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We show that in the sudden expansion of a spin-balanced, two-component Fermi gas into an
empty optical lattice induced by releasing particles from a trap, over a wide parameter regime, the
radius Rn of the particle cloud grows linearly in time. This allow us to define the expansion velocity
Vex from Rn = Vext. The goal of this work is to clarify the dependence of the expansion velocity
on the initial conditions which we establish from time-dependent density matrix renormalization
group simulations, both for a box trap and a harmonic trap. As a prominent result, the presence of
a Mott-insulating region leaves clear fingerprints in the expansion velocity. Our predictions can be
verified in experiments with ultra-cold atoms.

I. INTRODUCTION

Research into the non-equilibrium properties of
strongly correlated many-body systems has emerged into
a dynamic and active field, driven by the possibility to
address questions such as thermalization [1, 2], the prop-
erties of steady states, or state engineering in ultra-cold
atomic gases [3]. While substantial theoretical attention
has been devoted to quantum quenches in homogeneous
systems [2], more recently, set-ups that give rise to fi-
nite particle or spin currents have been studied as well,
both from the theoretical side [4–15] and in experiments
(see, e.g., Refs. 16–21). Using these approaches allows
one to investigate transport properties of strongly corre-
lated many-body systems - in and out-of-equilibrium - in
cold atomic gases that are of great interest in condensed
matter theory.

Our work is motivated by the experiment by Schnei-
der et al. [17] who have studied the expansion of a
two-component Fermi gas in an optical lattice in two
and three dimensions (described by the Fermi-Hubbard
model [22, 23]), starting from an almost perfect band in-
sulator. The qualitative interpretation of their results is
that, besides a ballistically propagating halo of particles,
at finite interaction strengths a core of diffusively expand-
ing particles exists [17]. In the case of one-dimensional
(1D) bulk systems relevant for condensed matter prob-
lems and on the level of linear response theory, ballistic
dynamics of interacting particles can be traced back to
the existence of non-trivial conservation laws [24]. For in-
stance, the fact that the energy current is conserved for
the 1D Heisenberg model renders its spin transport ballis-
tic away from zero total magnetization [24–26], whereas
at zero magnetization there exists a quasi-local quantity
[27], which is conserved only for the infinite system, that
gives rise to ballistic dynamics. While for the 1D Hub-
bard model, the understanding of its transport properties

is by far less complete than for the Heisenberg chain, one
might be tempted to expect similar quantities to play a
role for the latter model as well [24].
A qualitative difference between the sudden expansion

in an optical lattice compared to steady-state transport
measurements in condensed matter systems is that, in
the latter case, the background density determines trans-
port coefficients, whereas in the former case, the density
itself becomes time-dependent [17] and all particles par-
ticipate in the dynamics. As a consequence, in diffusive
regimes, the dependence of the diffusion coefficient on
density needs to be accounted for. In the ballistic case,
as we shall see, the expansion velocity always depends on
all momenta that are occupied in the initial state and not
on just those close to the Fermi wave-vector. Therefore,
a parameter regime complementary to condensed matter
systems can be accessed with cold atoms.
Theoretical results for the expansion of interacting

bosons or fermions in optical lattices are mostly avail-
able for the 1D case, for which exact numerical methods
give access to at least the short time dynamics via the
adaptive time-dependent density matrix renormalization
group (tDMRG) method [28–31] or exact diagonaliza-
tion (ED) [4, 5]. The richness of the non-equilibrium
physics encountered in the expansion manifests itself in
the observation of the dynamical emergence of coher-
ence [4, 8, 11, 32], which, for bosons, leads to the phe-
nomenon of dynamical quasi-condensation [4, 11, 32] and
the intriguing phenomenon of the fermionization of the
momentum distribution function (MDF) [5, 15, 33, 34].
In the case of a two-component Fermi gas, the short-
time dynamics of the MDF and correlation functions [8],
the emergence of metastable states [9, 10] and the time-
evolution of density profiles for specific initial conditions
have been investigated [8, 9, 35–37].
In the present work we study the 1D Hubbard model

and we concentrate on the sudden expansion starting
from initial states that are Mott insulators (MI), i.e., that
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FIG. 1: (Color online) Box trap: Typical contour plot of the
density 〈ni(t)〉 during the expansion from a MI (U = 8J ,
ninit = 1, Linit = 20). The slanted lines indicate the speed 2J
at which the MI melts.

