

dx(−i)~ca†e(x)
d
dx

ae(x)+Hatom+Hc, (4a)

Ho =

∫

dx(−i)~ca†o(x)
d
dx

ao(x). (4b)

The coupling HamiltonianHc is now

H(Λ)
c =

∫

dx~Vδ(x)
{

a†e(x)|1〉〈2|+h.c.
}

, (5a)

H(N)
c =

∫

dx~Vδ(x)
{

a†e(x) (|1〉〈2|+ |3〉〈4|)+h.c.
}

, (5b)

where V =
√

2V. Hereafter, we will concentrate on solv-
ing for the scattering eigenstates in the even space. Be-
cause [H, n̂e+ n̂atom] = [H, n̂o] = 0 for the number operators
n̂e/o ≡

∫

dxâ†e/o(x)âe/o(x) and the atomic excitation ˆnatom, the
total number of excitations in both the even and odd spaces are
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separately conserved. Therefore, a generaln-excitation state
in the even space (n= ne+natom) is given by

|Ψ(Λ)
n 〉e=

[

∫

dxn g(n)(x) â†e(x1) · · · â†e(xn) (6a)

+

∫

dxn−1
∑

j=2,3

f (n)
j (x) S+1 j â†e(x1) · · · â†e(xn−1)

]

|∅,1〉,

|Ψ(N)
n 〉e=

[

∫

dxn g(n)(x) â†e(x1) · · · â†e(xn) (6b)

+

∫

dxn−1
∑

j=2,3

f (n)
j (x) S+1 j â†e(x1) · · · â†e(xn−1)

+

∫

dxn−2 f (n)
4 (x) S+14 â†e(x1) · · · â†e(xn−2)

]

|∅,1〉,

where |∅,1〉 is the zero-photon state with the atom in the
ground state|1〉 andS+i j = | j〉〈i|.

The scattering eigenstates are constructed by imposing
the open boundary condition thatg(n)(x) is a free-bosonic
plane wave in the incident region [42, 45, 58]. That is, for
x1, · · · , xn < 0,

g(n)(x) =
1
n!

∑

Q

hk1(xQ1) · · ·hkn(xQn), hk(x) =
eikx

√
2π
, (7)

whereQ= (Q1, · · · ,Qn) is a permutation of (1, · · · ,n). Solving
the Schrödinger equation with this open boundary condition,
we find the scattering eigenstates for the systems we consider
here (for a detailed derivation for a two-level system, see the
Appendix of Ref. 42). Below, we present the one-, two-, and
three-photon scattering eigenstates, which have the same form

for the 3LS and 4LS cases. In the even space, the one-photon
scattering eigenstate with eigenenergyE = ~ck is given by

g(1)(x) ≡ gk(x) = hk(x)
[

θ(−x)+ tkθ(x)
]

, (8a)

tk =

[

ck− ǫ2+∆+ iΓ3/2
][

ck− ǫ2+ (iΓ2− iΓ)/2
]−Ω2/4

[

ck− ǫ2+∆+ iΓ3/2
][

ck− ǫ2+ (iΓ2+ iΓ)/2
]−Ω2/4

, (8b)

whereθ(x) is the step function. The one-photon scattering
eigenstate is exactly the same for both the 3LS and 4LS be-
cause it takes at least two quanta to excite level|4〉: for single-
photon processes, the 3LS and 4LS cases are equivalent.

For two-photon scattering, we start with a free plane wave
in the regionx1, x2 < 0, and use the Schrödinger equation to
find the wave function first in the regionx1 < 0< x2 and then
for 0< x1, x2 [42]. We arrive at the following two-photon scat-
tering eigenstate with eigenenergyE = ~c(k1+k2):

g(2)(x1, x2) =
1
2!

[
∑

Q

gk1(xQ1)gk2(xQ2) (9a)

+
∑

PQ

B(2)
kP1 ,kP2

(xQ1, xQ2)θ(xQ1)
]

,

B(2)
kP1 ,kP2

(xQ1, xQ2) = eiExQ2

∑

j=1,2

C je
−γ j |x2−x1|θ(xQ21) , (9b)

whereP= (P1,P2) andQ= (Q1,Q2) are permutations of (1,2),
θ(xQi j ) = θ(xQi − xQj ), andB(2) is a two-photon bound state—
Re[γ1,2] > 0. Our solution applies for the general case of ar-
bitrary strength of the control field. Taking the weak control
field limit for the 3LS case, we checked that one recovers the
two-photon solution found in Ref. 43.

Following the same procedure, we obtain the three-photon
scattering eigenstate with eigenenergyE = ~c(k1+k2+k3):

g(3)(x1, x2, x3) =
1
3!

{

∑

Q

gk1(xQ1)gk2(xQ2)gk3(xQ3)+
∑

PQ

[

gkP1
(xQ1)B(2)

kP2 ,kP3
(xQ2, xQ3) θ(xQ2)+B(3)

kP1,kP2 ,kP3
(xQ1, xQ2, xQ3) θ(xQ1)

]

}

,

B(3)
kP1 ,kP2 ,kP3

(xQ1, xQ2, xQ3) = ei
[

kP1 xQ2+(kP2+kP3 )xQ3

]

[

D1 e−γ1|xQ3−xQ1 |+D2 e−γ2|xQ3−xQ1 |

+D3 e−γ1|xQ3−xQ2 |−γ2|xQ2−xQ1 |+D4 e−γ2|xQ3−xQ2 |−γ1|xQ2−xQ1 |
]

