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We develop a temporal coupled-mode theory to describe the interaction of plane

wave with an individual scatterer having an arbitrary shape. The theory involves the

expansion of the fields on cylindrical or spherical wave basis, for the two-dimensional

and three-dimensional cases respectively, and describes the scattering process in terms

of a background scattering matrix and the resonant radiation coefficients into different

cylindrical or spherical wave channels. This theory provides a general formula for

the scattering and absorption cross sections. We show that for a sub-wavelength

asymmetric scatterer with a single resonance, the scattering and absorption cross

sections can exceed the single-resonance limit for some specific incident angles of

illumination, but the sum of these cross sections over all angles has an upper limit.

We validate the theory with numerical simulations of a metallic scatterer that does

not have any rotation symmetry.
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I. INTRODUCTION

The study of light scattering and absorption by individual sub-wavelength objects, such

as nanoparticle or antenna, is of great importance in nanophotonics and electromagnetics.

The presence of a resonance in such an object can profoundly influence its scattering and

absorption properties, resulting in having its electromagnetic cross section far exceed its ge-

ometric cross section1, as well as complex resonance-based interference phenomena including

Fano interference2–9, all-optical analogue to electromagnetically induced transparency10–15,

super-scattering16,17, and the anomalous absorption and scattering18,19. It is therefore of

importance to develop a theoretical framework that elucidates the role of resonance in these

sub-wavelength objects.

The temporal coupled-mode theory formalism provides a very useful general framework to

study the interaction of a resonance with external waves. This formalism was initially devel-

oped and applied for analyzing waveguide-resonator interactions in integrated optics20–22. In

these studies, the incident waves were typically expanded on the basis of propagating modes

of the waveguides. This formalism has also been used to study the interaction of plane wave

with grating structures23–25, where the incident waves were expanded on a plane-wave basis.

More recently, the temporal coupled-mode theory formalism with a plane-wave basis has

been used to study the behavior of an individual or two slit apertures26,27.

For the study of individual isolated objects, the cylindrical wave basis in two dimensions,

or the spherical wave basis in three dimensions, provides a more natural basis for expanding

the external waves. Temporal coupled-mode theory with either a cylindrical or a spherical

wave expansion of the external wave has been developed in Refs. 7 and 28. All these works7,28,

however, only deal with particles that have cylindrical or spherical shapes. Considering the

great importance of a large number of antennas or nanoparticle structures that do not have

a symmetric shape, in this paper we generalize the temporal coupled-mode theory on a

cylindrical or spherical wave basis, to structures without rotational symmetry, and consider

the influence of the incident angle of illumination.

The paper is organized as follows: In Section II, we present the temporal coupled-mode

theory for the two-dimensional case. We derive a general formula for the scattering matrix

when the scatterer supports a single resonance. The theory is then applied to calculate

the scattering and absorption cross sections, in particular for small particles with sizes far
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smaller than the wavelength of light. In Section III, we compare the theoretical predictions

to numerical simulations for a metallic scatterer without any rotation symmetry. Finally,

we extend the theory to the three dimensions in Sec. IV.

II. THEORY

A. General scattering theory for arbitrary-shaped scatterers

We start from the general scattering theory in the two-dimensional (2D) case where

a scatterer is uniform in the z direction. Consider the scatterer located at the origin,

surrounding by air. When a TM wave (with its magnetic field H polarized along the z-

direction) impinges on the scatterer, the total field in the air region outside the scatterer

can be written as:

Htotal =

∞
∑

m=−∞

A0

(

a+mH
(2)
|m|(kρ) exp(ilθ) + a−mH

(1)
|m|(kρ) exp(imθ)

)

, (1)

where (ρ, θ) is the polar coordinates oriented at the origin, k is the wave number in air, and

H
(1)
m (H

(2)
m ) is the m-th order Hankel function of the first (second) kind. Here we take the

convention that the field varies in time as exp(−iωt). So a+m and a−m can be identified as the

incoming and outgoing wave amplitudes, respectively. With the choice of

A0 =

√

ωε0
2

, (2)

|a+m|
2
and |a−m|

2
represent the power of the incoming and outgoing cylindrical waves in the

m-th channel and have the unit of Watt
meter

[7]. Therefore, the total powers carried by incoming

and outgoing waves are

P± =
∞
∑

m=−∞

∣

∣a±m
∣

∣

2
=
(

a±
)†
a±, (3)

where a± is a column vector composed by a±m as

a± =























...

a±−1

a±0

a±1
...