have an integer filling of ninit = 1, Tomonaga-Luttinger
(TL) liquids (ninit < 1), or systems in a harmonic trap.
In the latter case, depending on filling and interaction
strength, several phases may coexist in separate shells
[38]. We analyze the dependence of the expanding cloud’s
radius Rn(t) on time t and search for conditions to obtain
ballistic dynamics, for which Rn(t) = Vex t is a necessary
criterion. In that case, the expansion velocity Vex is a
well-defined quantity, and, as a key result of our work,
we clarify its dependence on the initial conditions.

Our main results are: (i) In the regime of low densities,
i.e., ninit ≤ 1, we observe a linear growth of the cloud’s
radius with time, allowing us to define Vex. (ii) In general,
the expansion speed Vex depends in a non-monotonic way
on the initial density. In the case of the expansion from
a MI, Vex =

√
2J , independently of U . (iii) Our findings

are robust against the presence of a harmonic trap in the
initial state.

Note that, in a generic system, one expects ballistic
dynamics in the long time limit, where the gas becomes
so dilute that interactions cease to matter. Here we show
that ballistic dynamics sets in immediately after the gas
is released from the trap when the density is actually still
comparable to the initial density.

The structure of the paper is the following: In Sec-
tion II, we introduce the model and define the radius of
the cloud. Section III discusses the expansion from a box
trap,i.e., starting from a homogeneous density. We first
show that the dynamics is ballistic by analyzing the ra-
dius and the particle currents and second, we present a
detailed analysis of the expansion velocity as a function
of density and interaction strength. In Sec. IV we test
our findings against the inhomogeneity introduced by a
harmonic trap. We summarize our findings in Sec. V.
In Appendix A, we discuss the diffusion equation in one
dimension. Appendix B contains a finite-size analysis of
the expansion velocity for various cases.
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FIG. 2: (Color online) Box trap: Radius Rn(t) for initial
densities ninit = 0.2, 0.4, 0.8, 1 at U = 8J and Linit = 40
(corresponding to N = 8, 16, 32, 40).

II. MODEL AND SETUP

Our study is carried out for the 1D Hubbard model:

H0 = −J

L−1
∑

i=1,σ=↑↓

(c†i+1,σci,σ +h.c.)+U

L
∑

i=1

ni,↑ni,↓ . (1)

c†iσ is a fermionic creation operator with spin σ =↑, ↓ act-

ing on site i, niσ = c†iσciσ, ni =
∑

σ niσ, U is the onsite
repulsion, and J , is the hopping matrix element. Open
boundary conditions are imposed, L & 100. is the num-
ber of lattice sites, andN the number of particles. We set
~ to and the lattice spacing unity and thus measure time,
velocity and particle current in the appropriate units in
terms of the hopping matrix element.

We prepare initial states as the ground state of H =
H0 +Hconf [8]. We consider two cases: First, the expan-
sion from a box trap (i.e., 〈ni〉 6= 0 for i1 < i ≤ i2;
(i2 − i1) = Linit, ninit = N/Linit) enforced by using
Hconf =

∑

i ǫini with a large ǫi & U for i ≤ i1; i2 < i and
zero otherwise). The second example is the expansion
from a harmonic trap, for which Hconf = V

∑

i(i−i0)
2ni.

We turn off Hconf at t = 0. In our tDMRG runs, we use
a Krylov-space based method [39, 40], with time steps of
δt J = 0.25 and we enforce a discarded weight of 10−4 or
smaller.