θ(xQ32)θ(xQ21), (10)

whereB(3) is a three-photon bound state,P= (P1,P2,P3) and
Q= (Q1,Q2,Q3) are permutations of (1,2,3). The coefficients
C1,2 and D1,2,3,4 in the bound states depend on the system
parameters and have different functional forms for the 3LS
and 4LS. Expressions forγ1,2,C1,2, andD1,2,3,4 are given in
Appendix A. Notice that the bound states here have more
structure than in the two-level case [36, 37, 42]; for exam-
ple, the two-photon bound state hastwocharacteristic binding
strengths instead of one. This is due to the internal atomic
structure: for the 3LS or 4LS, the photonic field couples to
the transitions from the ground state to both of the eigenstates
in the dressed state picture of levels|2〉 and|3〉, giving rise to
two binding strengths. Such bound states are a manifestation
of the photon-photon correlation induced by having more than

two photons interact with the same atom. For the 4LS case,
this leads to strikingly different multiphoton transport behav-
ior compared to the single-photon transport [45].

From the scattering eigenstates, we constructn-photon (n=
1 to 3) scattering matrices (S matrices) using the Lippmann-
Schwinger formalism [37, 42, 72]. The output states are then
obtained by applying theSmatrices on the incident states [42].

III. OUTPUT STATES OF FOCK STATE SCATTERING

In this section, we present the output states from scattering
one-, two-, and three-photon number states off of a 3LS or
4LS. We assume that the incident state propagates to the right
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and the atom is initially in the ground state. Specifically, we
consider incident states in the form of a wavepacket for two
reasons: (i) in practice, any state that contains a finite number
of photons is a wavepacket; (ii) as we will show, sending in
wavepackets with a finite width is crucial in order to observe
the bound state effects in the measurements. The continuous-
mode photon-wavepacket creation operator is given by [73]

a†
α,R/L =

∫

dkα(k) a†R/L(k), (11)

wherea†R/L(k) = (1/
√

2π)
∫

dx eikxa†R/L(x) and the amplitude

α(k) satisfies the normalization condition
∫

dk |α(k)|2 = 1. An
incident right-goingn-photon Fock state is defined as

|nα〉R =
(a†
α,R)n

√
n!
|∅〉. (12)

With the n-photonS matricesS(n), we are able to find the
asymptotic output state long after the scattering (t → +∞)
[42]. Specifically, the single-photon output state is givenby

|ψ(1)〉 =
∫

dkα(k)|φ(1)(k)〉, (13a)

|φ(1)(k)〉 = tk|k〉R+ rk|k〉L, (13b)

|k〉R/L = a†R/L(k)|∅〉, (13c)

tk ≡ (tk+1)/2, rk ≡ (tk−1)/2. (13d)

The two-photon output state reads

|ψ(2)〉 =
∫

dk1dk2
1
√

2
α(k1)α(k2)|φ(2)(k1,k2)〉, (14a)

|φ(2)(k1,k2)〉 =
∫

dx1dx2

[1
2

tk1,k2(x1, x2)a†R(x1)a†R(x2)

+rtk1,k2(x1,−x2)a†R(x1)a†L(x2)

+
1
2

rk1,k2(−x1,−x2)a†L(x1)a†L(x2)
]

|∅〉, (14b)

where

tk1,k2 ≡ tk1tk2hk1(x1)hk2(x2)+
1
4

B(2)
k1,k2

(x1, x2)+k1↔ k2,

rtk1,k2 ≡ tk1rk2hk1(x1)hk2(x2)+
1
4

B(2)
k1,k2

(x1, x2)+k1↔ k2,

rk1,k2 ≡ rk1rk2hk1(x1)hk2(x2)+
1
4

B(2)
k1,k2

(x1, x2)+k1↔ k2,

B(2)
k1,k2

(x1, x2) ≡ ei(k1+k2)x2
∑

j=1,2

C je
−γ j |x2−x1|θ(x21)+ (x1↔ x2).

(15)

In Eq. (14), the output state has three componentstk1,k2,
rtk1,k2 (which is not a product), andrk1,k2, corresponding to
two-photon transmission, one-photon transmitted and one-
photon reflected, and two-photon reflection, respectively.The
first term in each of these functions is the plane-wave term.
The second term is the bound-state term associated with the
momentum-nonconserved (for individual photons) processes.

−4 −2 0 2 4
0

0.5

1

P
(1

)

(a) σ = 0.01, Ω = 0
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0

0.5

1
(b) σ = 0.01, Ω = 1.6
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1

P
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(c) σ = 0.2, Ω = 0

δω

−4 −2 0 2 4
0

0.5

1
(d) σ = 0.2, Ω = 1.6

δω

T
R
loss

FIG. 2. Single-photon transmissionT (solid), reflectionR (dashed)
and loss (dotted) as a function of incident photon detuning,for the
values ofσ (the wavepacket width) andΩ (the strength of the control
field) shown. Here, the effective Purcell factor isP = 9. Note the
sharp EIT window, particularly in the narrow wavepacket case.

The three-photon output state takes a similar form and is
shown in Appendix B.

