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Strongly interacting atoms trapped in optical lattices can be used to explore phase diagrams of
Hubbard models. Spatial inhomogeneity due to trapping typically obscures distinguishing observ-
ables. We propose that measures using boson double occupancy avoid trapping effects to reveal two
key correlation functions. We define a boson core compressibility and core superfluid stiffness in
terms of double occupancy. We use quantum Monte Carlo on the Bose-Hubbard model to empir-
ically show that these quantities intrinsically eliminate edge effects to reveal correlations near the
trap center. The boson core compressibility offers a generally applicable tool that can be used to
experimentally map out phase transitions between compressible and incompressible states.

PACS numbers: 03.75.Lm,03.75.Hh, 67.85.Hj

I. INTRODUCTION

Significant progress in cooling and trapping cold
atomic gases in optical lattices [1–3] established new and
ideal platforms to study quantum condensed matter [4–
6]. Ongoing work seeks to explore properties of interest-
ing but poorly understood quantum many-body states
using quantum degenerate atoms. Proposals include the
use of optical lattice bosons to study novel superfluid or-
der in higher bands [7–9] or topological phases [10–12].
Fermi gases in optical lattices are also under study as a
route to explore the controversial phase diagram of the
Fermi-Hubbard model [6, 13, 14].

Time of flight observables in optical lattice experi-
ments can be adapted to measure properties of atoms
trapped in optical lattices. The momentum distribution
[15], density-density correlation functions [16, 17], com-
pressibility [18, 19], and double occupancy [20–23] are all
examples of working optical lattice observables. At first
it may seem that these observables can be used to directly
pinpoint locations on phase diagrams because input pa-
rameters (e.g., lattice depth) are controlled and tunable.
But significant spatial inhomogeneity due to trapping can
spoil the connection between phase diagrams and exper-
iments.

Recent experiments [18] with fermions (40K) trapped
in optical lattices used the double occupancy as an indi-
cator of the Fermi-Gas to Mott insulator transition to cir-
cumvent issues due to trapping. These experiments used
a Feshbach resonance to shift hyperfine levels of doubly
occupied sites. Doubly occupied sites were promoted to
a separate hyperfine state and measured in time of flight
using a Stern-Gerlach scheme to distinguish atoms origi-
nating from singly and doubly occupied sites. By taking
the derivative of the double occupancy with respect to
particle number these experiments effectively extracted
the core compressibility of atoms in the optical lattice.
The core compressibility revealed that the center of the
sample became incompressible as interactions tuned the
system from a Fermi-Gas to a Mott insulator.

Measurements of the optical lattice fermion double oc-
cupancy have been compared with theory. A high tem-

perature series expansion [24] was used to show that the
fermion core compressibility measured in Ref. 18 does
indeed capture the compressibility of the center of the
system, even in the presence of severe spatial inhomo-
geneity. Comparisons between high temperature series
expansions, dynamical mean-field theory, and experiment
were also useful in using double occupancy to measure the
temperature of fermions in optical lattices [25]. More re-
cent calculations have shown that the fermion core com-
pressibility can be very useful in one dimensional optical
lattices as well [26, 27].

Here we explore the potential uses of double occu-
pancy in measuring the compressibility of bosons. At
first it may appear that boson double occupancy might
not offer useful information (as it did for fermions) be-
cause several bosons can occupy a single site even in the
same Bloch band. We explore this issue through exten-
sive calculations. We find that, in the presence of strong
boson-boson repulsion and at low temperature, double
occupancy does offer a useful tool that can be related to
important observables.

We use the boson double occupancy to define the bo-
son core compressibility and core stiffness. We find that
these quantities intrinsically exclude edge effects thus of-
fering valuable probes of a single phase near the system
center. We use quantum Monte Carlo (QMC) on the
trapped Bose-Hubbard model to empirically show that
the boson core compressibility and stiffness reveal the
compressibility and stiffness of atoms near the trap cen-
ter, respectively. We show that the core compressibility
defined here can be used in experiments to study criti-
cal properties and map out phase diagrams of any Bose-
Hubbard model even in the presence of significant spatial
inhomogeneity due to trapping. The core compressibil-
ity can be used, for example, to explore transitions in
disordered Bose-Hubbard models currently under exper-
imental investigation [28–30]. Our proposed boson core
compressibility complements proposals to measure total
boson compressibility with trap squeezing [31, 32].

In Section II we discuss the Bose-Hubbard model as a
relevant testbed for computing the boson core compress-
ibility. In Section III we define the local compressibility
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Figure 1: (Color online) Schematic of the finite-temperature
phase diagram of the uniform Bose-Hubbard model. The
Mott insulator (MI) and the superfluid (SF) are separated
by a narrow quantum critical regime at finite temperature.
At high temperatures the system is in the normal phase. The
lines represent: a) a transition from the Mott insulator to
the normal phase, b) a transition from the Mott insulator,
through the quantum critical regime, into the superfluid, and
c) a transition out of the superfluid into the normal phase.

and the local superfluid stiffness. In Section IV we de-
fine the core compressibility and the core stiffness. In
Section V we use mean-field theory (MFT) and QMC
to compare the global quantities with core quantities in
uniform systems. Section VI uses QMC on trapped sys-
tems to compare the local compressibility and the local
stiffness with the core compressibility and the core stiff-
ness, respectively. We find parameter regimes where core
measures essentially track local quantities near the trap
center. Section VII discusses how to effectively extract
the boson core compressibility from time of flight mea-
surements.