The main quantity of interest is the radius of the par-
ticle cloud that we define via

Rn =

√

√

√

√

1

N

L
∑

i=1

〈ni〉(i − i0)2 −R2
n(t = 0) . (2)

For the expansion from a box, i0 = L/2 + 0.5.
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III. EXPANSION FROM A BOX TRAP

We first discuss this idealized case to avoid the com-
plication of dealing with particles originating from dif-
ferent shells, as would be the case with a harmonic trap
(note, though, that box-like traps can also be generated
in experiments [41, 42]). A typical example for the time-
evolution of the density 〈ni(t)〉 is shown in Fig. 1 for
the expansion from a MI with U = 8J . The MI melts
on a time scale of tmelt . Linit/(2J), where 2J is the
largest possible velocity in the empty lattice, since the
single-particle dispersion is ǫk = −2J cos(k) [8]. For
t > tmelt, two particle clouds form that propagate into
opposite directions, visible as two intense jets (compare
Refs. [4, 5, 36, 43–45]).
In Fig. 2, we display the radius Rn(t) at U = 8J for

various initial densities at U = 8J . Clearly, for ninit ≤ 1,
Rn(t) = Vext. We stress that Rn(t) ∼ t sets in imme-
diately after the gas is released from the trap. This in-
cludes, in particular, the expansion from a MI at any U ,
while for ninit > 1, the radius deviates from Rn(t) ∼ t
[9]. Based on the observation of Rn(t) ∼ t on short and
intermediate times, when local densities are still large,
together with the fact that interacting particles behave
similar to non-interacting ones (which, in the absence of
disorder, expand with Rn ∼ t), we classify the dynamics
as ballistic.
In our situation, the notion of ballistic dynamics is

strongly corroborated by analyzing the time dependence
of the total particle current in each half of the system,

JL/2 =
∑

i>L/2 ji [ji = −iJ
∑

σ(c
†
i+1σciσ − h.c.)], which

is shown for U/J = 2, 8 in Fig. 3. After the two jets in
Fig. 1 are well separated from each other, JL/2 takes a
constant value, which we consider a hallmark feature of
ballistic dynamics [45].
However, in one dimension, there is a subtlety as cer-

tain solutions of the diffusion equation can also give rise
to a linear increase of the radius with time (if properly
defined). Such a scenario happens in the dilute limit
(which we do not study here), yet it results in a strong
dependence of the expansion velocity on the total parti-
cle, which is clearly different from our case as we shall
see below. Further details are given in Appendix A.
The observation of a linear increase of the cloud radius

with time implies that Vex should be fully determined by
properties of the initial state, such as the MDF, energy
per particle, or density. In the non-interacting case, this
is obvious, since Vex can be calculated from the knowl-
edge of the MDF. To guide the interpretation of the in-
teracting case and to understand the dependence of Vex

on U and ninit, we next study the two exactly solvable
limits U = 0 and U = ∞.

A. Box trap, Vex at U = 0

At U = 0, opening the trap simply means that particles
will propagate with a velocity vk = 2J sin(k) with a prob-
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FIG. 3: (Color online) Box trap: Total particle current in
each half of the system as a function of time, i.e., JL/2(t) :=
∑

i>L/2 ji, for (a) U = 8J , (b) U = 2J and ninit =

0.2, 0.4, 0.6, 0.8, 1. We observe that after some transient dy-
namics, 〈JL/2(t)〉 = const, supporting the observation of bal-
listic transport.

ability given by the MDF nk in the initial state, which

is nk = (1/N)
∑

l,m,σ e
−i(l−m)k〈c†lσcmσ〉 . The momenta

are chosen to match the open boundary conditions in the
box, i.e., k = πl

Linit+1 ; l = 1, . . . , Linit. By a straight-

forward evaluation of R2
n(t) from Eq. (2) and using the

time-dependence of creation and annihilation operators,
known exactly at U = 0, we obtain Vex as the average
velocity of all particles in the initial state:

V 2
ex =

1

N

∑

k

v2k nk . (3)

In the U = 0 case, the initial MDF thus completely de-
termines the expansion velocity. However, this is an over-
complete set of constraints: For a very large N , where
boundary conditions cease to matter, we can evaluate
Eq. (3) analytically:

V 2
ex = 2J2[kF − cos(kF ) sin(kF )]/kF , (4)

which yields the full dependence on the initial density at
U = 0 through kF ∝ ninit alone. Using ED, we have
verified the validity of Eq. (4) by extracting Vex from
the time-dependence of Rn(t) for N ∼ 160 (see Fig. 8 in
Appendix B).

B. Box trap, Vex at U 6= 0

In the interacting case, we extract the expansion ve-
locity Vex from the tDMRG data (i.e., the slope of curves
such as the ones shown in Fig. 2). The results for selected
values of U are collected in the main panel of Fig. 4
(symbols). We emphasize four main observations: (i)

For the expansion from the MI, we obtain Vex =
√
2J at

any U > 0. (ii) At a fixed density, Vex increases mono-
tonically with U . (iii) For U > 4J , the maximum of
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FIG. 4: (Color online) Box trap: Main panel: Vex vs ninit at
U/J = 0, 0.5, 2, 8,∞ for Linit = 20 [see the legend, symbols
are tDMRG, the solid and the dashed lines are derived from
Eq. (4)]. Inset: Vex from tDMRG (open squares: U = 8J ,
open triangles: U = 2J) vs. Vref (solid symbols) from
non-interacting reference systems at a finite temperature (see
Sec. IIIC for details)

the expansion velocity is at an incommensurate density
0.5 < ninit < 1. (iv) The expansion velocity is always
very different from characteristic velocities of the initial
state and much smaller than 2J , the largest possible ve-
locity. It is also much smaller than the charge velocity
[46] at small densities and at ninit = 1, where the charge
velocity drops to zero, Vex remains finite.

At U = 0, the first observation is a consequence
of particle-hole symmetry, reflected in the MDF: nk

is point-symmetric about the point (kF = π/2, nkF
).

Since v2kF+δkF
= v2kF−δkF

, from Eq. (3), we conclude

Vex =
√
2J . The MDF at U > 0 has the same symmetry

property, hence we expect a similar behavior, confirmed
by tDMRG. Of course, Eq. (3) does not directly apply to
the interacting case. Since the total energy EU = 〈H0〉
is conserved, for U > 0, Eq. (3) is incompatible with this
initial condition set by U > 0 and ninit. However, we
shall see that the observation of Vex =

√
2J for U > 0

can also be understood as a consequence of symmetry
properties.

We can further use the exact result Eq. (4) to ex-
plain the observations (ii)-(iv). In fact, we can interpret
Eq. (4) in two ways: If U = 0, kF = πninit/2, whereas for
U = ∞, kF = πninit. These are the solid and the dashed
lines in the main panel of Fig. 4, respectively, and there-
fore, increasing U from U = 0 to U = ∞ at a fixed den-
sity simply takes us from the limit of a non-interacting
two-component Fermi gas to the limit of non-interacting
spinless fermions. To understand that the maximum of
Vex is at an incommensurate ninit for U > 4J , one needs
to take into account that on the one hand, in a 1D co-
sine band, the maximum velocity is at k = π/2, but on
the other hand, the density of states takes its minimum
there. As a consequence of this competition, i.e., the de-
crease of vk vs the increase of the density of states as one
moves away from π/2, the largest expansion velocity is
at ninit 6= 1. Finally, property (iv) is a consequence of all
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FIG. 5: (Color online) These plots illustrate how the non-
interacting reference systems are constructed using Eqs. (5),
(6) and (7) for the example of ninit = 0.4 for (a),(b),(c):
Linit = 40 and (d): Linit = 160: (a) Temperature dependence
of the chemical potential at fixed ninit = 0.4. (b) Total energy
from Eq. (6) as a function of temperature. (c) V 2

ref as a func-
tion of temperature. The horizontal lines in (b) are DMRG
results for EU for the initial states used in the expansion at
zero temperature for U = 0, 2J, 8J , while in (c) they mark the
resulting V 2

ref = V 2

ref(E,n). (d) As T increases, V 2

ref → 2J2

from below, i.e., this is the largest expansion velocity that the
reference systems can produce for ninit ≤ 1.

particles propagating and not just those with momenta
close to kF .