(4)
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Following Refs. 29 and 30, we define a scattering matrix S that connects a− with a+ as

a− = Sa+. (5)

When the scatterer is lossless, by energy conservation, S is unitary, i.e.

S†S = I. (6)

In addition, if the system satisfies time-reversal symmetry, S needs to be further con-

strained. A time-reversal operation transforms an outgoing (incoming) wave in the channel

m to an incoming (outgoing) wave in the channel (−m). Thus, for an outgoing wave de-

scribed by a−, its time-reversed counterpart is an incoming wave:

ã+ = Ôa−∗
(7)

Similarly, the time-reversed counterpart of an incoming wave described by a+ is

ã− = Ôa+∗
(8)

Here Ômn = δm,−n and Ô has a matrix form:

Ô =





















0 . .
.

1

1

1

. .
.

0





















. (9)

For the given set of incoming and outgoing waves satisfying Eq. (5), if the system has

time-reversal symmetry, we should also have from Eqs. (7) and (8)

ã− = Sã+ (10)

and therefore

S−1 = ÔS∗Ô. (11)

Combining Eqs. (6) and (11), we see that in a system that conserves energy and has time-

reversal symmetry, S should satisfy

ST = ÔSÔ (12)
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B. Temporal coupled-mode theory in the single-resonance case

We now apply the temporal coupled-mode theory to calculate S for the case when the

scatterer supports a single resonant mode. We consider the amplitude c of the resonance

normalized such that |c|2 corresponds to the energy inside the resonator20 with the unit

of J
meter

which is appropriate for 2D systems. Using the temporal coupled-mode theory

formalism20,24, the dynamic equation for the amplitude c is

dc

dt
= (−iω0 − γ0 − γ) c+ κ

Ta+ (13a)

a− = Ba+ + cd (13b)

where ω0 is the resonant frequency, γ0 is the intrinsic loss rate due to, for example, material

absorption, γ is the external leakage rate due to the coupling of the resonance to the outgoing

wave, and κ corresponds to the coupling coefficients between the resonance and the incoming

wave. Note that such coupled-mode formalism is, strictly speaking, valid only when γ0+γ ≪

ω0
20.

As shown in Eq.(13b) the outgoing waves have contributions from two pathways. The

direct pathway, as described by the term Ba+, forms the background in the response spec-

trum. B is the background scattering matrix. In this pathway, scattering occurs without

exciting the resonance. The indirect, or the resonant, pathway is described by the term

cd. The vector d can be determined by considering the scenario, where the resonance has

amplitude c, and there is no incoming wave, i.e. a+ = 0. For this scenario, the radiation

field outside the scatterer can be written as

Heigen = c

∞
∑

m=−∞

A0dmH
(1)
|m|(kρ) exp(ilθ). (14)

Here dm’s, which are components of the column vector d, correspond to the radiation coef-

ficients of the resonance.

From Eqs. (13), we have the scattering matrix for the single-resonance scatterer as

S = B+
dκT

iω0 − iω + γ + γ0
. (15)

C. Relations among B, d and κ

We now derive constrains between B, d and κ as imposed by energy conservation and

time-reversal symmetry24. Let us first consider the lossless case with γ0 = 0. B and S should
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then both satisfy Eq. (12). As a result, we have

κdT = ÔdκT Ô (16)

Next, we consider a scenario that the incoming wave is absent (i.e. a+ = 0). From