With the output states, we can study induced photon-photon
correlation by applying various measurements on them. We
present results for transport, spectral entanglement, number
statistics, and second-order correlation in the followingthree
sections. Throughout the paper, we choose incident Gaussian
wavepackets with the spectral amplitude

α(ω) =
1

(2πσ2)1/4
exp

[

− (ω−ω0)2

4σ2

]

, (16)

whereσ is the width andω0 is the central frequency. We
assume that level|3〉 is metastable (Γ3=0) and levels|2〉 and
|4〉 have the same loss rate:Γ2 = Γ4. In addition, we assume
that the transitions|1〉 ↔ |2〉 and|3〉 ↔ |4〉 are at the same fre-
quency,ω21 = ω43, and the detuning of the control field is
zero,∆ = 0. We set the loss rate as our reference frequency
unit: Γ2 = Γ4 = 1. The coupling strength to the waveguide
is characterized by the effective Purcell factorP = Γ/Γ2 = Γ.
Plasmonic waveguide systems have been predicted to have
a large Purcell factor [38] and a value ofP = 1.5 has been
demonstrated experimentally [12]. Slot waveguides have been
theoretically shown to have large values ofP reaching 16. Re-
cently, by carefully tailoring the ends of photonic nanowires,
J. Claudonet al. achieved a value ofP≥ 9 in the experiment
[50, 51]. Furthermore, 5.7 < P < 24 was demonstrated in a
photonic crystal waveguide coupled to a quantum dot [74]. In
superconducting circuits with 1D open superconducting trans-
mission lines [8, 29, 52], even larger values ofP have been
achieved, exceeding 15 [52].
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(a) P = 9, σ = 0.2 (b) P = 9, σ = 0.2 (c) P = 9, σ = 0.2

(d) δω = 0, σ = 0.2 (e) δω = 0, σ = 0.2 (f) δω = 0, σ = 0.2

(g) P = 9, δω = 0 (h) P = 9, δω = 0 (i) P = 9, δω = 0

FIG. 3. (color online) Two-photon transmission and reflection probabilities for the 3LS and 4LS cases. (a)-(c) As a function of incident photon
detuningδω with P= 9 andσ = 0.2. (a) Probability that both photons are transmitted (and hence are right-going,P(2)

RR). (b) Probability that

one photon is transmitted and one reflected (right-left,P(2)
RL). (c) Probability that both photons are reflected (both left-going,P(2)

LL). (d)-(f) As
a function ofP with δω = 0 andσ = 0.2. (g)-(i) As a function ofσ with P= 9 andδω = 0. The label PW refers to the contribution from the
plane-wave term only, while BS refers to all the other contributions involving bound-state terms [Eq. (19)]. Here, we set Ω = 1.6. The bound
state effect enhances transparency in the 3LS case but blocks two-photon transmission past a 4LS. Note that a non-zeroσ is crucial to observe
these effects.

IV. TRANSPORT OF FEW-PHOTON STATES

A. Single-Photon

With the output state in Eq. (13), the transmission (T), and
reflection (R) probabilities for a single-photon are

T =
∫

dk |R〈k|ψ(1)〉|2 =
∫

dkα2(k)|tk|2, (17a)

R=
∫

dk |L〈k|ψ(1)〉|2 =
∫

dkα2(k)|rk|2, (17b)

which are the same for both the 3LS and 4LS cases. Fig-
ure 2 showsT, R, and the loss (1− T −R) as a function of
the detuningδω ≡ ω0−ω21 at P= 9. Clearly, EIT appears in
Fig. 2(b), when the control field is on. As one increases the
width of the wavepacket, as shown in Fig. 2(d), the EIT peak
is suppressed asσ becomes comparable with the width of EIT
window (∼ Ω2/Γ), see Eqs. (8) and (13). In Fig. 2(a), and (c),
we setΩ = 0, which means the control field is off and the 3LS
(4LS) becomes a reflective two-level system [38, 42, 45]. No-
tice that the width of the reflective peak in theΩ = 0 case is
∼ Γ and hence is insensitive to the increase ofσ from 0.01 to
0.2.

B. Two-Photon

The two-photon transmission and reflection probabilities
are given by

P(2)
RR=

∫

dk1dk2
1
2
|RR〈k1,k2|ψ(2)〉|2, (18a)

P(2)
RL=

∫

dk1dk2|RL〈k1,k2|ψ(2)〉|2, (18b)

P(2)
LL =

∫

dk1dk2
1
2
|LL〈k1,k2|ψ(2)〉|2, (18c)

whereP(2)
RR, P(2)

RL, andP(2)
LL are the probabilities to observe two

transmitted photons, one transmitted and one reflected pho-
tons, and two reflected photons, respectively. We separate the
two-photon transmission and reflection probabilities intotwo
parts: (P(2))PW is the contribution from indepedent single-
particle transmission (denoted PW for “plane wave”), and
(P(2))BS is the contribution from both the bound-state term
in Eq. (14) and the interference between the plane wave and
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bound-state terms. As an example,P(2)
RR is split as follows

P(2)
RR=

∫

dk1dk2|t̃2(k1,k2)+ B̃(k1,k2)|2

= (P(2)
RR)PW+ (P(2)

RR)BS, (19a)

(P(2)
RR)PW =

∫

dk1dk2|t̃2(k1,k2)|2, (19b)

(P(2)
RR)BS =

∫

dk1dk2
[

t̃∗2(k1,k2)B̃(k1,k2)

+t̃2(k1,k2)B̃∗(k1,k2)+ |B̃(k1,k2)|2], (19c)

where

t̃2(k1,k2) = α(k1)α(k2)tk1tk2,

B̃(k1,k2) =
i

4c

∑

j=1,2

( 1
k1+ iγ j

+
1

k2+ iγ j

)

(20)

×
∫

dkα(k) α(k1+k2−k) C j (k,k1+k2−k) .