II. MODEL

The Bose-Hubbard models offers one of the simplest
models with a quantum phase transition [33, 34]. It also
captures the essential properties of many ongoing optical
lattice experiments [4, 6]. We may therefore use the Bose-
Hubbard model as an experimentally relevant testbed to
examine the usefulness of the boson core compressibility:

H = −t
∑
〈i,j〉

(b†i bj +H.c.) +
U

2

∑
i

ni (ni − 1)−
∑
i

µini.

(1)

Here ni = b†i bi is the number operator at a lattice site
indexed by i and µi = µ − γR2

i,0 is the local chemical
potential. The central chemical potential, µ, tunes the
average density, γ parameterizes the parabolic confine-
ment potential, and Ri,0 ≡ |Ri − R0| is the distance
between a site at Ri and the center of the trap, R0 . We
work in units such that U = 1 and the lattice spacing
is also set to unity. In the following we will work on a

µ!Ri,0
2
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Figure 2: (Color online) Schematic depicting spatial inho-
mogeneity due to trapping in an optical lattice. A spatially
varying chemical potential (γR2

i,0) modifies the otherwise uni-
form chemical potential, µ , to model a parabolic confinement
potential. The center of the trapped system is denser than the
edges. In the absence of large thermal and quantum fluctua-
tions, double occupancies tend to cluster around the system
center. The core compressibility implicitly defines the core
region as the region with finite double occupancy in the sys-
tem.

simple cubic lattice with periodic boundaries.
In the uniform limit (γ = 0) the model exhibits a quan-

tum phase transition between a Mott insulator and a
superfluid [33]. Fig. 1 shows a schematic of the finite
temperature phase diagram at fixed µ. The Mott insula-
tor is characterized by an integer density enforced by the
Mott energy gap ∼ U . As a result of the energy gap, the
Mott insulator is incompressible. The superfluid phase is
compressible. It is characterized by strong number fluc-
tuations (even at low temperature) and a finite superfluid
density.

Trapping due to confinement magnetic fields and/or
tapered laser beam waists in optical lattice experiments
are modeled by a parabolic trapping potential (Fig. 2).
The last term in Eq. (1) decreases the density as the dis-
tance from the center of the system increases for γ > 0.
As a result the spatially varying chemical potential mixes
phases within the trap. Identifying individual phases
within the trapped system requires a local observable but
most experiments currently rely on bulk time of flight
imaging. We study the boson core compressibility as a
candidate quasi-local observable that uses bulk time of
flight data to measure a single phase within the trap.
Core quantities can be compared with single-site local
quantities to show that only one phase in the trap is
measured.

III. LOCAL COMPRESSIBILITY AND LOCAL
SUPERFLUID STIFFNESS

Time of flight observables relate to correlation func-
tions, e.g., momentum distribution, typically computed
in uniform systems. In this section we first define bulk
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compressibility and bulk superfluid stiffness. We then
adapt these definitions to specific measures of local com-
pressibility and local superfluid stiffness.

According to fluctuation-dissipation theorem, density
fluctuations in an optical lattice contain useful informa-
tion about the system [35–39]. The total compressibility,
κ, measures the ability of the system to change its density
with small changes in the chemical potential:

κ =
∂ 〈n〉
∂µ

= N2
s β
[〈
n2
〉
− 〈n〉2

]
, (2)

where
〈
n2
〉

= N−2s 〈(
∑Ns

i=1 ni)
2〉, 〈n〉 = N−1s 〈

∑Ns

i=1 ni〉
and β = (kBT )−1 denotes the inverse temperature. We
set kB = 1 in the following. Ns = L3 is the total number
of sites. Angular brackets denote the thermal average of
observables: < A >= Tr

{
Ae−βH

}
/Z, where Z is the

grand canonical partition function, Z = Tr
{
e−βH

}
, and

Tr denotes the trace. The last equality in Eq. (2) shows
that the compressibility is intrinsically non-local because
it relates to density fluctuations across the entire system.

Bose-Einstein condensation in the presence of interac-
tions leads to superfluidity [40]. The superfluid stiffness
(and therefore the superfluid density) can be computed
using the response of the system to weak perturbations
and, in turn, the winding number, W , evaluated across
the system’s boundary in a QMC simulation [41]:

ρs =
W 2

2tβ〈n〉
. (3)

The superfluid stiffness, as defined, is a manifestly bulk
quantity because macroscopic occupation of a single
mode in the presence of interactions implies that per-
turbations lead to non-local response.

Significant spatial inhomogeneity due to trapping sug-
gests that local measures of compressibility and stiffness
will be more informative. The local compressibility [42]:

κi =
∂ 〈n〉
∂µi

= β [〈nin〉 − 〈ni〉 〈n〉] , (4)

measures the average density fluctuations at a single site
in comparison to the total average density. Note that the
local compressibility of a trapped system becomes equiv-
alent to κ in a uniform system only if κi is summed over
a smooth and large volume of the trapped system. For
large enough system sizes the local compressibility shows
critical properties, similar to those of the total compress-
ibility, that can be used to identify phase boundaries
[42, 43].

