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Abstract 

We theoretically investigate high-order harmonic generation in argon gas driven by 

two orthogonally polarized laser pulses of single color, with the consideration of 

macroscopic propagation effect including fundamental and harmonic field. Both the 

three-dimensional propagation simulation and a simple analytical model based on 

singe-atom level demonstrate the harmonic intensity of any harmonic order varies 

periodically when the delay between two pulses is scanned. This significant intensity 

modulation provides an experimentally observable contrast, from which the electron 

excursion time of short quantum path associated with a certain harmonic order can be 

directly read. The result shows that the attosecond time-resolved electron motion can 

be mapped onto the macroscopic harmonic intensity modulation 
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I. INTRODUCTION 

Capturing electron dynamics in atoms and molecules is one of the central topics of 

ultrafast time-resolved measurement [1, 2]. The temporal evolution of the ultrafast 

process usually calls for isolated attosecond (~100 as) pulses as the probing pulse 

since the duration is comparable to the Bohr time scale of an electron completing one 

rotation along Bohr orbit. The electron dynamics in atoms and molecules is often 

reconstructed by the photoelectron signal induced by this attosecond probing pulse [3, 

4].  

  High-order harmonic generation (HHG) as a nonlinear phenomenon of atoms or 

molecules subjected to high intensity laser fields has been extensively studied [5]. The 

underlying dynamics of HHG can be described by the semi-classical three-step model 

[6]. Not only is HHG used as an approach to generate extreme ultraviolet source for 

spectroscopic applications, but also itself carries some important information about 

the electron movement on sub-cycle time scale and spatial structure of ground state 

[7], as manifested by the third step in the three-step model. Specifically, when the 

electron recombines with the parent ion core, the fast oscillating dipole as a result of 

the interference between free electron wave packet and bound state induces the 

harmonic emission. During this combination process, the electron dynamic 

information is encoded to characteristics of the emitted photon. It is possible to extract 

the electron dynamics from the amplitude and phase of emitted harmonic photon by 

some delicate means, which supplies an alternative tool to implement time-resolved 

and spatial measurement.  
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For instance, HHG in aligned molecules has been used for the tomographic 

imaging of molecular orbit [8]. Two-color and elliptically polarized laser field can not 

only control and affect the harmonic emission [9-13], but also serve as a temporal 

gating to identify the harmonic emission time on sub-cycle time scale by measuring 

harmonic intensity spectrum [14, 15]. Destructive interference during HHG in mixed 

gases has been experimentally used to identify electron excursion time of short 

quantum path [16] and observe molecular structure [17]. Since the molecular high 

harmonic signal is modulated by nuclear vibrational autocorrelation function, HHG 

can also be used to probe nuclear motion in simple molecules [18-20]. 

In this paper, we theoretically investigate HHG by using two orthogonally 

polarized laser pulses of single color, in which one is of high intensity and acts as a 

driving (pump) pulse, and the other is of low intensity and acts as a modulation (probe) 

pulse. The probe pulse is weak enough so as to only gently perturb electron trajectory 

without affecting the ionization induced by the pump pulse. Our main results include: 

(i) The macroscopic harmonic flux of any harmonic order, which is calculated by 

non-adiabatic three-dimensional (3D) propagation equation including the evolution of 

both fundamental and harmonic beams, exhibits a periodic oscillation with scanning 

the delay between the pump and probe pulse. In the propagation calculation, the 

focusing geometry and spatial filtering ensure the macroscopic intensity spectrum 

comes from the contribution of the short quantum path involved in HHG. (ii) A 

simple analytical model based on saddle-point approximation of single-atom dipole 

response confirms this kind of oscillation providing an experimentally observable 
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contrast, from which the electron excursion time of short quantum path associated 

with each harmonic order can be read by a proper inversion algorithm.  

 

II. THEORETICAL MODELS 

  The high harmonic calculation usually contains two aspects: one is the single-atom 

response to driving laser field, and the other is the subsequent consideration of 

macroscopic propagation effect for driving pulse field and the emitted harmonic field. 

The latter one is especially significant for the reconstruction of experimental results. 

Solving directly time-dependent Schrödinger equation (TDSE) for the interaction 

between individual atom and external laser field is the exact way to obtain 

single-atom response, which is then inserted into Maxwell’s wave equation as source 

term of macroscopic nonlinear polarization. However, it is time-consuming because 

thousands of TDSEs should be solved when the propagation effect is considered. 