On a technical note, we have checked the dependence
of Vex on particle number, keeping ninit = N/Linit fixed.
Finite-size effects are the largest at small initial densities,
yet for densities ninit & 0.5, our tDMRG results obtained
with Linit = 40 show little quantitative differences com-
pared to smaller Linit and Vex becomes independent of N
as shown in Appendix B.

C. Reference systems

It is now a compelling question to ask how many con-
straints suffice to determine the expansion velocity. From
the solution of the non-interacting case, we conclude that
density and energy are relevant quantities. To check this
conjecture for the interacting case, we construct non-
interacting reference systems that are at a finite tem-
perature [47]. The temperature is chosen such that the
reference system has the same energy as the interacting
system and the same particle number, and it lives in the
same box potential of length Linit.
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Hence we solve this set of equations:

N =
∑

k,σ

f(ǫk − µ, T ) , (5)

EU =
∑

k,σ

ǫkf(ǫk − µ, T ) , (6)

V 2
ref =

1

N

∑

k,σ

v2kf(ǫk − µ, T ) , (7)

where f(x, T ) is the Fermi function. We proceed as illus-
trated in Fig. 5: For a given U and N , we compute the
total energy EU in the initial state with DMRG. First,
we find the chemical potential µ = µ(T ) from Eq. (5),
which only depends on N . Using this µ(T ) curve, we
determine the pair of (µ, T ), for which we get the right
energy EU . From these results, Eq. (7) yields the ex-
pansion velocity Vref of the reference system. Obviously,
the maximum velocity that these reference systems that
have the dispersion ǫk = −2J cos(k) of the empty lattice

can produce is Vref =
√
2J at any density ninit ≤ 1 as

T → ∞. Within that constraint, the agreement between
Vex and our reference systems is excellent, as we illustrate
for U/J = 2 and 8 in the inset of Fig. 4: Apart from those

densities for which, at U = 8J , Vex >
√
2J , Vref ≈ Vex

within our numerical accuracy. In the particular case of
ninit = 1, our reference systems also yield Vref =

√
2J in-

dependently of EU , consistent with the tDMRG results
of Fig. 4. This is a consequence of the aforementioned
symmetry property of the MDF, which also applies to
T > 0. In the regime where the interacting system has√
2J < Vex(U) < Vex(U = ∞), reference systems with

the dispersion ǫk = −2J cos(k) of the empty lattice can-

not yield the right velocities since Vref ≤
√
2J .

IV. EXPANSION FROM A HARMONIC TRAP

Our results so far establish a relation between proper-
ties of the initial state and the expansion velocity that
could be probed in experiments. We next test the robust-
ness of our predictions for Vex = Vex(U, ninit) against the
inhomogeneity induced by a harmonic potential.
We focus on three types of initial states: (i) Only a

TL, i.e., 〈ni〉 < 1 in the entire trap, (ii) a MI shell in the
center, surrounded by TL wings, and (iii) a three-shell
structure with an incommensurate density in the center
〈ni〉 > 1, surrounded by first, a MI shell and second, a
TL shell with 〈ni〉 < 1. For a given U > 0, these regimes
are separated by critical characteristic densities ρ1 and
ρ2, where ρ = N