Figure 2 depicts severe inhomogeneity imposed by a
trapping potential. Here we see that the compressibility
in the core of the system can be entirely different from
the edges. We thus expect κ 6= κic , where ic denotes a
site at the trap center.

To capture local order of trapped bosons it is also con-
venient to define a local stiffness. We define the local

stiffness in terms of a projection along imaginary time
in QMC simulations. We calculate the superfluid stiff-
ness using the system’s response to weak rotation [44]
measured in imaginary time. Since particles in the su-
perfluid state do not respond to rotation, only particles in
the normal state contribute to the system’s total moment
of inertia, I. The superfluid stiffness is then equivalent to
the ratio of the missing moment of inertia to the classical
moment of inertia Icl of the system, i.e.,

ρs =
Icl − I
Icl

. (5)

This relation offers a physical interpretation of superfluid
stiffness that can be used to construct a local stiffness.

We use the QMC formalism to construct the local su-
perfluid stiffness. In the QMC formalism the total stiff-
ness can be expressed as:

ραs =
4M2〈A2

α〉
β~2Iαcl

, (6)

where α = x, y, z is the rotation axis through the system
center,

Iαcl =

〈
M

N,τm∑
l,τ=1

R⊥(l, τ)×R⊥(l, τ + 1)

〉
, (7)

and

Aα(Ri) =
1

2

N,τm∑
l,τ=1

[R(l, τ)×R(l, τ + 1)]α δRi,R(l,τ)

is the projected area when N particles of mass M move
along paths in the imaginary-time direction in QMC.
Here R(l, τ) denotes the site of the lth particle at the
τ th imaginary-time step while R⊥(l, τ) denotes the same
but for the distance between the particle and the prin-
cipal axis, α. τm is the maximum number of imaginary
time steps and δ denotes the Kronecker delta. The total
projected area becomes:

Aα =
1

Ns

∑
i

Aα(Ri). (8)

Note that in above we have defined a particle massM =
~2/2ta2 and lattice spacing a = 1.

We use the above local quantities to define a local su-
perfluid stiffness. The definition of local superfluid stiff-
ness is not unique. Here we use the definition of Ref. 45:

ρs(Ri) =
2〈AαAα(Ri)〉

tβRi
2
⊥

, (9)

which, if multiplied by MRi
2
⊥ and integrated over all

the lattice sites, yields the total superfluid stiffness of
the system, Eq. (6). Eq. (9) allows us to pinpoint the
presence (or absence) of local superfluids in our simula-
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tions of trapped systems.

IV. CORE COMPRESSIBILITY AND CORE
STIFFNESS

Measurements of the double occupancy can be used
to observe local quantities. Due to confinement we ex-
pect the local density to be largest near the center of
the trapped system. This implies that, in the absence
of significant quantum fluctuations, double occupancies
should cluster near the core of the system. In this sec-
tion we first define decomposition into occupancies. We
then expand the density in terms of occupancy. We use
the total double occupancy to define the boson core com-
pressibility and core stiffness.

Any operator O can be decomposed into a sum over
occupancy in Fock space. If we assume that O is a sum
over local operators at a site, Oi, we can define our de-
composition in terms of projection operators:

O =

Ns∑
i=1

∞∑
m=0

OiPi,m, (10)

where Pi,m projects onto the Fock states of the ith site:

Pi,m ≡
(
b†i

)m
|0〉〈0|

(
bi

)m
. (11)

We can therefore rewrite the expectation value of an ob-
servable as a sum over the occupancy projectors:

〈O〉 =

〈∑
i,m

OiPi,m

〉
. (12)

For example, the total density is given by:

〈n〉 = N−1s

〈∑
i,m

(
b†i

)m
|0〉m〈0|

(
bi

)m〉
. (13)

Using Eq. (13) we can express the total compressibility,
κ = ∂〈n〉/∂µ, as an expansion over occupancy.

In trapped optical lattice experiments there is an ap-
proximate correspondence between occupancy and loca-
tion within the trap. Furthermore, occupancies can be
readily measured (See, e.g., Refs. 18, 20–23, and 25). The
double occupancy arises from the m = 2 term in Eq. (13):

b†i b
†
i bi bi = ni(ni− 1). The total boson double occupancy

is given by:

〈D〉 ≡ 1

2

〈
Ns∑
i

ni (ni − 1)

〉
. (14)

The double occupancy per lattice site is 〈d〉 ≡ 〈D〉/Ns.
Here we see that 〈ni (ni − 1)〉 is non-zero if there are at
least two particles at a site. Measuring double occupan-
cies offers a global observable that yields local informa-

tion by excluding edge effects (provided the edges have
a low density). Thus observables based on double occu-
pancy measure properties at the core of trapped optical
lattices.