Eq. (13) we have

c = c(0) exp(−iω0t− γt) (17a)

a− = c(0) exp(−iω0t− γt)d (17b)

where c(0) is the resonance amplitude at t = 0. According to energy conservation, the

energy leakage rate must be equal to the power of the outgoing wave, i.e.

d|c|2

dt
= −2γ|c|2 = −

(

a−
)†
a− = −d†d|c|2 (18)

which requires that

d†d = 2γ. (19)

Now let us perform a time-reversal transformation. In this scenario, the original outgoing

wave in the m-th channel with the exponential decay will be transformed to the incoming

wave in the (−m)-th channel with an exponentially growing amplitude. Such an expo-

nentially growing excitation results in a resonant amplitude that also grows exponentially,

without the outgoing wave. So in the time-reversed case, the amplitude of the resonance c̃

and the incoming wave amplitude ã+ can be written as

c̃ = (c(−t))∗ (20a)

ã+ = Ô(a−(−t))∗ (20b)

where c and a− are described by the original case represented in Eq. (17). Substituting

Eq. (20) into Eq. (13), we have

κ
T Ôd∗ = 2γ (21)

BÔd∗ + d = 0 (22)

By left multiplying d∗ on both sides of Eq. (16) and applying Eqs. (19) and (21), we find

κ = Ôd. (23)

From Eqs. (15) and (23), we have a general form of the scattering matrix

S = B+
ddT Ô

iω0 − iω + γ + γ0
. (24)

Below, we will apply Eq. (24) to describe the scattering process of a single particle.
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FIG. 1. A plane wave impinges upon a scatterer with an incident angle of φ. The scatterer does

not have rotational symmetry.

D. Scattering and absorption cross sections

Generally, for a scatterer without rotation symmetry the scattering and absorption cross

sections are functions of incident angle. We consider a plane wave with Hinc = H0 exp(ik ·r)

incident upon the scatterer with an incident angle of φ schematically showed in Fig. 1. Here

k is the wave vector of the incident plane wave. The total field in the air region outside the

scatterer is then written as

Htotal = H0exp(ik · r) +

∞
∑

m=−∞

A0smH
(1)
|m|(kρ) exp(imθ), (25)

where sm is the amplitude of the scattered field in the m-th channel. To connect Eq. (25)

with Eq. (1), we expand the plane wave into cylindrical waves as

exp(ik · r) =
∞
∑

m=−∞

i|m| exp(−iφm)

(

H
(2)
|m|(kρ) +H

(1)
|m|(kρ)

2

)

exp(imθ).

In comparison with Eq. (1), we then have

a+m =

√

2

ωε0
H0fm (26)

a−m = a+m + sm, (27)

where

fm =
i|m|

2
exp(−iφm). (28)

Below, we will use the symbols f , a+, a−, and s to denote the column vectors with compo-

nents fm, a
+
m, a

−
m, and sm defined above, respectively.
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We define a matrix31 L that connects s and a+ as s = La+, and applying Eq. (27) we

have

L = S− I. (29)

As a result, the total scattered and absorbed powers are

Psct = s†s =
(

a+
)†
L†La+ (30a)

Pabs =
(

a+
)†
a+ −

(

a−
)†
a− =

(

a+
)† (

I− S†S
)

a+ (30b)

Following the definition of the scattering and absorption cross section as Csct ≡ Psct/I0 and

Cabs ≡ Pabs/I0, where I0 =
1
2

√

µ0

ε0
|H0|

2 is the intensity of the incident plane wave, we have

Csct =
2λ

π
f †L†Lf (31a)

Cabs =
2λ

π
f †
(

I− S†S
)

f (31b)

E. Approximation of background scattering matrix for small scatterer

When the scatterer is much smaller than the wavelength, there is no scattering contri-

bution from the direct pathway. In this case, the background scattering matrix B can be

approximated as

B = I,

and therefore

L =
ddT Ô

iω0 − iω + γ + γ0
. (32)

Thus, the amplitudes for the scattered field are

s = La+ =
dT Ôa+

iω0 − iω + γ + γ0
d. (33)

Eq. (33) shows that the scattered field has the same angular distribution as the radiation

coefficients of the resonance mode. The angular distribution of the scattered field is therefore

independent of the incident angle.