Instead, the strong-field approximation (SFA) supplies a neat picture to conveniently 

calculate the single-atom response. The nonlinear dipole moment can be expressed as 

Lewenstein integral formula (atomic units (a.u.) 1ee m= = ==  are used throughout 

unless otherwise indicated) [21]:  
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depletion. We point out the saddle-point approximation momentum is used in this 
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single-atom SFA formula. Here, ( )w t′  is the ionization rate calculated by the ADK 

model [22, 23]: 
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atom, l and m are angular and magnetic quantum numbers. The effective angular 

quantum number *l  is * 0l =  for l n<< , or * * 1l n= −  otherwise. In Eq. (1), the 

matrix element for dipole moment transitions from the continuum state to the ground 

state is given by 
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the stationary momentum is 
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and the corresponding stationary quasiclassical action is 
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  Propagation effect is calculated by using a moving coordinate frame and under the 

slowly-evolving wave approximation, including the evolvement of the fundamental 

and harmonic beams [24, 25]. The fundamental field propagating in a field-ionizing 

gas medium is described by  



 6
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which contains plasma defocusing effect, self-phase modulation effect and the linear 

gas dispersion. In Eq. (6), 1/2
0( / )p enω ε= , en , n , c , 0ε  and (1)ζ  refers to the 

plasma frequency, the density of free electron, the density of neutral atom, the vacuum 

light speed, the permittivity of free space, and the linear susceptibility of neutral 

atoms, respectively.  

The propagation of harmonic field is described by 

2
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where hα  refers to the absorption of gas target, n  is the density of neutral atom, 

and p
JG

 is the single-atom response calculated by Eq. (1). The two equations can be 

numerically solved by Crank-Nicholson routine in the frequency domain. The 3D 

propagation model supplies a robust tool to simulate the real experiment, and can 

reproduce satisfactorily the experimental results [24-26]. 

 

III. RESULTS AND DISCUSSIONS 

A. 3D propagation simulation 

  We consider the typical parameters of a HHG experiment, i.e., a 1-mm-long argon 

cell at 10 Torr gas pressure is located at the focus of 30-fs Gaussian driving laser 

pulse with a waist of 25 mμ , a central wavelength of 800 nm, and a peak intensity of 

14 22 10 /W cm× . Another laser pulse, which is served as a probe pulse, whose 

polarized direction is perpendicular to the one of driving pulse, has the same duration, 
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waist, and frequency as the driving laser pulse, but a lower peak intensity 

12 22 10 /W cm× . The high harmonics are then generated in these two orthogonal laser 

fields, which can be easily implemented in the experiment. Multi-optical-cycle 

driving laser pulse can be directly generated by commercial Ti:sapphire (800nm) laser 

system, then transmits through a beam splitter to generate the weak probe laser pulse, 

which can be rotated 90D  by a quartz plate. 

  The delay between the driving pulse and the probe pulse is chosen to an adjustable 

parameter in our simulation. Both experimental and theoretical studies show that 

propagation effects can separate long and short electron trajectories in the far-field 

region [27-32]. In our work, we concentrate on the discussion about the selection of 

short quantum path. The long quantum path is not filtered in the SFA. The single-atom 

response calculated by Eq. (1) contains all possible quantum paths. We only make use 

of propagation effect and spatial filter to automatically select the short quantum path 

by phase-matching process. This can be confirmed by analyzing the time-frequency 

behavior of the on-axis harmonics at the exit of the gas cell. The time-frequency 

analysis approach can be found in Ref. [33]. The calculated time-frequency 

spectrogram is shown in Fig. 1. One can see that the strong region in the 

time-frequency spectrogram represents that each harmonic order exhibits a single, 

approximately linear chirp. This is the case that only one quantum path is dominant in 

the harmonic spectrum. The contribution from other quantum paths is weak, and 

therefore can be neglected. Furthermore, the magnitude of the chirp rate, which is 

described by the slope of the strong region, increases with harmonic order. This is the 
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characteristic of the short quantum path. 