We define the double occupancy core compressibility
by expanding ∂〈n〉/∂µ over the occupancies. We find:

κdc ≡
1

2Ns

∂

∂µ

〈
Ns∑
i

ni (ni − 1)

〉
, (15)

in direct analogy to a similar measure used for fermions
[18, 24]. Here small changes in chemical potential impact
d only if the doubly occupied sites form a compressible
state. We will show, by direct calculation, that κdc offers
a quantitatively accurate estimate of the compressibility
near the center of a trapped optical lattice system of
bosons.

Eq. (15) can be generalized to measure the compress-
ibility near a state of any density. The m = 3 term in
Eq. (13) gives the triple occupancy term in the density
expansion. A measurement of triple occupancy can be
used to observe the compressibility near the center of a
trapped system with triply occupied sites near the trap
center:

κtc ≡
1

6Ns

∂

∂µ

〈
Ns∑
i

ni (ni − 1) (ni − 2)

〉
. (16)

κtc excludes both singly and doubly occupied sites.

The expansion of observables in terms of occupan-
cies (Eq. 12) is a general procedure that can be ap-
plied to other order parameters. We also define a core
superfluid stiffness in terms of doubly occupied sites.
We modify Eq. (6) to incorporate only doubly occupied
sites by redefining the location of a particle in QMC,
R(l, τ)→ Rd(l, τ), where Rd(l, τ) defines the site of the
lth particle in imaginary time provided it sits on a dou-
bly occupied site. The global stiffness then reduces to
the superfluid density of doubly occupied sites. We will
see that, in a trap, this measures the superfluid density
near the core of the sample. The core superfluid density,
ρds , can be compared with the local superfluid density,
ρs(Ri). We will use QMC to show quantitative agree-
ment between both quantities in the core of the Bose-
Hubbard model.

We expect κdc and ρds to give an accurate measure of lo-
cal compressibility and local stiffness near the trap center
in a specific but interesting regime of any Bose-Hubbard
model: i) The density should be just above unity, ii)
The temperature should be low enough to prevent a sig-
nificant number of triply occupied sites near the center
or doubly occupied sites near the edges, and iii) Quan-
tum fluctuations should not be strong enough to induce
triply occupied sites near the center or doubly occupied
sites near the edges. We will use MFT and QMC on the
Bose-Hubbard model to demonstrate that these criteria
can indeed be satisfied.
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V. UNIFORM SYSTEMS

Intuition and understanding of quantum many-body
systems often play out in large-uniform systems where
translational invariance simplifies assumptions. The con-
nection between optical lattice observables and conven-
tional order parameters defined in uniform systems can
be tenuous because of trapping effects. In this section we
establish a quantitative connection between core com-
pressibility and total compressibility in uniform systems.
We will show that the Bose-Hubbard model offers several
regimes where the core compressibility can be used to ob-
serve total compressibility. In Section VI we then turn to
comparisons between the core and local compressibility
in realistic trapped systems.

We begin our comparison between core compressibility
and total compressibility in a regime where MFT applies.
Consider the line marked “a” in Fig. 1. For weak hop-
ping t (or in the absence of superfluidity) it is sufficient
to ignore the hopping term in the Hamiltonian. This ap-
proximation is not as severe as it appears. At the mean-
field level our weak hopping approximation follows from
two steps. i) We first decouple sites [34]:

−t
∑
〈i,j〉

(b†i bj +H.c.)→ −t
∑
i

(
ψ∗bi + ψb†i

)
(17)

where ψ ≡ 〈b〉 is the mean-field superfluid order param-
eter. ii) In the absence of a finite superfluid density we
can take ψ = ψ∗ = 0. In this case the mean-field hop-
ping term vanishes and we can focus on the remaining
diagonal terms in the Bose-Hubbard model.

In the absence of mean-field superfluidity, the mean-
field Hamiltonian becomes:

HMF =
U

2

∑
i

ni (ni − 1)−
∑
i

µini (18)

In this limit the model is diagonal and can be solved
exactly. The total mean-field energy of the ψ = 0 system
is then:

E =

Ns∑
i=1

[
U

2
〈ni〉 (〈ni〉 − 1)− µi 〈ni〉

]
Note that the energy increases with 〈ni〉. We can count
energy eigenvalues using integer local number occupancy:
Em = Um(m−1)/2−µm, with m = 0, 1, 2, .... In regimes
where we can separate energy scales according to occu-
pancy our definition of core compressibility becomes an
accurate representation of the total compressibility be-
cause we can locate parameter regimes where singly and
triply occupied sites can be ignored.

The mean-field limit described above provides a limit
in which the core compressibility exactly captures the
compressibility of doubly occupied sites. To construct
a comparison between total and core compressibility
measures note that in the mean-field limit we rewrite

Eq. (13):

〈n〉 ≈
∞∑
m=0

mδρm (19)

where the thermodynamic factor δρm ≡ exp {−βEm} /Z
gives a deviation in density from an integer value at finite
temperatures. Eq. (19) becomes exact for t = 0.

Using density deviations we can relate the compress-
ibilities defined in Sec. IV. The density, double occu-
pancy, and triple occupancy can all be decomposed in
terms of density deviations factors:

〈n〉 ≈ δρ1 + 2δρ2 + 3δρ3 + ...