Figure 3 shows the two-photon transmission and reflection
probabilities for both the 3LS and 4LS cases, decomposed in
this way. Because the PW term is from the single-particle
solution, it is the same for both the 3LS and 4LS. However,
(P(2))BS is quite different for the 3LS and 4LS. Figure 3(a)-(c)
showsP(2) as a function of incident photon detuning. Close to
resonance, in the 3LS case (P(2))BS enhances the two-photon
transmissionP(2)

RR while suppressingP(2)
RL. In contrast, in the

4LS case (P(2))BS has exactly the opposite effect.This leads to
enhanced multiphoton EIT for the 3LS [43] and photon block-
ade for the 4LS [45].Such enhanced EIT and photon blockade
are caused by the interference between the two multiphoton
scattering pathways: passing by the atom as independent par-
ticles or a composite particle in the form of bound states (for a
detailed analysis, see the Supplementary Material of Ref. 45).

In Fig. 3(d)-(f), we plotP(2) as a function the effective Pur-
cell factorP for the on-resonance case,δω = 0. It is remark-
able that, forP(2)

RR andP(2)
RL, (P(2))BS becomes comparable to

(P(2))PW in the strong coupling regime. An important impli-
cation is that the bound-state effect can be observed in pho-
tonic transport experiments, given recent rapid experimental
advances [8, 29, 50–52].

Fig. 3(g)-(i) showsP(2) as a function of the wavepacket
width σ with P = 9 and the photons on resonance with the
atom. There are several notable features. First, asσ ap-
proaches zero, (P(2))BS shrinks to zero for both the 3LS
and 4LS cases. This further highlights that sending in a
wavepacket with a finite width is crucial to observe the bound
state effect in photonic transport. Physically, this occurs be-
cause, in theσ = 0 limit under EIT conditions, the atom is
fully transparent (T = 1) to the incoming photons and hence
the atom-mediated photon-photon interaction is absent, in-
hibiting any bound state effect. For the general case without
EIT conditions, the above conclusion still holds: asσ→ 0,
the bound state effect vanishes in multiphoton transport. This
is because the bound-state term in Eq. (20) originates from
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FIG. 4. Photon blockade and photon-induced tunneling in transmis-
sion. Photon blockade strengthsP21 (solid line) andP31 (dashed
line) as a function of incident photon detuningδω, P andσ for (a)-
(c) the 3LS case, and (d)-(f) the 4LS case. Here,Ω = 1.6. The 3LS
causes photon-induced tunneling while the 4LS causes photon block-
ade.

the coincident photons at the atomic site: asσ → 0, the
wavepacket becomes infinitely long and the probability of co-
incidence vanishes. Second, notice that while (P(2))BS ap-
proaches zero forP(2)

RR asσ increases, its magnitude forP(2)
RL

and P(2)
LL increases after an initial decrease. This is due to

the enhanced interference between the plane-wave and bound-
state terms [Eq. (14)] forP(2)

RL andP(2)
LL.

The result for three photon scattering shows behavior sim-
ilar to the two-photon case. To avoid duplication, we do not
present it here.

C. Photon Blockade and Photon-Induced Tunneling

To quantify the observed enhancement of EIT and photon
blockade in Fig. 3, we define the strength of photon block-
adeP21 for the two-photon case by the conditional probabil-
ity for transmitting a second photon given that the first photon
has already been transmitted, normalized by the single-photon
transmission probability. Similarly, we can defineP31 for the
three-photon case. We thus have

P21≡
P(2)

RR

T2
, P31≡

P(3)
RRR

T3
. (21)

As shown in Fig. 4(a)-(c), for the 3LS case, the single-photon
EIT is enhanced in two-photon and three-photon transmission
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FIG. 5. Two-photon joint spectrum of the output states afterscattering off a 3LS and 4LS in the case of a spectrally narrow incident wavepacket.
Panels (a)-(c) show the uncorrelated spectraT2(ω1,ω2), RT(ω1,ω2), andR2(ω1,ω2), respectively. Panels (d)-(f) show the joint spectra of the
transmitted field after scattering off a 3LS for two transmitted photons, for one transmitted and one reflected, and for two reflected photons,
respectively. Panels (g)-(i) show the joint spectra of the transmitted field after scattering off a 4LS. Strong spectral entanglement is indicated
in panel (i); this reflected field is essentially a pure two-photon bound state. System paramters:P= 9,Ω = 1.6, δω = 0,σ = 0.01.

by interaction with the 3LS. Pronounced photon-induced tun-
neling [75] due to the strong correlations between transmit-
ted photons occurs in this case:P21,P31 > 1. In contrast,
as shown in Fig. 4(d) and (e), scattering from a 4LS exhibits
a different behavior within the EIT window, namely, photon
blockade [45]:P21,P31 < 1. For increasing coupling strength
[Fig. 4(e)], P21 and P31 approach zero asymptotically when
the incident photons are on resonance with the 4LS. In ad-
dition, from Fig. 4(c) and (f), we confirm that both photon
blockade and photon-induced tunneling go away in the zero-
width limit (σ→ 0).

V. SPECTRAL ENTANGLEMENT OF PHOTON PAIRS

It is clear that the two-photon bound state in Eq. (14) is
entangled in the momentum (or equivalently frequency) de-
gree of freedom. To probe this spectral aspect of the two-
photon entanglement, we rewrite the two-photon output state
[Eq. (14)] in frequency space as

|ψ(2)〉 =
∫

dω1dω2

[

fRR(ω1,ω2)a†R(ω1)a†R(ω2) (22)

+ fRL(ω1,ω2)a†R(ω1)a†L(ω2)