Fig. 2(a) shows the macroscopic harmonic intensity spectrum (H25) as a function 

of the delay from the 3D propagation calculation. The intensity spectrum is obtained 

by integrating over a narrow region (0~2 mrad) in the far field, which represents that 

the short quantum path is selected. The far-field harmonics are calculated from the 

harmonic field at the exit of the gas cell through a Hankel transform [34]. Fig. 2(b) 

shows each harmonic yield (H21~H31) as a function of the delay. Here, each 

harmonic yield, which is obtained by integrating over both a spectral window 

(centered at corresponding central frequency, and a width of 3 eV) and a far-field 

spatial region (0~2 mrad), is normalized to each corresponding maximum yield. From 

Fig. 2, one can easily see that the macroscopic harmonic yield varies with a period of 

half of optical cycle. Another important feature for harmonic yield is that the different 

harmonic order has the distinct modulation depth, just as shown in Fig. 2(b). We can 

introduce a macroscopically observable modulation contrast ( )Nβ τ  which 

corresponds to each harmonic order N and is defined as the ratio between the peak 

and the valley shown in Fig. 2(b). It is clear that the modulation contrast ( )Nβ τ  

increases monotonically with the increase of the harmonic order N. We will show 

( )Nβ τ  carries the information on the electron excursion time Nτ  of short quantum 

path associated with harmonic order N in the following text. 

B. Analytical investigation 

  In order to interpret these results shown in Fig. 2, we turn to investigate the 

underlying dynamics in singe-atom level by further simplifying the integration in 
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Eq.(1) with saddle-point approximation. To facilitate the description, the driving field 

and the weak probe field, considered along x- and y-polarized direction, are expressed 

as 

0 0( ) cos( )xE t E tω= ,      (8a) 

and 

0( ) cos[ ( )]y dE t t tε ω= − ,   (8b) 

where 14 2
0 2 10 /E W cm= × , 12 22 10 /W cmε = × , 0ω , and dt  represent the driving 

field amplitude, the probe field amplitude, the angular frequency, and the delay, 

respectively. We point out the monochromatic electric field is employed here instead 

of the multi-optical-cycle Gaussian pulse used in 3D propagation calculation for the 

convenience of analytical treatment. 

  For the low intensity of probe pulse ( 2 2
0| | | |Eε << ), by substituting both Eq. (8a) and 

Eq. (8b) into Eq. (1), the atomic dipole moment based on the saddle-point analysis 

can be described as the sum of the contributions from different electron trajectories 

[35]: 

1( ) ( ) ( , ) ( ) .
i

ion i pr i rec
t

p t a t a t t a t c c
i

= +∑ ,     (9) 

where iona , pra  and reca  refer to the probability amplitudes of tunneling ionization 

from ground state, acceleration in the external field and recombination with parent ion 

core, respectively. It is worth mentioning that the ionization is mainly determined by 

the driving pulse of high intensity, which indicates the possible electron ionization 

moment it  in Eq. (9) is given by the stationary phase equation: 
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In Eq. (9), the amplitude of tunneling ionization is given by 

2 3/2
01/2 1/2

2
0 0

[2 ( )]1 1( ) ( ) (2 ) exp[ ]
1 ( ) / 2 3 | |

p y i
ion i p

y i p

I v t
a t I

v t I E
+

= −
+

   (10) 

Here, the initial lateral velocity is described by 

    0
1( ) ( )

r

i i

t

y i y
r i t t

v t d E t dt
t t

τ

τ ′ ′= −
− ∫ ∫ ,                       (11) 

which ensures the electron released at the moment it  can finally return to the nucleus 

at the moment rt  in the presence of y-direction probe field ( )yE t′ . For 

2
0 ( ) 2y i pv t I<<  representing the use of sufficiently weak probe field, we can obtain 

from Eq. (10):  

           
2

02

0

( )
| ( ) | exp( )

| | / 2
y i

ion i
p

v t
a t

E I
∝ −                (12) 

  With Eq. (8b) and Eq. (11), we have 

0 0
0 0 0 0

0 0

cos[ ( )] cos( )( ) ( , ) [ sin( )] ( , )y i y yv t v ω τ δ ω δετ δ ω δ εθ τ δ
ω ω τ

− −
≡ = − ≡ ,    (13) 

where r it tτ = −  and d it tδ = −  represent the electron excursion time and 

delay-relevant variable, respectively. 