Furthermore, from Eq. (22) the resonant radiation coefficients are constrained by

Ôd∗ = −d, (34)
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i.e. d−m
∗ = −dm. By applying Eqs. (32) and (34) into Eq. (31), the scattering and absorption

cross sections can be simplified as

Csct =
2λ

π

2γ

(ω0 − ω)2 + (γ + γ0)
2

∣

∣d†f
∣

∣

2
(35a)

Cabs =
2λ

π

2γ0

(ω0 − ω)2 + (γ + γ0)
2

∣

∣d†f
∣

∣

2
(35b)

Eqs. (35a) and (35b) show that for a small scatterer supporting a single resonance, the cross

section spectra always have a Lorentzian line-shape, and the maximum cross sections occur

at the resonant frequency. The resonance line width is determined by the leakage rate and

the intrinsic loss rate.

F. Angular sum rule for the scattering and absorption cross sections of small

scatterers

For a scatterer without cylindrical symmetry, as we vary the angle of incidence φ as shown

in Fig. 1, the scattering and absorption cross sections will vary as a function of φ. However,

below we show that the such a variation is constraint by an angular sum rule.

To prove the angular sum rule, we note that starting from Eq. (28), we have

2π
∫

0

(

dT f
)† (

dT f
)

dφ =
π

2
‖d‖2 = πγ,

where the column vectors f depend on the angle of incidence φ as shown in Eq. (28).

Consequently, integrating Eq. (35) over φ, we have the angular sum rule for the scattering

and absorption cross sections:

2π
∫

0

Csctdφ = 4λ
γ2

(ω0 − ω)2 + (γ + γ0)
2 (36a)

2π
∫

0

Cabsdφ = 4λ
γ0γ

(ω0 − ω)2 + (γ + γ0)
2 . (36b)

Eq. (36) shows that the sum of the scattering and absorption cross sections over all angles

has maxima of 4λ and λ at the resonant frequency, when γ0 = 0 and γ0 = γ respectively.

A similar result has been derived for the transmission cross section of a single metallic slit

aperture26.
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Moreover, Eq. (36) indicates the difference of the scattering property between a rotation-

ally symmetric scatterer and an asymmetric scatterer. For a rotationally symmetric scatterer

with a single resonance, the scattering and absorption cross sections are both independent

of the incident angle, and have maxima of 2λ/π and λ/2π, respectively. In contrast, the

electromagnetic cross section of a small non-symmetric scatterer can exceed such a limit

for some specific incident angles. We note that the existence of such a sum rule is a direct

consequence of having only a single resonance. One could overcome the constraint here by

aligning multiple resonances at the same frequency, as shown in Refs. 16 and 17.

III. NUMERICAL VALIDATION

To validate of our theory, we compare the theoretical predictions to numerical simulations

of a metallic scatterer that has no rotation symmetry. Figure 2 shows the schematic of the

scatterer, where the dark and light grey parts correspond to the metal and dielectric regions

respectively. The permittivity of dielectric is εd = 12.96, and the metal is described by a

Drude model εm = 1 − ω2
p/(ω

2 + iγdω), where ωp and γd are the plasma frequency and the

damping rate, respectively.

We first make the comparison for the lossless case where γd = 0. For this purpose, we

first use a mode-solving routine in a finite element method (FEM) package32 to calculate the

the frequency and leakage rate of a resonance in the scatterer. The structure in Fig. 2(a)

has a resonant mode at the frequency of ω0 = 0.14417ωp, and the external leakage rate of

the resonant mode is γ = 1.2065× 10−4ωp. Fig. 2(b) shows the Hz field distribution of the

resonant mode.

To apply the temporal coupled-mode theory, we need to identify the resonant radiation

coefficients d and the background scattering matrix B for this system. Since the size of the

scatterer is less than one tenth of the wavelength, we adopt the small-scatterer approximation

that B = I. This approximation will be explicitly validated below.