+ fLL(ω1,ω2)a†L(ω1)a†L(ω2)
]

|∅〉,

where fRR(ω1,ω2), fRL(ω1,ω2), and fLL(ω1,ω2) are the two-
photon amplitudes for a transmitted pair, a pair of one trans-
mitted and one reflected, and a reflected pair, respectively.Ex-

plicitly, they take the following form

fRR(ω1,ω2) = t̃2(ω1,ω2)+ B̃(ω1,ω2), (23a)

fRL(ω1,ω2) = 2[r̃t(ω1,ω2)+ B̃(ω1,ω2)], (23b)

fLL(ω1,ω2) = r̃2(ω1,ω2)+ B̃(ω1,ω2), (23c)

t̃2(ω1,ω2) = tω1tω2α(ω1)α(ω2), (23d)

r̃t(ω1,ω2) = tω1rω2α(ω1)α(ω2), (23e)

r̃2(ω1,ω2) = rω1rω2α(ω1)α(ω2), (23f)

where B̃(ω1,ω2) is given in Eq. (20). The first term in
f (ω1,ω2) is the uncorrelated contribution, while the second
term signals photon correlation. From Eq. (23), we define the
joint spectral function of the two-photon states to be [76]

Fαβ=RR,RL,LL(ω1,ω2) = | fαβ(ω1,ω2)|2 . (24)

For the purpose of comparison, we also define the uncorre-
lated spectral function of the two-photon states,

T2(ω1,ω2) ≡ |t̃2(ω1,ω2)|2, (25a)

RT(ω1,ω2) ≡ 4|r̃t(ω1,ω2)|2, (25b)

R2(ω1,ω2) ≡ |r̃2(ω1,ω2)|2 . (25c)

Note we are usingRT to denote the joint spectral function for
one transmitted and one reflected (uncorrelated) pair.

Figure 5 shows the two-photon uncorrelated and joint spec-
tra in the case of on-resonance photons (δω = 0) and for a spec-
trally narrow wavepacket (σ = 0.01). With the chosen param-
eters, the EIT peak width is much larger than the wavepacket,
∼ Ω2/Γ � 0.28≫ σ. Therefore, for the uncorrelated pair of
transmitted photons [T2, Fig. 5(a)], there is only a sharp peak
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FIG. 6. Nonclassical light source. Photon number statistics quantified by log10(Pn/Pn,Poisson), wherePn and Pn,Poissonare then-photon
probability in the transmitted field and in a coherent state with the same mean photon number, respectively. Panels (a)-(d) show the results
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the multiphoton content of the pulse because of multi-photon EIT; in contrast, the photon blockade in the 4LS case suppresses essentially all
multi-photon content, thus realizing a single-photon source.

atω1 = ω2 = ω0 caused by the Gaussian spectrum of the in-
cident photons. For the uncorrelated pair of one transmitted
and one reflected photons (RT), there are two peaks resulting
from the interplay of the spectrum of the incident photons and
the rapid increase of the reflection probability away from the
EIT peak (see Fig. 2). Accordingly, there are four peaks for
the case of two reflected photons, as shown in Fig. 5(c).

Figure 5(d)-(f) shows the joint spectra for the case of 3LS
scattering. It is evident that the joint spectra of the pair of
two transmitted photons (FRR), and the pair of one transmit-
ted and one reflected photons (FRL), are dominated by the un-
correlated transmission. The joint spectrum of the pair of two
reflected photons [Fig. 5(f)] is slightly modified from the un-
correlated spectrum along the diagonal line. This is causedby
the correlated bound state term̃B(ω1,ω2). For the 3LS case
with the chosen parameters, the correlation termB̃(ω1,ω2) is
of order 10−1 and hence is too weak to affectFRR andFRL.

In contrast, for the 4LS case [Fig. 5(g)-(i)],FRL and FLL
are greatly modified by the correlation term, whileFRR is still
dominated by the uncorrelated transmission. In particular, as
shown in Fig. 5 (i), the joint spectrum of the reflected pair is
dominated byB̃(ω1,ω2). This pair is primarily made up of a
pure two-photon bound state:the frequencies of the photon
pair are correlated along the lineω1+ω2 = 2ω0 with uncer-
taintyσ. A similar correlated photon pair was obtained in a
waveguide-cavity system [77].

The two-photon bound state is a composite object of pho-
tons with effective attractive interaction; it displays strong
bunching behavior in photon-photon correlation measure-
ments. Such a photon pair is highly entangled in frequency
because measurement of the frequency of one photon unam-
biguously determines that of the other. This strong spectral

correlation provides more information per photon pair and
could be used to implement large-alphabet quantum commu-
nication [57].

VI. COHERENT-STATE SCATTERING

In this section, we study the scattering of a coherent state off

a 3LS or 4LS. We probe the strong photon-photon correlation
in the transmitted field by studying first the number statistics
and then the second-order correlation function.

A. Number Statistics

We consider the case that the 3LS or 4LS is in its ground
state initially and there is an incident continuous-mode coher-
ent state of mean photon numbern= 1, spectral widthσ= 0.2,
and central frequency on resonance with the atom,ω0 = ω21.
In this case, the contribution from the four-photon state can
be neglected (∼ 1.6%). The photon-number statistics in the
transmitted field is obtained by first applying theSmatrices to
the incident state and then measuring the transmitted field,as
described in Ref. 42.

We present the results for both the 3LS and 4LS cases in
Fig. 6 by taking the ratio of the photon-number distributionin
the transmitted fieldPn (n= 0,1,2,3) to that of a coherent state
Pn,Poissonhaving the same mean photon number as the trans-
mitted field. From Fig. 6(a)-(d), it is clear that when the EIT
condition is satisfied, the 3LS induces strong photon-photon
interactions, which in turn reduce the one-photon probability
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and redistributes the weight to the two- and three-photon prob-
abilities. This comes about because the bound state in the 3LS
case enhances multiphoton EIT, as we have shown in Sec. IV
B and C.