  According to SFA model, when the perpendicularly polarized probe laser ( )yE t  

joins together in HHG process, the electron emerging in the continuum presents a 

lateral displacement along y-direction. This kind of lateral wave packet diffusion 

reduces the overlap between the ground state and the free-electron state, consequently 

leading to the decrease in harmonic intensity. The effect of the weak probe field on 

high harmonic generation can be viewed as a perturbation process.  
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Since the electron ionization event takes place in every half-optical-cycle of the 

driving pulse, in Eq. (9) the two adjacent ionization moments it  associated with 

harmonic order N has an interval of 0/π ω . Note that we only consider short quantum 

path here. By combining Eq. (9), Eq. (12) and Eq. (13), we can obtain the perturbed 

Nth harmonic intensity: (Note that 2 2
0 0 0( , ) ( , / )y N y Nv vτ δ τ δ π ω= ± ) 

             2 2
, 0 0 0( , ) exp( / )N N yI I v vετ δ == − ,               (14) 

where Nτ , , 0NI ε = , and 0 0| | / 2 pv E I=  represent the electron excursion time 

corresponding to harmonic order N, the unperturbed Nth harmonic intensity without 

the probe laser field, and the lateral velocity bandwidth, respectively.   

From Eq. (14), for a given harmonic order N, one can easily see the harmonic 

intensity satisfying 0( , ) ( , / )N NI Iτ δ τ δ π ω= ±  varies periodically from the maximum 

(peak) to the minimum (valley) with scanning the delay, which provides a good 

explanation to the results in Fig. 2. The maximum and minimum harmonic intensity 

can be obtained by the saddle-point equation:  

            ( , ) 0NIδ τ δ∂ = ,                (15) 

which gives two separate equations: 

0 min 0 min
0 min

0

sin[ ( )] sin( ) cos( )N

N

ω τ δ ω δ ω δ
ω τ

− + =      (16) 

and 

0 max 0 max
0 max

0

cos[ ( )] cos( ) sin( )N

N

ω τ δ ω δ ω δ
ω τ

− − = .     (17) 

The relationship between Nτ  and δ  described by Eq. (16) and Eq. (17) gives 

those delays which generate the minimum harmonic intensity min min= ( , )NI I τ δ  and 
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the maximum harmonic intensity max max( , )NI I τ δ= , respectively. Therefore, the 

contrast of the Nth harmonic intensity modulation is given by: 

       max max

min min

( , )( )
( , )

N
N

N

I I
I I

τ δβ τ
τ δ

= = .              (18) 

  By numerically solving both Eq. (16) and Eq. (17), and substituting the solution 

into Eq. (18), we can obtain the contrast ( )Nβ τ , just as shown in Fig. 3(a). Fig. 3(b) 

shows harmonic photon energy as a function of the corresponding electron excursion 

time τ , which is calculated by quantum theory [21]. We can see from Fig. 3(a) and 

Fig. 3(b), the different harmonics have the different contrast when the delay between 

driving pulse and probe pulse is scanned. In particular, for the short quantum path 

discussed in our work, the contrast increases with the increase of the harmonic order. 

Therefore, our analytical model gives the result consistent with Fig. 2(b).  

Additionally, we point out the weak probe field can not significantly affect the 

action. In our work, the polarized direction of the weak probe field is perpendicular to 

the one of the strong driving field. Therefore, the exact action can be expressed as 

1= +S S σ , where 1S  is the approximated action only including the contribution of the 

strong driving field, and σ  is the additional phase induced by the weak probe field. 

Using the saddle-point analysis method, we can calculate the electron excursion time 

associated with different harmonics under two cases: (i) using the exact action S , 

and (ii) using the approximated action 1S . For S  and 1S , the corresponding 

excursion time of short quantum path is denoted as ( )T q  and 1( )T q , respectively. 

The relative change rate of the excursion time associated with harmonic order q  can 
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therefore be defined by 1

1

( ) ( )
( )

T q T q
T q

− , which is shown by Fig. 4. It is found that the 

relative change rate is less than 1% for the harmonic order H21~H31. Thus, it is 

reasonable for the use of the approximated action 1S  to describe the phase of the 

acceleration. We also estimate the harmonic intensity in the y-direction is two orders 

of magnitude lower than the one in the x-direction, which represents the harmonics 

emitted in the perpendicular direction is not important. 

 

C. Retrieval of the electron excursion time 

We can see from Eq. (14), the electron excursion time associated with a certain 

harmonic order N is encoded to the corresponding harmonic intensity modulation. 