√

V/J is the effective density in a system
with a harmonic trap [3, 38].
For all three cases, Rn(t) is shown in Fig. 6 for U/J = 2

and 8. We observe that, after releasing the particles from
the harmonic trap, the cloud still expands with Rn(t) ∼ t
in cases (i) and (ii), i.e., Rn(t) ∼ t [see Fig. 6 (a) and (c)]
whereas in case (iii), the increase of the radius is slower
than linear in t [see Fig. 6 (b) and (d)]. In that regime
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FIG. 6: (Color online) Harmonic trap: Radius of the particle
cloud for the expansion from a harmonic trap for (a) N =
10, 30 at U = 8J , (b) N = 10, 20 at U = 2J , (c) N = 48
at U = 8J and (d) N = 30 at U = 2J . For U = 8J , these
parameters correspond to the initial states shown in the insets
of Fig. 7. The solid lines are fits to the data, dotted lines are
guides to the eye. We find Rn(t) 6∼ t whenever densities in the
center of the trap are larger than one and Rn(t) ∼ t otherwise.

and for U > 4J , the system can be viewed as a mixture of
single atoms propagating with velocities vk ∼ J and two
fermions repulsively bound into a doublon, which, due to
energy conservation, does not decay on time scales ∝ 1/J
and is much slower with typical velocities vdk ∼ J2/U
[9, 16]. For illustration, the values of ρ1 and ρ2 as well as
typical density profiles are included in Fig. 7 for U = 8J
(vertical lines and lower insets, respectively). As is evi-
dent from Fig. 7, the overall dependence of Vex = Vex(ρ)
resembles that of the expansion from a box trap, with
a maximum in Vex emerging as U & 4J . Most impor-
tantly, as soon as the MI forms in the center of the trap,
indicated by the vertical solid line at ρ = ρ1, the expan-
sion velocity approaches a constant value at Vex &

√
2J

from above. The contribution to Vex of low-density shells
surrounding the MI is suppressed by increasing U or ρ
since both favor a large relative fraction of all particles
in the MI shell to minimize the contribution from the in-
teraction energy. In contrast to the expansion from the
box, the limit of U = ∞ (dashed line) is approached very
slowly since the shell structure in a trap depends strongly
on U and ρ.

V. SUMMARY

We studied the sudden expansion of a spin-balanced
two-component gas in 1D, released from a trap. Our
main results are two-fold: First, the cloud expands bal-
listically as long as initial densities are small, including,
in particular, the MI state. Second, the expansion ve-
locity, defined through Rn(t) = Vext strongly depends on
initial density and thus, its measurement can provide in-
formation on the initial state. For instance, deviations
from our predictions could indicate the presence of de-
fects in the initial state preparations. Our quantitative
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2, 8, 40,∞, V = 0.016J). The vertical solid line marks the
formation of a MI shell in the trapped system at ρ1 and the
vertical dashed line the formation of a core with 〈ni〉 > 1 at
ρ2, both for U = 8J . The horizontal line is Vex =

√
2J . Sym-

bols are tDMRG results, the dashed line was obtained from
ED. We have verified that the results are remarkably stable
against changes in the particle number at fixed ρ by produc-
ing the Vex = Vex(ρ) curve at a different V (see Fig. 10 in
Appendix B). Lower insets: typical initial density profiles in
the regimes ρ < ρ1, ρ1 < ρ < ρ2 and ρ2 < ρ for U = 8J .
Upper inset: Rn(t) for U = 8J and N = 10, 30.

predictions can be tested in an experiment that realizes
the set-up of Ref. [17] in 1D.

Furthermore it would also be interesting to study the
radius of an expanding cloud and the expansion veloc-
ity for other experimentally relevant systems such as
the Bose-Hubbard model or spin imbalanced mixtures.
While we have presented phenomenological evidence for
ballistic dynamics, we have here not touched upon a po-
tential relation with integrability and non-trivial con-
servation laws [24], leaving this for future research. It
also remains as an open question to identify interact-
ing models in one dimension and parameter regimes in
which diffusive dynamics dominates during the sudden
expansion, which might be challenging since even non-
integrable models may have very large conductivities
(see, e.g., Ref. [26]).