In contrast, for the 4LS case shown in Fig. 6(e)-(h), in most
of the parameter space, we have enhanced single-photon prob-
ability while suppressed multiphoton content:P1 > P1,Poisson
and P2(3) < P2(3),Poisson. This gives rise to a sub-Poissonian
single-photon source [45], which comes about because, while
EIT occurs in the single-photon transmission, multiphoton
states experience photon blockade, as shown in Sec. IV B and
C. Therefore, we demonstrate that the waveguide-atom sys-
tem is capable of generating nonclassical light, which may
find applications in quantum cryptography [78–81] or dis-
tributed quantum networking [13, 14].

B. Second-order Correlation

To further probe the nonclassical character of the transmit-
ted field, we calculate the second-order correlation function
g(2)(τ), which is often measured experimentally. For a steady
state,g(2) of the transmitted field is defined as

g(2)(τ) = lim
t→∞

〈a†R(x, t) a†R(x, t+ τ) aR(x, t+ τ) aR(x, t)〉
〈a†R(x, t) aR(x, t)〉〈a†R(x, t+ τ) aR(x, t+ τ)〉

. (26)

As shown in Appendix C, for our system, this definition is
equivalent to following expression in the Schrödinger picture,

g(2)(τ) =
〈ψ|a†R(x) a†R(x+cτ) aR(x+cτ) aR(x)|ψ〉

〈ψ|a†R(x) aR(x)|ψ〉〈ψ|a†R(x+cτ) aR(x+cτ)|ψ〉
, (27)

where|ψ〉 is the asymptotic output state. With a weak inci-
dent coherent state (mean photon numbern≪ 1), we con-
sider only the contribution of the two-photon and one-photon
states in the numerator and denominator in Eq. (27), respec-
tively. Substitution of the single-photon and two-photon trans-
mission wavefunctions from Eqs. (13) and (14) into Eq. (27)
yields the explicit expression

g(2)(τ) =
|
∫

dk1dk2 α(k1) α(k2) [tk1tk2(e−ik1τ +e−ik2τ)+B(τ)]|2

|
∫

dk1dk2 α(k1) α(k2) tk1tk2(e−ik1τ +e−ik2τ)|2
,

B(τ) = π(C1e−γ1cτ +C2e−γ2cτ) . (28)

In the numerator, the first term and the second termB(τ) come
from the plane wave and bound state pieces, respectively, in
Eq. (14).

Figure 7(a) showsg(2)(0), which is the same for the 3LS
and 4LS cases. The presence of level|4〉 does not contribute
to g(2)(0): it takes two quanta to excite|4〉, which then deex-
ites in the form of cascade emission with zero probability to
emit two photons at the same time. In Fig. 7(a), there is rich
bunching and anti-bunching behavior, caused by the two-body
bound state. Atτ=0, the amplitude of the bound state term in
Eq. (28) isB(0) = −2rk1rk2, whererk1(2) is the single-photon
reflection coefficient. Hence, in the numerator ofg(2)(0), the
amplitudes of the plane-wave and bound-state terms are out
of phase. WhenP = 0, the bound state term is zero and
g(2)(0)= 1. AsP increases, the strength of the bound state in-
creases, causingg(2)(0) to decrease until the bound state term
cancels the plane wave term exactly, producing complete anti-
bunching. Further increase ofP leads to a rise ofg(2)(0) and
eventually photon bunching.

By comparing Fig. 4(c)-(d) and Fig. 7(a), we find that pho-
ton anti-bunching and photon blockade, and photon bunching
and photon-induced tunneling donot have a one-to-one cor-
respondence. For example, in the whole parameter regime of
of Fig. 4(d), photon blockade is present; while in Fig. 7, there
is a large region of parameter space where photon bunching
[g(2)(0) > 1] instead of photon anti-bunching [g(2)(0) < 1] is
observed. This is because we are studying a state of contin-
uous modes and performing instantaneous measurements at
two space-time points (x, t) and (x, t+τ). If one integrates over
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the timet in the measurement [73], as done in many experi-
ments in which the detector integration time is much longer
than the wavepacket duration, one finds a one-to-one corre-
spondence between photon anti-bunching and photon block-
ade, and photon bunching and photon-induced tunneling.

The time dependence ofg(2)(τ) is shown in Fig. 7(b). There
are two characteristic time scales:τ1 = 1/Re[cγ1] and τ2 =

1/Re[cγ2]. Within the short time scale,g(2) can display either
bunching or anti-bunching for both the 3LS and 4LS cases,
depending on the system parameters, as shown in the inset of
Fig. 7. On the long time scale, for the 3LS case,g(2) shows
bunching—g(2)(τ) > 1—corresponding to the enhanced mul-
tiphoton transmission already apparent from both the photon-
induced tunneling [Fig. 4(c)] and the enhanced multiphoton
content in the number statistics [Fig. 6]. For the 4LS case,
anti-bunching [g(2)(τ) < 1] dominates at long times, corre-
sponding to the photon blockade observed in Fig. 4(d) and
the enhanced single-photon content in Fig. 6.Hence, for our
pulsed output state, g(2)(τ = 0) displays rich physics due to
the induced photon-photon correlation, but is not necessarily
a good guide to the photon statistics.

VII. CONCLUSIONS

In summary, we present a waveguide-QED-based scheme
to generate strongly-correlated photons, of interest for both
many-body physics and quantum information science. Pho-
ton bound-states appear in the scattering eigenstates as a man-
ifestation of the photon-photon correlation. As a result, while

a single-photon experiences EIT in the proposed waveguide-
atom system, multiphoton states can display either photon
blockade or photon-induced tunneling, depending on the de-
tailed structure of the “atom”. From either the photon block-
ade or photon-induced tunneling that occurs, nonclassical
light sources can be generated by sending coherent states into
the system. In the most interesting case, a 4LS removes the
multiphoton content from the coherent state, leaving a pulse
with only zero or single photon content.