Thus, it supplies an opportunity to retrieve the electron excursion time by a proper 

inversion formula. We start from Eq. (18) and describe how to read the electron 

excursion time, as follows: 

For a given harmonic order N, according to Eq. (13), Eq. (14) and Eq. (17), the 

maximum harmonic intensity max( , )NI τ δ  satisfies: 

                  max , 0( , )N NI I ετ δ ==                        (19) 

With Eq. (13), Eq. (14), Eq. (18), and Eq. (19), we have 

              0
0 minln ( ) ( , )N y N

v β τ θ τ δ
ε

= ,                     (20) 

where Nτ  and minδ  is coupled by Eq. (16). In order to eliminate the dependence on 

0 /v ε  in Eq. (20), 0 min( , )y Nθ τ δ  is normalized to 
00 min( , )y Nθ τ δ  corresponding to a 

certain harmonic order 0N . In this way, we have 
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0 00 min 0 minln ( ) / ln ( ) ( , ) / ( , )N N y N y Nβ τ β τ θ τ δ θ τ δ=           (21) 

The response of 
0 00 min 0 min( , ) / ( , ) ( ; )y y N Nθ τ δ θ τ δ θ τ τ≡  calculated from both Eq. 

(13) and Eq. (16) is shown in Fig. 5(b), where we set 0 25N = . It is worth mentioning 

here that the function 
0

( ; )Nθ τ τ  represents the intrinsic dynamics of electron wave 

packet lateral diffusion, which is independent of the probe laser intensity and the 

atomic ionization energy. 

By using the macroscopic modulation contrast ( )Nβ τ  directly obtained from Fig. 

2(b), we can calculate N 25 25( ; ) ln ( ) / ln ( )Nθ τ τ β τ β τ= , which represents an 

observable variable in the experiment. The calculated result is shown in Fig. 5(a), 

while Fig. 5(b) presents the generally intrinsic response N 25( ; )θ τ τ  calculated by the 

analytical model. By comparing Fig. 5(a) and Fig. 5(b), we can retrieve the electron 

excursion time associated with each harmonic order. The reconstructed excursion 

time is represented by circles in Fig. 5(c), in which solid line presents the calculated 

excursion time by quantum theory [21].  

Fig. 5(c) shows the electron excursion time is obtained by two different ways. One 

(circles) is obtained by the inversion algorithm making use of macroscopically 

observable harmonic intensity modulation. The other (solid line) is obtained by direct 

quantum theory of single-atom model. One can find that both results are coincident, 

which demonstrates that the sub-cycle electron motion can be read from the 

modulation of macroscopic harmonic spectrum.  

The focal volume of the two laser fields for the retrieval is important. The 

perturbed harmonic intensity is sensitive to the weak field intensity through the 
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exponential relationship just as shown by Eq. (14). Moreover, the spatial filter is used 

in our work to only select the harmonics near the axis. Therefore, in order to make the 

retrieval algorithm useful, the non-uniformity of laser intensity along the on-axis 

direction should be reduced by making the Rayleigh length of the driving and the 

probe laser pulse longer than the gas target length. 

Finally, the effect of the propagation calculation on the retrieval algorithm is 

worth mentioning. In our work, we mainly discuss the retrieve of electron excursion 

time associated with short quantum path. The harmonic spectrum from single-atom 

calculation includes the total contribution from the short and the long quantum path. 

Although we can only pick out the short quantum path by the mathematical treatment 

for SFA formula, however this is not a real physical case. On the contrary, the 

propagation of harmonics provides a real process to select the short quantum path, 

which is automatically achieved by phase-matching effect. As a result, the harmonic 

field from the short quantum path is dominant on the axis at the exit of the gas cell 

even if the singe-atom calculation includes the contribution of all possible quantum 

paths. This kind of selection is the same as the real experiment. Propagation 

calculation used here can be viewed as a simulation for HHG experiment. Therefore, 

the feasibility of our scheme is demonstrated due to the fact that the harmonic signal 

used for the retrieve of electron excursion time is not from the single-atom calculation 

but from the macroscopic propagation process. 