〈n(n− 1)〉/2 ≈ 0 + δρ2 + 3δρ3 + ...

〈n(n− 1)(n− 2)〉/6 ≈ 0 + 0 + δρ3 + ...

By taking derivatives with respect to the total chemical
potential we arrive at three types of compressibilities:

κ ≈ ∂δρ1
∂µ

+ 2
∂δρ2
∂µ

+ 3
∂δρ3
∂µ

+ ...

κdc ≈ 0 +
∂δρ2
∂µ

+ 3
∂δρ3
∂µ

+ ...

κtc ≈ 0 + 0 +
∂δρ3
∂µ

+ ...

With these expansions we see explicitly that the core
compressibilities give the compressibility of doubly and
triply occupied sites while ignoring sites with lower oc-
cupancy.

Using the density deviation expansion, we can find
regimes for which κ ≈ κdc . We require parameters such
that:

∂δρ1
∂µ

≈ −∂δρ2
∂µ

and

∣∣∣∣∂δρ3∂µ

∣∣∣∣� ∣∣∣∣∂δρ2∂µ

∣∣∣∣ .
The first requirement holds for chemical potentials just
large enough to add a small number of vacancies to
the Mott insulator. For example, consider the limit
〈n〉 = 1 + ε, where ε � 1. The first condition holds
because vacancies have nearly equal and opposite com-
pressibility as doubly occupied sites. The second equal-
ity holds for temperatures and chemical potentials low
enough to prevent significant triple occupancy. Thus
an experiment measuring double occupancy can approx-
imate the mathematical procedure of projection into oc-
cupancies defined in Eq. (13).

We have shown that the core compressibility defines
a compressibility of doubly occupied sites at the mean-
field level. We have also argued that regimes near the
Mott insulator yield κ ≈ κdc . The arguments made using
the mean-field approximation are exact at t = 0 (or with
ψ = 0 in the absence of quantum fluctuations).

To find regimes where κ ≈ κdc in other parts of the
phase diagram we compute both quantities using QMC.
Correlation functions computed with QMC on the Bose-
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Hubbard model are numerically exact on finite sized sys-
tems. We use the stochastic series expansion representa-
tion with directed loop updates [46] to evaluate observ-
ables of Eq. (1). We work within the ALPS framework
[47] for some of the calculations. Error bars for all plot-
ted data points are smaller than the size of the symbols
used within the figures unless otherwise indicated.

Fig. 3 shows QMC results comparing the total com-
pressibility (circles with solid line) with the core com-
pressibilities as a function of chemical potential. The
inset shows that the chemical potential sweeps through
Mott insulators at 〈n〉 = 0, 1, 2 and 3. Between Mott in-
sulators the system forms compressible superfluids (peaks
in the main panels). The diamonds show that κdc tracks
κ only for densities between 1 and 2. Otherwise κdc ≈ 0
when the system shows few triple occupancies (µ/U .
1.75). Above µ/U ≈ 1.75 the core compressibility based
on double occupancies fails to track the total compress-
ibility. Here we find instead, κ ≈ κtc. Fig. 3 reveals two
key features of κdc : i) there is a range of chemical po-
tentials for which we find κ ≈ κdc and ii) for all lower
chemical potentials we find κdc ≈ 0. Thus edge effects in-
duced by trapping (which lowers the chemical potentials
near the edges) will have very little impact on κdc in com-
parison to κ. The vanishing of the core compressibilities
at low µ is a key property that allows the exclusion of
edge effects in trapped systems when measuring d for the
entire trapped system.

Fig. 4 compares MFT with QMC for the density, the
compressibility, and the core compressibility in a uni-
form system. Parameters were chosen to host an in-
compressible Mott insulator at low temperatures. Here
we move along line “a” in Fig. 1. Above T/U ≈ 0.025
(T/U ≈ 0.15) thermal fluctuations induce double (triple)
occupancies. The bottom panel shows that the density
starts to deviate from unity when the temperature is in-
creased. But the top panel shows that for T/U . 0.15
we find κ ≈ κdc . At larger temperatures significant triple
occupancies spoil the connection between κdc and total
compressibility. The solid lines draw the MFT. Here the
MFT is nearly indistinguishable from the QMC. We con-
clude that weak thermal fluctuations allow measurements
of κ with κc.

We also find that the core compressibility tracks the
total compressibility even when there is not a clear con-
nection between the density and energy, i.e., beyond the
mean-field limit defined by Eq. (18). We choose param-
eters to move along the line “b” in Fig. 1. Here we start
in a Mott insulator and move into the critical regime and
then the superfluid phase where the stiffness is finite.
Fig. 5 plots the stiffness, density, and double occupancy
along with the compressibilities to show that the core
compressibility still tracks the total compressibility even
as the system experiences quantum fluctuations.