In addition, we find that the system can be used to produce
highly entangled photon pair states in frequency space, po-
tentially of use for large alphabet quantum communication.
Finally, we show that rich bunching or anti-bunching behav-
ior is present in the second-order correlation function as a
signature of the strong photon-photon correlated mediatedby
the “atom”. Given the recent rapid experimental advances in
several realizations, the proposed waveguide-QED system is
emerging as a promising route tocavity-free open quantum
networks, which are crucial for both large-scale quantum com-
putation and long-distance quantum communication.
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APPENDIX A: EXPRESSIONS FOR γ1,2, C1,2 AND D1,2,3,4

In this Appendix, we give explicit expressions for the constantsγ1,2, C1,2, andD1,2,3,4 that appear in Eqs. (9) and (10) for
both the 3LS and 4LS scattering eigenstates.γ1,2 is the same for both cases and is given by

cγ1 =
Γ+Γ2+Γ3

4
− ξ+ i

(

∆

2
+ ǫ2+η

)

, cγ2 =
Γ+Γ2+Γ3

4
+ ξ− i

(

∆

2
− ǫ2−η

)

, (A1a)

ξ =

√
2

4

(

√

χ2+4∆2Γ′2−χ
)1/2

, η =

√
2

4

(

√

χ2+4∆2Γ′2+χ

)1/2

, (A1b)

Γ′ =
Γ+Γ2−Γ3

2
, χ = ∆2+Ω2−Γ′2 . (A1c)

For theΛ-type 3LS andN-type 4LS cases,C1,2 andD1,2,3,4 take the same form

C(Λ,N)
1 (k1,k2) =

β(Λ,N)(k1,k2)−α(k1,k2)λ2

λ1−λ2
, C(Λ,N)

2 (k1,k2) =
−β(Λ,N)(k1,k2)+α(k1,k2)λ1

λ1−λ2
,

D(Λ,N)
1 (k1,k2,k3) =

β
(Λ,N)
13 (k1)−α13(k1)λ2

λ1−λ2
C(Λ,N)

1 (k2,k3), D(Λ,N)
2 (k1,k2,k3) =

−β(Λ,N)
24 (k1)+α24(k1)λ1

λ1−λ2
C(Λ,N)

2 (k2,k3),

D(Λ,N)
3 (k1,k2,k3) =

−β(Λ,N)
13 (k1)+α13(k1)λ1

λ1−λ2
C(Λ,N)

1 (k2,k3), D(Λ,N)
4 (k1,k2,k3) =

β
(Λ,N)
24 (k1)−α24(k1)λ2

λ1−λ2
C(Λ,N)

2 (k2,k3),

λ1 =
Γ+Γ2−Γ3

4
+ ξ+ i

(

∆

2
+η

)

, λ2 =
Γ+Γ2−Γ3

4
− ξ+ i

(

∆

2
−η

)

, (A2)
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where the superscriptΛ stands for the 3LS andN for the 4LS.α’s andβ’s in the above equation read

α(k1,k2) = −
(tk1 −1)(tk2 −1)

2π
, (A3a)

β(k1,k2)(Λ) =
ΓΩ2

16π

[

tk1 −1

ρk2

+
tk2 −1

ρk1

]

, β(k1,k2)(N) =
ΓΩ2

16π

[

tk1 − ν(k1,k2)

ρk2

+
tk2 − ν(k1,k2)

ρk1

]

, (A3b)

ν(k1,k2) =
ǫ4−E− (iΓ4− iΓ)/2
ǫ4−E− (iΓ4+ iΓ)/2

, ρk =

(

ck− ǫ2+∆+
iΓ3

2

)(

ck− ǫ2+
iΓ2+ iΓ

2

)

− Ω
2

4
, (A3c)

wheretk is given in Eq. (8b) in the main text.α13, α24, β13 andβ24 are given by

α13(k) = α24(k) = −2(tk−1)
√

2π
, (A4a)

β13(k)(Λ) =
1
√

2π

[

ΓΩ2

4ρk
−

(

tk−1
)

λ1

]

, β13(k)(N) =
1
√

2π

{

ΓΩ2

4ρk
−

[

tk−µ1(k)
]

λ1

}

, (A4b)

β24(k)(Λ) =
1
√

2π

[

ΓΩ2

4ρk
−

(

tk−1
)

λ2

]

, β24(k)(N) =
1
√

2π

{

ΓΩ2

4ρk
−

[

tk−µ2(k)
]

λ2

}

, (A4c)

µ1,2(k) =
ǫ4− iΓ4/2−ck+ iΓ/2+ icγ1,2

ǫ4− iΓ4/2−ck− iΓ/2+ icγ1,2
. (A4d)

APPENDIX B: THREE-PHOTON ASYMPTOTIC OUTPUT STATE

In this Appendix, we present the asymptotic output state after scattering a three-photon right-going Fock state off a 3LS or
4LS. The form of the wave functions is

|ψ(3)〉 =
∫

dk1dk2dk3
1
√

3!
α(k1)α(k2)α(k3)|φ(3)(k1,k2,k3)〉,

|φ(3)(k1,k2,k3)〉 =
∫

dx1dx2dx3

[ 1
3!

tttk1,k2,k3(x1, x2, x3)a†R(x1)a†R(x2)a†R(x3)+
1
2!

ttrk1,k2,k3(x1, x2,−x3)a†R(x1)a†R(x2)a†L(x3)