To determine the resonant radiation coefficients d, we first expand the resonant radiation

field into cylindrical waves in a form as shown in Eq. (14). We note that numerically

determined radiation field has an arbitrary overall complex amplitude as seen in Eq. (14).

However, the norm of d is related to the leakage rate of the resonance [Eq. (19)]. Also, we

recall from Eq. (34) that dm = −d−m
∗, thus d0 is purely imaginary. These two constraints
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FIG. 2. (Color online) (a) Schematic of a scatterer with a rounded-corner triangle shape. The dark

and light gray areas correspond to a plasmonic metal and a dielectric, respectively. The permittivity

of dielectric is εd = 12.96, and the metal is described by a Drude model εm = 1− ω2
p/(ω

2 + iγdω).

Here λp corresponds to the plasmon wavelength of 2πc/ωp, where c is the velocity of light in vacuum.

Inset: We generate the outer boundary of the scatterer by rounding corners of an isosceles triangle

with a tip angle of 30◦ . The equal sides of the triangle and the radius of the round corner

are a = 1λp and r = 0.15λp, respectively. The inner boundary is created by scaling the outer

boundary by a factor of 0.6. (b) The real part of Hz field for the resonant mode at the frequency

of ω0 = 0.14417ωp. (c) The amplitude (solid line) and phase (dotted line) of the resonant radiation

coefficient dm.
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FIG. 3. (Color online) (a-c) The amplitude of the scattering field calculated by the temporal

coupled-mode theory (CMT), for a plane wave with the incident angle of φ = 0◦, 45◦, and 90◦.

(d-f) The results from the FEM solver.

are sufficient to allow us to fix the overall complex amplitude of the radiation field, and

hence dm for all m’s.

For this structure in Fig. 2(a), Fig. 2(c) shows the amplitude and the phase of the

resonant radiation coefficients dm thus determined for the order −5 ≤ m ≤ 5, respectively.

The amplitudes of dm are significant for −2 ≤ m ≤ 2. Therefore the resonance cannot

be approximated as either a monopole or a dipole mode. Also, since the resonant mode

has even symmetry about x-axis, dm should satisfy dm = d−m. Therefore all dm’s with

m 6= 0 should be purely imaginary. In Fig. 2(c), we indeed observe that the phases of all

the dm’s with m 6= 0 that have significant amplitudes are close to π/2, in consistency with

the requirements for both the mirror symmetry and the small-particle approximation in the

temporal coupled-mode theory.

Having determined all the parameters in the temporal coupled-mode theory, we now com-

pare the prediction of this theory to the numerical calculations of scattering and absorption

cross sections of this system. We first compare the scattered fields for three different inci-
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FIG. 4. (Color online) The far-field amplitude of the scattering field for a plane wave with the

incident angle of φ = 0◦, 45◦, and 90◦.

dent angles φ = 0◦, 45◦, and 90◦, with the incident wave at the resonant frequency. We see

excellent agreement between the results from temporal coupled-mode theory [Figs. 3(a-c)],

and the numerical calculations [Figs. 3 (d-f)].

For a small scatterer, with the assumption of B = I, the scattered field is solely deter-

mined by the radiation field of the resonant mode, which is independent of the angle of

incidence, as shown in Eq. (33). Numerically, we indeed see that the scattered field has

the same angular distribution from the different angle of incidence we consider here, in

agreement with the temporal coupled-mode theory analysis (Fig. 4).

In Fig. 5, we compare the spectra of the scattering cross sections for the three angles of

incidence, and again obtain excellent agreement between the theory and the FEM simula-

tions. Moreover, we observe that the scattering cross section for this structure decreases the

angle of incidence increase. This is consistent with the results in Fig. 4, which shows that

the coupling between the incoming wave and the resonance decreases with the increasing

incident angle.