We find similar agreement between κ and κdc deep in
the superfluid regime. There is no Mott insulator as we
move along the line “c” in Fig. 1. Fig. 6 moves along
both lines “a” and “c” in Fig. 1. The compressibilities

-0.5 0 0.5 1 1.5 2
µ/U
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 κ
 κd

c

 κt
c
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µ/U
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2
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<
n>

Figure 3: (Color online) The symbols show quantum Monte
Carlo results for three different compressibilities computed
in the uniform Bose-Hubbard model with T/U = 0.025,
t/U = 0.01, and L = 6 as a function of the chemical poten-
tial. The total compressibility (circles) vanishes in the Mott
insulator state but jumps when the chemical potential passes
through the superfluid state. The double occupancy-based
core compressibility (diamonds) match the total compress-
ibility when the density is around 1 and below 2. It vanishes
for density less than 1. The triple occupancy-based core com-
pressibility (squares) match the total compressibility when
the density is around 2 and below 3. It vanishes for density
below 2. Inset: The total density plotted versus chemical po-
tential for the same parameters as the main panel. The solid
lines in both the main panel and the inset are guides to the
eye.

here also show agreement amongst themselves.
In this section we used a MFT to argue that the core

compressibility measures the compressibility near inte-
ger fillings in uniform systems. We compared mean-field
calculations with QMC to show that the core compress-
ibility can be used to track phase transitions out of the
incompressible Mott insulator state. We also find that
the core compressibility agrees with the total compress-
ibility even in the superfluid state provided we work at
low densities.

VI. TRAPPED SYSTEMS

We now turn to studies of the compressibility and
stiffness in a more realistic setting, the trapped Bose-
Hubbard model. We consider regimes with non-zero γ in
Eq. (1). We first show that core quantities accurately
capture local quantities. Specifically, we find regimes
where ρds and κdc accurately capture the local stiffness
and the local compressibility, respectively, in the cen-
ter of the trap. We then construct a recipe for scaling
the core compressibility. By increasing particle number
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Figure 4: (Color online) Panels (a) and (b) compare quantum
Monte Carlo (symbols) with mean-field results (lines), ver-
sus temperature for the compressibility and average density,
respectively for the uniform Bose-Hubbard model. Parame-
ters are chosen in a regime where mean-field theory agrees
with quantum Monte Carlo: at small hopping t = 0.01 and
µ = 0.76. In panel (a) the dashed line is computed for the
total compressibility but the dotted line is core compressibil-
ity. This mean-field regime emphasizes the close agreement
between the core and total compressibilities at low tempera-
tures (T/U . 0.15). There is even close agreement as we cross
from the Mott insulator to the normal phase. At higher tem-
peratures (T/U & 0.15), thermal fluctuations induce triple
occupancies which causes the core and total compressibilities
to deviate. In panel (b) we see that the average density devi-
ates from unity when temperatures are high enough to convert
the Mott insulator into the normal phase.

experiments can be used to access the thermodynamic
limit if measurement data can be appropriately scaled
with system size. We show that the core compressibil-
ity can be scaled with trap strength. We conclude that
the core compressibility can be used to extract the total
compressibility of a single phase at the core of the system
regardless of system size.

To compare the core and local compressibilities we ap-
proximate the size of the core region using the Thomas-
Fermi radius. In the Bose-Hubbard model a Thomas-
Fermi-type approximation can be used to approximate
the density variation with distance near the trap center:

nTF (Ri,0) =
(
µ− γR2

i,0

)
/U. (20)

We focus on parameter regimes which have a density
slightly larger than 1 near the center of the trap, e.g.,
a core superfluid surrounded by a Mott insulator shell
with density 1. The core region is then approximated
by a specific radius Rc which encloses sites with particle
density larger than 1. Particles are defined to be in the
Thomas-Fermi core of the sample if they sit on sites with
|Ri,0| . Rc. We can use the Thomas-Fermi approxima-
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Figure 5: (Color online) Plots of thermodynamic quantities
computed with quantum Monte Carlo as function of hop-
ping for the uniform Bose-Hubbard model with µ = 0.76,
T = 0.025, and L = 8 and 10. In panel (a), three different
compressibilities are plotted: core compressibility (κd

c , squares
for L = 8 and up triangles for L = 10), local compressibil-
ity (κic , circles for L = 8 and diamonds for L = 10), and
total compressibility, (κ, down triangles for L = 8 and X
for L = 10). In panels (b)-(d) circles denote L = 8 data
and squares L = 10. The solid lines are guides to the eye.
Panel (a) shows quantitative agreement between all measures
of compressibility as we increase the hopping to drive the Mott
insulator into the quantum critical regime.

tion to estimate Rc using nTF
(
RTF
c

)
= 1. This yields

RTF
c =

√
(U − µ)/γ. We expect RTF

c ≈ Rc when a core
superfluid is surrounded by a Mott insulator in a trap
with a large number of core particles. We stress that
the core compressibility, Eq. (15), implicitly defines the
core region in terms of double occupancies but RTF

c is
an approximation we use to compare the local and core
compressibilities.

The local compressibility can be combined with our
definition of the core of the sample. By summing the
local compressibility over sites only within the core of
the sample we construct a compressibility measure of a
single phase within the trap:

κL (Rc) =
1

NRc

∑
{i|Ri,0≤Rc}

κi (21)

where NRc
is the number of sites inside the sphere with

radius Rc. κL measures the compressibility near the trap
center.