IV. CONCLUSION 
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The two orthogonally polarized laser fields constructed by a high-intensity driving 

pulse and a low-intensity probe field with the same central frequency are proposed to 

map the sub-cycle electron dynamics during HHG process. The effect of the probe 

pulse is reflected in the generation of modulated harmonic intensity. Taking into 

account both the non-adiabatic 3D propagation calculation and the single-atom 

analytical model, we demonstrate the intensity spectrum of any harmonic order 

exhibits a periodic oscillation from the maximum to the minimum with scanning the 

delay between the driving pulse and the probe pulse. Our propagation calculations can 

be viewed as a simulation experiment, which supplies a macroscopically observable 

modulation contrast. By using the macroscopic contrast and the intrinsic response of 

electron wave packet lateral diffusion, we successfully retrieve the electron excursion 

time of short quantum path associated with the harmonic order H21~H31. The result 

shows the sub-cycle electron motion is mapped onto the modulation of macroscopic 

harmonic intensity, and therefore can be directly read by a proper inversion algorithm. 
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Figure Captions: 

FIG. 1. (Color online) Time-frequency behavior of the on-axis harmonics at the exit of 

the gas cell.  

FIG. 2. (Color online) (a) Macroscopic 25th harmonic spectrum as a function of the 

delay. The intensity spectrum is obtained by integrating over a narrow spatial region 

(0~2 mrad) in the far field. (b) Macroscopic 21st~31st harmonic yield as a function of 

the delay. The harmonic yield, calculated by integrating over both a spectral window 

(centered at corresponding central frequency, and a width of 3 eV) and a far-field 

spatial region (0~2 mrad), is normalized to each corresponding maximum yield. 

FIG. 3. (Color online) (a) The contrast ( )β τ  as a function of electron excursion time 

τ . It is obtained from Eq. (18). (b) Harmonic energy as a function of the 

corresponding electron excursion time τ . Short quantum path corresponds to 

4.08τ < , and long quantum path corresponds to 4.08τ > . 

FIG. 4. (Color online) The relative change rate of the electron excursion time obtained 

from the exact action S  and the approximated action 1S  as a function of harmonic 

order.  

FIG. 5. (Color online) Reconstruction of the electron excursion time associated 

with H21~H31. (a) Macroscopic response of N 25 25( ; ) ln ( ) / ln ( )Nθ τ τ β τ β τ=  as 

a function of harmonic order. ( )Nβ τ  is directly read from Fig. 2(b). (b) 

Generally intrinsic response of N 25( ; )θ τ τ  as a function of electron excursion 

time. It is calculated with the analytical model and independent of probe laser 
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intensity and atomic potential. (c) Reconstructed excursion time (colorized circles) 

together with theoretical curve (solid line) calculated by quantum theory. 
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FIG. 1. (Color online) Time-frequency behavior of the on-axis harmonics at the exit of 

the gas cell.  
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FIG. 2. (Color online) (a) Macroscopic 25th harmonic spectrum as a function of the 

delay. The intensity spectrum is obtained by integrating over a narrow spatial region 

(0~2 mrad) in the far field. (b) Macroscopic 21st~31st harmonic yield as a function of 

the delay. The harmonic yield, calculated by integrating over both a spectral window 

(centered at corresponding central frequency, and a width of 3 eV) and a far-field 

spatial region (0~2 mrad), is normalized to each corresponding maximum yield. 



 24

1.00

1.25

1.50

0 1 2 3 4 5 6
15

30

45

 β(
τ)

τ(in units of 1/ω0)

(a)

 

H
ar

m
on

ic
s(

eV
)

short long

(b)

 
FIG. 3. (Color online) (a) The contrast ( )β τ  as a function of electron excursion time 

τ . It is obtained from Eq. (18). (b) Harmonic energy as a function of the 

corresponding electron excursion time τ . Short quantum path corresponds to 

4.08τ < , and long quantum path corresponds to 4.08τ > . 
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FIG. 4. (Color online) The relative change rate of the electron excursion time obtained 

from the exact action S  and the approximated action 1S  as a function of harmonic 

order.  
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FIG. 5. (Color online) Reconstruction of the electron excursion time associated 

with H21~H31. (a) Macroscopic response of N 25 25( ; ) ln ( ) / ln ( )Nθ τ τ β τ β τ=  as 

a function of harmonic order. ( )Nβ τ  is directly read from Fig. 2(b). (b) 

Generally intrinsic response of N 25( ; )θ τ τ  as a function of electron excursion 

time. It is calculated with the analytical model and independent of probe laser 

intensity and atomic potential. (c) Reconstructed excursion time (colorized circles) 

together with theoretical curve (solid line) calculated by quantum theory. 