Finally we check the theory for the lossy case. Here we set that the damping rate of the

plasmonic material is γp = 0.0001ωp. The solid and dash lines in Fig. 6 correspond to the

spectra of the scattering and absorption cross sections for the normal incident case through

the FEM calculation. By fitting these curves through Eq. (35a), we obtain that a resonant

frequency for the the lossy case is still ω0 = 0.144167ωp, and γ0+γ is 1.6857×10−4ωp. Here we
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FIG. 5. (Color online) The scattering cross section spectra of the lossless scatterer for three different
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FIG. 6. (Color online) The spectra of the scattering and absorption cross sections for the lossy

scatterer with the damping rate γd = 0.0001ωp.

assume that the resonant radiation coefficients and the external leakage rate of the resonant

mode do not change from the lossless case. So the intrinsic loss rate is γ0 = 4.802× 10−5ωp.

The cross section spectra by the coupled-mode theory are plotted as the circle and dotted

lines in Fig. 6. It shows that there is also a good agreement between the coupled-mode

theory and the FEM results in the lossy case.

To summarize this section, we obtain excellent agreements between the temporal coupled-

mode theory formulae and exact electromagnetic simulations. We emphasize that the agree-

ments here are not a curve fit of theoretical results to numerical simulations. Instead, to
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determine the parameters for the temporal coupled-mode theory, only a single calculation on

the resonance mode is needed. (For the lossy case, two calculations on the resonant modes

are required in order to separate out γ and γ0). The temporal coupled-mode theory can

then be used to reliably predict the behavior of the structure over all angles of incidence,

and for all frequencies in the vicinity of the resonant frequency, with no further need for

numerical simulations. Thus, the use of temporal coupled-mode theory can greatly simplify

the task for computational characterization of the scattering and absorption properties of a

small particle, and provide important insights regarding the behaviors of these particles in

general.

IV. THE THEORY FOR SCATTERING IN THREE DIMENSIONS

We now adapt the above theory to three-dimensional cases. Instead of cylindrical waves

used in the 2D case, the total field in the 3D case is expanded on the basis of spherical waves

labeled by (l, m, σ). Here, l is the total angular momentum, m corresponds to the angular

momentum component along the z direction and is subject to −l ≤ m ≤ l, and σ labels

polarizations. At each angular momentum (l, m), there are two orthogonal polarizations:

Transverse Magnetic (TM) and Transverse Electric (TE). The total electric and magnetic

field outside the scatterer are the superposition of these two polarizations and can be written

as

E = ETE −
1

iωε0
∇×HTM (37)

H =
1

iωµ0
∇× ETE +HTM , (38)

where ETE (HTM) is the transverse electric (magnetic) field. HTM = 4

√

ε0
µ0
∇× r̂ΦTM and

ETE = 4

√

µ0

ε0
∇ × r̂ΦTE. Here ΦTM (ΦTE) is the electric (magnetic) potential and satisfies

the scalar wave equation in the spherical coordinate:33

Φσ =

∞
∑

l=1

l
∑

m=−l

Al,m

(

a+l,m,σh
(2)
l (kr) + a−l,m,σh

(1)
l (kr)

)

×P
|m|
l (cos θ) exp(imφ) (39)

where a+l,m,σ and a−l,m,σ are respectively the incoming and outgoing wave amplitudes, (r, θ, φ)

are the spherical coordinates oriented at the center, k is the wave number in air, h
(1)
l (h

(2)
l ) is
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the l-th order spherical Hankel function of the first (second) kind, and Pm
l is the associated

Legendre function of the first kind. With the choice of the normalization constant as

Al,m = k

√

1

2π

(2l + 1)

l(l + 1)

(l − |m|)!

(l + |m|)!
, (40)

∣

∣a+l,m,σ

∣

∣

2
and

∣

∣a−l,m,σ

∣

∣

2
represent the power of the incoming and outgoing spherical waves in

the (l, m, σ)-th channel with the unit of Watt (Ref. 17). When a scatterer supports a single

resonant mode, the potential for the radiation field can be written as

Φeigen
σ = c

∞
∑

l=1

l
∑

m=−l

Al,mdl,m,σh
(1)
l (kr)P

|m|
l (cos θ) exp(imφ), (41)

where c corresponds to the amplitude of the resonance. Similar to the 2D case, here we will

define a vector d with its components being the resonant radiation coefficients dl,m,σ.