We can compare Eq. (21) with the core compressibility
if we include an appropriate scaling factor. The core
compressibility is defined to be a bulk quantity, summed
over all sites and normalized by Ns in Eq. (15). But the
overall N−1s factor in Eq. (15) is not unique. To compare
κdc with κL we normalize the core compressibility by the
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Figure 6: (Color online) Panels (a)-(d) plot quantum Monte
Carlo results for the compressibility, superfluid stiffness, total
density, and double occupancy, respectively, as a function of
temperature for different lattice sizes and hoppings in the uni-
form Bose-Hubbard model. The chemical potential is fixed at
µ/U = 0.76. In panel (a) the total compressibility (symbols)
shows agreement with the core compressibility, κd

c , (lines).
For low t we see a transition from the Mott to the normal
phase. For large t we see a transition from the superfluid
to the normal phase. The core compressibility reveals both
transitions.

approximate number of sites in the core, NRc , instead of
Ns :

κdc (Rc) ≡
1

2NRc

∂

∂µ

〈
Ns∑
i

ni (ni − 1)

〉
. (22)

Here the sum is kept over all sites, Ns. Because in a
trapped system the double occupancy excludes the edge
sites. The sum will then effectively run over ≈ NRc

sites.
We now use QMC to compare a quantity we interpret

mathematically as the local compressibility of the sam-
ple core, Eq. (21), and a quantity that we propose can
be used to effectively measure the core compressibility in
experiments, Eq. (22). We choose parameters so that the
core of the trapped system moves along a line equivalent
to “b” in Fig. 1. Fig. 7 plots the local stiffness and lo-
cal density for several t/U to show that for low t/U we
have a Mott insulator in the core but for larger t/U we
have a finite superfluid density in the core. When t/U
crosses the phase boundary the density at the trap cen-
ter becomes larger than 1 and the stiffness at the center
becomes larger than zero.

Fig. 8 compares Eq. (21) with Eq. (22) for the same
parameters as Fig. 7. For the core compressibility we plot
κdc
(
RTF
c

)
. We find RTF

c ≈ 3.32 lattice spacings for these
parameters. Note that a non-zero core compressibility
signals the onset of superfluidity at the trap center. But
because the edges are always compressible we see very lit-
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t = 0.035

0 2 4 6 8 10
Ri,0

0

5e-05

0.0001

ρ s(R
i,0
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Figure 7: (Color online) Quantum Monte Carlo results show-
ing the local density (a) and superfluid stiffness (b) as a func-
tion of the distance from the center, Ri,0, for different hop-
pings and L = 12. The solid lines are guides to the eye. Pa-
rameter values (µ/U = 0.76, T/U = 0.025, and γ/U = 0.035)
are chosen to host a Mott insulator in the core for low hopping
but a superfluid in the core for larger hopping. Note that for
t/U & 0.03 the system also shows a finite local stiffness for all
Ri,0 due to finite size effects. At these temperatures and sys-
tem sizes the edge superfluid couples to the core superfluid.
Double occupancy based measures exclude these edge effects.

tle structure in the total compressibility as the core of the
system crosses the phase boundary. κL (Rc) is also plot-
ted for different core radii. We find κL (Rc) ≈ κdc

(
RTF
c

)
when Rc ≈ RTF

c . Thus the core compressibility offers a
quantitatively accurate measure of local compressibility
provided we scale the definition of core compressibility
to include the same number of sites in the core. Here
we have chosen NRTF

c
because we expect NRTF

c
to scale

accurately with trapping.
The core and local superfluid stiffnesses also match

near the system center. Fig. 9 compares the local stiff-
ness to the local stiffness projected onto doubly occupied
sites. The local stiffness in the core matches the stiffness
due to doubly occupied sites. We conclude that the su-
perfluidity in the core is due to coherence among doubly
occupied sites. This implies that doubly occupied sites
can also be used to observe core superfluidity.

By scaling Eq. (22) with trapping (and thus increasing
particle number) we can extract a bulk measure of core
compressibility. For large enough system sizes an appro-
priately scaled quantity should show little variation with
particle number. Fig. 10 plots Eq. (22) for several differ-
ent values of the trapping strength γ. The inset shows
that for γ = 0.1 there are very few particles in the core, so
the deviation from scaling is the worst in this case. But
for smaller values of γ a sufficiently large number of par-
ticles reside in the core. The main panel in Fig. 10 indi-
cates that Eq. (22) shows data collapse provided enough
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Figure 8: (Color online) Local, κL (Rc), total, κ, and core,
κd
c (Rc) compressibilities (a) and double occupancy (b) plot-

ted as a function of hopping for the same parameters as Fig. 7.
The solid lines are guides to the eye. Here we see that the
total compressibility (triangles) remains non-zero and nearly
flat across the transition because the system edges remain
compressible even when low hoppings yield a Mott insulator
in the core. The local and core compressibilities show better
agreement near the transition when the same definition for
the core region is used, RTF

c = 3.32. Triple occupancies lead
to deviations between κL (3.32) and κd

c (3.32) for t/U ≈ 0.035.

particles reside in the core. Data collapse for low γ in-
dicates that here we can extract the core compressibility
in the thermodynamic limit.