Acknowledgments

We thank A. Feiguin, M. Rigol, A. Rosch, and U.
Schneider for very helpful discussions. F.H.-M. and U.S.
thank the KITP at UCSB, where this work was initi-
ated, for its hospitality. This research was supported in
part by the National Science Foundation under Grant
No. NSF PHY05-51164. S.L., M.S., F.H.-M., and U.S.
acknowledge support from the DFG through FOR 801.

Appendix A: Linear increase of the radius from a
nonlinear diffusion equation

Here we discuss solutions of the diffusion equation in
one dimension in the limit of a very dilute gas. Since the
sudden expansion scenario considered in this paper in-
volves the propagation of all particles, the dependence of
the diffusion constant D on the local density n(x, t) be-
comes relevant, and as a consequence, the relevant diffu-
sion equation is in general a nonlinear one (see, e.g., [17]).
Focussing on the very dilute limit we use D ∼ 1/n(x, t)
(see the discussion in Ref. [17, 48]). The resulting diffu-
sion equation (after rescaling of the time variable ):

∂tn(x, t) = ∂x
1

n
∂xn , (8)

has a self-similar solution with particle number conser-
vation in 1D [49]:

n(x, t) =
2t

x2 + v2t2
. (9)

First of all, one realizes that our definition of the radius
Rn(t), Eq. (2), cannot be used here. In the analysis of
experimental data, it is common practice to define the
radius as the half-width at half-maximum of the expand-
ing cloud [17]. Using this definition, the solution Eq. (9)
yields indeed Rn(t) = vt, similar to the ballistic dynamics
discussed in our work. We would like to stress, though,
that the sudden expansion described in the main text
is genuinely different in some important respects. First,
Eq. (8) is only valid in the dilute limit while the time-
dependent DMRG gives us access to short and interme-
diate time-scales only where the gas is not necessarily a
dilute one yet. Second, Eq. (9) is a solution for which
the expansion velocity v depends strongly on the parti-
cle number via N =

∫∞

−∞
n(x, t)dx = 2π/v, which is not

observed in our case (compare Fig. 4 and 9). Based on
these differences, we conclude that diffusive dynamics is
very unlikely to be realized for the 1D Hubbard model in
the sudden expansion.

Appendix B: Finite-size effects

Here we address the question of how our results for the
expansion velocity depend on the overall particle number
at a fixed density ninit. First, we consider the box trap
and we compare our analytical result for largeN [Eq. (3)]
to exact diagonalization in the noninteracting limits in
Fig. 8. For N = 40, we find good qualitative agree-
ment with small finite-size effects, which are the most
pronounced for ninit < 0.5. For N = 160, the deviations
between the analytical expression for N → ∞ and data
for a finite N are already barely visible except for very
low densities. Second, we study the interacting system
expanding from different box traps with Linit = 10, 20, 40
at a fixed density for U = 8J . Figure 9 shows Vex as a
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data (symbols) for all densities.
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FIG. 9: (Color online) Box trap: Expansion velocity as a
function of initial density for U = 8J and different Linit =
10, 20, 40. For ninit & 0.6, finite-size effects are remarkably
small.

function of density. As in the non-interacting case finite-
size effects are remarkably small whenever ninit ≥ 0.6
even for the smaller particle numbers.
Finally, we turn to the expansion from a harmonic

trap and analyze Vex for two different trapping poten-
tials, V = 0.008J and V = 0.016J . Fig. 10 shows Vex

as a function of effective density ρ = N
√

V/J . We find
that the expansion velocity is very robust against chang-
ing the particle number at a fixed ρ. Overall, our results
for the expansion velocity exhibit only minor finite-size
effects in all studied cases.
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FIG. 10: (Color online) Harmonic trap: Expansion velocity
for V = 0.008J and V = 0.016J as a function of effective
density ρ = N ·

√

V/J for U = 8J . The expansion velocity
is remarkably stable against changing the particle number at
fixed ρ.
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