+
1
2!

trrk1,k2,k3(x1,−x2,−x3)a†R(x1)a†L(x2)a†L(x3)+
1
3!

rrr k1,k2,k3(−x1,−x2,−x3)a†L(x1)a†L(x2)a†L(x3)
]

|∅〉 . (B1)

Here, tttk1,k2,k3(x1, x2, x3), ttrk1,k2,k3(x1, x2, x3), trrk1,k2,k3(x1, x2, x3), and rrr k1,k2,k3(x1, x2, x3) are the terms representing three-
photons being transmitted, two being transmitted and one reflected, one being transmitted and two reflected, and all three being
reflected, respectively. They take the following general form (α,β,γ = t orr)

αβγk1,k2,k3(x1, x2, x3) =
∑

Q

αkQ1
βkQ2

γkQ3
hkQ1

(x1)hkQ2
(x2)hkQ3

(x3)+
1
4

∑

Q

[

αkQ1
hkQ1

(x1)B(2)
kQ2,kQ3

(x2, x3)

+βkQ1
hkQ1

(x2)B(2)
kQ2,kQ3

(x1, x3)+γkQ1
hkQ1

(x3)B(2)
kQ2,kQ3

(x1, x2)
]

+
1
8

∑

PQ

B(3)
kP1,kP2 ,kP3

(xQ1, xQ2, xQ3). (B2)

wheretk andrk are the single-photon transmission and reflection probabilities given in Eq. (13c),B(2)
k1,k2

(x1, x2) is given in Eq. (15),

andB(3)
k1,k2,k3

(x1, x2, x3) is given in Eq. (10). In Eq. (B2), the first term comes from theprocess of three-photons passing by the
atom as independent particles. The second term correspondsto the process of one-photon passing through as an independent
particle while the other two photons form a composite particle in a two-photon bound-state (with three possible combinations).
The third term originates from the three-photon bound-state process.

APPENDIX C: SECOND-ORDER CORRELATION FUNCTION IN THE SCHR ÖDINGER PICTURE

In this Appendix, we demonstrate the equivalence between Eq. (26) and Eq. (27) in the main text. Typically, the second-order
correlation function is defined in the Heisenberg picture as,

g(2)(x1, t1; x2, t2) =
〈ψ0|â†(x1, t1)â†(x2, t2)â(x2, t2)â(x1, t1)|ψ0〉

〈ψ0|â†(x1, t1)â(x1, t1)|ψ0〉〈ψ0|â†(x2, t2)â(x2, t2)|ψ0〉
(C1)
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where|ψ0〉 is the state in the Heisenberg picture, or equivalently, theinitial state in the Schrödinger picture and ˆa†(x, t) is the
operator in the Heisenberg picture. ˆa†(x, t) can be expressed in terms of the operator in the Schrödinger picture as

â†(x, t) = eiHt/~ â†(x) e−iHt/~. (C2)

Takingx1 = x2 = x in Eq. (C1), we obtain the two-time correlation function

g(2)(x, t1; x, t2) =
〈ψ0|â†(x, t1)â†(x, t2)â(x, t2)â(x, t1)|ψ0〉

〈ψ0|â†(x, t1)â(x, t1)|ψ0〉〈ψ0|â†(x, t2)â(x, t2)|ψ0〉
. (C3)

If the field operator satisfies the following relation

â†(x, t) = â†(x−ct), (C4)

g(2)(x, t1; x, t2) is then the same asg(2)(x, t1; x′, t1) with x′ = x− c(t2− t1). Using Eqs. (C2) and (C4), we can rewrite (C3) in the
Schrödinger picture as

g(2)(x, t1; x′, t1) =
〈ψ(t1)|â†(x)â†(x′)â(x′)â(x)|ψ(t1)〉

〈ψ(t1)|â†(x)â(x)|ψ(t1)〉〈ψ(t1)|â†(x′)â(x′)|ψ(t1)〉
, (C5)

where|ψ(t1)〉 is the state att = t1 evolving from the initial state|ψ0〉 under the HamiltonianH. Therefore, as long as Eq. (C4)
holds, the definition ofg(2) in the Heisenberg picture Eq. (C3) is equivalent to Eq. (C5) defined in the Schrödinger picture.
Physically, this means that measuring the two-time correlation at the same spatial position is equivalent to measuringthe spatial
correlation at the same time for a non-dispersive field.

In our problem, it is straightforward to show that Eq. (C4) issatisfied by the right-going field. With the Hamiltonian defined
in Eq. (1) in the main text, the equation of motion for the right-going field in the 4LS case is

(

∂

∂x
+

1
c
∂

∂t

)

â†R(x, t) =
iV
c

[

S+12(t)+S+34(t)
]

δ(x). (C6)

Formally, the above equation can be integrated to yield

â†R(x, t) = â†R, f ree(x−ct)+
iV
c

[

S+12(t− x/c)+S+34(t− x/c)
]

θ(x). (C7)

A similar expression can be obtained in the 3LS case. Hence, Eq. (C4) holds, and we use Eq. (C5) to evaluate the second-order
correlation function of the transmitted field with|ψ(t1)〉 being our final output state.
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[65] L. Slodička, G. Hétet, S. Gerber, M. Hennrich, and R. Blatt,
Phys. Rev. Lett.,105, 153604 (2010).

[66] M. Albert, A. Dantan, and M. Drewsen, Nat. Photon.,5, 633
(2011).

[67] H. Chang, H. Wu, C. Xie, and H. Wang, Phys. Rev. Lett.,93,
213901 (2004).

[68] M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl,L. Stef-
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