In this section we have shown that the core compress-
ibility self-selects sites in the core of the sample. A lo-
cal compressibility measure relies on the selection of a
finite volume in which to measure the compressibility.
The core compressibility relies on double occupancies to
self-select a volume within the center of the trap. By
rescaling a pre-factor used in the local compressibility
we showed agreement between the core and local com-
pressibility over a wide range of trap strengths. We have
also shown agreement between the core stiffness and the
local stiffness.

VII. MEASURING CORE COMPRESSIBILITY

The core compressibility can be extracted from optical
lattice experiments to observe phase transitions [18, 24].
Measurements of the core compressibility rely on varia-
tions of the double occupancy with particle number. The
core compressibility ratio κdc/κ is given by:

κdc
κ

=
∂ 〈D〉
∂µ

(
∂ 〈N〉
∂µ

)−1
=
∂ 〈D〉
∂〈N〉

. (23)
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Figure 9: (Color online) Quantum Monte Carlo results plot-
ting the local stiffness (circles) as a function of the dis-
tance from the trap center for two different hoppings and
L = 16. The parameters are otherwise chosen to match Fig. 7.
The solid lines are guides to the eye. The top panel shows
that strong confinement can enforces a coupling between the
core and edge superfluids to yield a non-zero local stiffness
throughout the trap. The bottom panel shows a region of
Mott insulator where the stiffness goes to zero near Ri,0 = 3.
The stiffness arising from doubly occupied sites (squares) and
triply occupied sites (triangles) are shown for comparison.
The stiffness near the trap center matches the stiffness from
the doubly occupied sites. The doubly occupied stiffness goes
to zero at the trap edges.

This ratio is a dimensionless quantity defined entirely
in terms of optical lattice observables because the total
number of particles, 〈N〉 = Ns〈n〉, and the total dou-
ble occupancy, D, are both accessible from time of flight
measurements [20, 21]. Fortunately, edge effects cause
κ to be a smooth non-zero function in trapped systems
even across phase transitions (See, e.g., Fig. 8, Ref. 19,
and Ref. 24). Thus observation of the slope of the total
double occupancy with respect to particle number reveals
the core compressibility, up to an overall factor that is
nearly constant.

Fig. 11 demonstrates that the core compressibility ra-
tio reveals the Mott insulator-superfluid transition. Here
the transition manifests in a quantity that does not rely
on microscopic definitions of the core. The core com-
pressibility ratio is instead defined entirely in terms of
bulk values, double occupancy and particle number, ac-
cessible from time of flight measurements.

VIII. SUMMARY

Measurements of double occupancy reveal properties
at the core of optical lattice experiments even though the
experiments come with significant spatial inhomogeneity
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Figure 10: (Color online) Rescaled core compressibility,
Eq. (22), plotted for different trap strengths as a function
of hopping. The inset plots the radial dependence of the local
density for each system at t = 0.015. The other parameter
values are µ = 0.76 and T = 0.025. The data collapse for trap
strengths that allow a large core superfluid region, γ . 0.045.
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Figure 11: (Color online) The core compressibility ratio plot-
ted for the same parameters as Fig. 10. The compressibility
of the edges leaves κ nearly constant as the core leaves the
Mott insulator with increasing hopping.

due to trapping. Trapping can mix states within one
system. The double occupancy offers a bulk observable
that can be used to extract information regarding the
core of the sample. We defined core quantities, the core
compressibility and the core stiffness, in terms of double
occupancy.

We focused our study on a validation of core compress-
ibility as a useful tool in extracting compressibility from
experiments on trapped systems. A measure of core com-
pressibility, Eq. (23), can be defined entirely in terms of
optical lattice observables and therefore offers a powerful
experimental method for mapping out phase diagrams
even in the presence of trapping. We first studied the
boson core compressibility in a uniform system. We used
MFT and QMC to argue that the core compressibility
defined in terms of double occupancy excludes low den-
sities while tracking the total compressibility. The rela-
tionship between double occupancy-based core and total
compressibility holds if: i) the number of particles per
site is just above unity and ii) Thermal and quantum
fluctuations do not allow significant triple occupancy.

We have also studied the core compressibility in
trapped systems. We showed that the core compress-
ibility tracks the change of state within the core of the
system while excluding edge effects (unlike the total com-
pressibility which includes edge effects). We further de-
fined a site normalization that allowed a comparison be-
tween local compressibility and the core compressibility.
The core and local compressibility were shown to be es-
sentially the same when compared over the same number
of sites. We conclude that the core compressibility is
thus a powerful but simple observational tool that can
be used to observe the same critical properties as local
compressibility.

The boson core compressibility has been tested on
an experimentally relevant model, the trapped Bose-
Hubbard model. The boson core compressibility can be
applied more generally to study transitions between a
wide variety of incompressible and compressible phases.
One of the most pressing [30] examples is the Mott insu-
lator to Bose-Glass transition [33].

We acknowledge support from the Jeffress Memo-
rial Trust (J-992), AFOSR (FA9550-11-1-0313), and
DARPA-YFA (N66001-11-1-4122). Some of the calcula-
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Advanced Computing Center at the University of Texas
at Austin.
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