Now we consider a plane wave with an electric field Einc = E0êinc exp(ik · r) incident

upon a scatterer. By an expansion onto the basis of spherical waves, the incident field can

be described by a potential as

Φinc
σ =

∞
∑

l=1

l
∑

m=−l

Al,mgl,m,σjl(kr)P
|m|
l (cos θ) exp(imφ), (42)

where jl is the l-th order spherical Bessel function. The expansion coefficients gl,m,σ are

gl,m,σ = λ 4

√

ε0
µ0

√

1

2π
E0fl,m,σ, (43)

where fl,m,σ are

fl,m,TM = −

√

(2l + 1)

l(l + 1)

(l − |m|)!

(l + |m|)!
ilêinc ·B−ml(θi, φi) (44a)

fl,m,TE =

√

(2l + 1)

l(l + 1)

(l − |m|)!

(l + |m|)!
ilêinc ·C−ml(θi, φi), (44b)

θi and φi are the azimuth and horizon angle of the incident wave vector, respectively, and

the vectors B and C are29

Bml =

[

d

dθ
P

|m|
l (cos θ)êθ +

im

sin θ
P

|m|
l (cos θ)êφ

]

exp(imφ) (45a)

Cml =

[

im

sin θ
P

|m|
l (cos θ)êθ −

d

dθ
P

|m|
l (cos θ)êφ

]

exp(imφ) (45b)
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Correspondingly, the scattered field Esct can be described by a potential as

Φsct
σ =

∞
∑

l=1

l
∑

m=−l

Al,msl,m,σh
(1)
l (kr)P

|m|
l (cos θ) exp(imφ) (46)

where sl,m,σ corresponds to the amplitude of the scattered field. Therefore, for the total field

Etot = Einc + Esct, the coefficients of the incoming and outing waves are

a+l,m,σ =
gl,m,σ

2
(47a)

a−l,m,σ =
gl,m,σ

2
+ sl,m,σ (47b)

Having defined the incoming and outgoing wave amplitudes in the spherical basis, the

temporal coupled-mode equations [Eq. (13)], the theoretical constraints on the parameters

of the temporal coupled-mode theory [Eqs. (19) and (23)], and the general form of the

scattering matrix [Eq. (24)], can now all be directly applied to the three-dimensional case.

Using the definition of the scattering and absorption cross sections: Csct ≡ Psct/I0 and

Cabs ≡ Pabs/I0, where I0 = 1
2

√

ε0/µ0|E0|
2 is the intensity of the incident plane wave, we

have

Csct =
λ2

4π
f †L†Lf (48a)

Cabs =
λ2

4π
f †
(

I− S†S
)

f . (48b)

Here f is a column vector with components fl,m,σ defined in Eq. (44), and the scattering

matrix S and the matrix L have the same form as the two-dimensional case of Eq. (24) and

(29).

V. SUMMARY AND OUTLOOK

In summary, we show that on the basis of cylindrical (spherical) waves in the 2D (3D) case,

the light scattering by arbitrary-shaped scatterer with a single resonance can be modeled by a

temporal coupled-mode theory formalism. By introducing the background scattering matrix

and the resonant radiation coefficients, the light scattering response for any incident angle

or wave shape can be directly evaluated, which provides a general formula for the scattering

and absorption cross sections. We validate the analysis with numerical simulations for a

metallic scatterer that does not have any rotation symmetry.

17



We note that the present theory can be generalized for scatterers supporting multiple res-

onances. In this case, the dynamics of the multiple resonances are described by a matrix34.

The off-diagonal term of the matrix is in part determined by the overlap between the ra-

diation pattern of resonances, and can be directly evaluated from the resonant radiation

coefficients for each resonance.
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