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We consider the photoionization of the hydrogen molecular ion exposed to x-ray radiation for
photon energies up to 500 eV in the fixed-nuclei approximation. The temporal development of the
system is described by a fully ab initio time-dependent grid-based approach in prolate spheroidal
coordinates. At sufficently high photon energies, the angular distributions of the electron ejected
from the two-center diatomic target resemble the classical double-slit-like interference pattern more
closely when the molecular axis and the linear laser polarization direction are perpendicular to each
other than in the parallel geometry. Both the preferable emission modes and the confinement effect
(in the parallel geometry) of the photoelectron also map out in the time evolution of the wave
packets. The validity of a simple plane-wave model is analyzed by comparing its predictions with
those from our accurate ab initio calculations.

PACS numbers: 33.80.-b, 33.80.Wz, 31.15.A-

I. INTRODUCTION

The double-slit interference of photoelectrons emitted
from diatomic molecules in the photon-energy regime of
a few hundred eV was suggested by Cohen and Fano in
1966 [1] based on the presence of oscillations in the total
cross sections for N2 and O2 targets as a function of pho-
ton energy. Rather than looking at angle-integrated cross
sections, Kaplan and Markin [2] suggested that the two-
center diffraction effect may be more likely visible in the
angular distributions of the photoelectron. The classical
interference pattern observed in these quantum molecu-
lar systems clearly demonstrated the wave nature of the
electron emitted from the two separated nuclei [3, 4].
Recent rapid experimental progress in intense laser

sources as well as new imaging technology [5] has made
it possible to investigate a comprehensive scenario of
atomic and molecular targets interacting with ultra-
short laser pulses or synchrotron light radiation. Cold-
target recoil-ion momentum spectroscopy (COLTRIMS)
experiments [6] deliver the rich and complete momen-
tum information through coincidence studies involving
all charged fragments, i.e., electrons and nuclei, in the
laser-atom/molecule interaction. These ongoing experi-
mental advances, together with the availability of sophis-
ticated theoretical approaches, have sparked a broad in-
terest in exploring multi-center diffraction patters in the
laser-molecule interaction.
Recent measurements [7, 8] revealed a four-lobe struc-

ture in the angular distributions of the double ioniza-
tion in H2 after single-photon absorption of circularly
polarized radiation with energies of 160 and 240 eV.
The experimentalists attributed the four-lobe pattern in
the angular distributions to the interference effect in the
smallest microscopic double-slit device. Although theo-
rists [9] offered an entirely different explanation for the
structure, these experiments show the potential of detect-
ing a two-center interference effect in diatomic molecules
in the future. Indeed, nearly half a century after the
original predictions of Cohen and Fano, oscillations in

the angle-integrated cross sections of electron emission
from diatomic molecules were experimentally observed in
2011 [10], using the third-generation synchrotron source
at Lawrence Berkeley National Laboratory [11].

The neutral H2 molecule is a strongly correlated sys-
tem. Consequently, the double-slit phenomenon in non-
sequential double photoionization, in which the two elec-
trons are removed at the same time, is much more compli-
cated than the effect would be in one-electron targets. In
the present work, therefore, we first look at the simplest
case: single-photon ionization of H+

2 in the high-energy
photon regime.

On the theoretical side, the problem has been
addressed using both time-dependent and time-
independent methods, with and without inclusion of
the nuclear motion. Two-center effects in the diatomic
molecules H+

2 , H2, and Li+2 exposed to circularly polar-
ized light were studied by Rescigno, McCurdy, Mart́ın,
and collaborators [13, 14]. Meanwhile, Bandrauk
et al. [15, 16] considered the laser-induced electron
diffraction of H+

2 and H2 in a planar model of reduced
dimensionality. An ab initio four-dimensional numerical
simulation was performed by Hu et al. [17] who solved
the time-dependent Schrödinger equation (TDSE) in
Cartesian coordinates.

In the present work, we apply our recently developed
time-dependent finite-element discrete-variable represen-
tation (FE-DVR) – a grid-based approach [18] in prolate
spheroidal coordinates – to study the double-slit inter-
ference effect of an H+

2 molecular ion irradiated by in-
tense linearly polarized x-ray laser pulses. The H+

2 ion is
treated in the fixed-nuclei approximation. The energy of
the laser pulses ranges from 200 to 500 eV. This relatively
simple test case has also been solved in one-center spher-
ical coordinates [19, 20] and Cartesian coordinates [17].
Prolate spheroidal coordinates, however, capture the es-
sential multi-center characteristics for a simple diatomic
molecule such as H+

2 , and they are also suitable to treat
heavier diatomics, for which the spherical and Cartesian
coordinate systems have serious disadvantages. Com-
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bined with an effective discretization scheme, benchmark
results for the potential energy curves as well as the
two-center Coulomb phase shifts of electronic continuum
states can be readily obtained with very high accuracy.
These results then allow us to judge the validity of the
approximations made in simpler treatments.
For the double-slit phenomenon to be observable in

diatomic targets, the de Broglie wavelength (λe) of the
photoelectron must be smaller than the internuclear sep-
aration (R). At relatively low photon energy, this would
require a large nuclear separation. For the equilibrium
distance of Req = 2.0 bohr in H+

2 , classical diffraction
can only be expected at photon energies above 164 eV.
The present work is a proof-of-principle calculation us-

ing the fixed-nuclei approximation (FNA). This allows us
to vary both the internuclear separation and the photon
energy to detect potential interference behavior. Specifi-
cally, we scan the internuclear distance from 1 to 5 bohr
and the photon energy from 200 to 500 eV, respectively.
The latter photon energies are indeed experimentally
available from modern synchrotron radiation facilities.
The remainder of the manuscript is organized as fol-

lows. After sketching our ab initio time-dependent for-
malism in Sec. II, we present results for angle-resolved
differential cross sections in Sec. III and for probability
densities of the electronic wave packets for single-photon
ionization in Sec. IV. The paper concludes with a sum-
mary and an outlook in Sec. V.

II. THEORETICAL APPROACH

We use the prolate spheroidal coordinates with the two
foci located on the two nuclei with fixed internuclear
separation R. In addition to the azimuthal angle ϕ
(0 6 ϕ 6 2π), the “radial” (1 6 ξ < ∞) and “angular”
(−1 6 η 6 +1) coordinates are defined as ξ = (r1+r2)/R
and η = (r1 − r2)/R, respectively. Here r1 and r2 denote
the distances measured from the electron to the two nu-
clei. We discretize the (ξ, η) coordinates as follows:

1. The truncated ξ space (ξ ≤ ξmax) is subdivided
into a number of finite elements, and DVR bases are
employed within each individual element. A Gauss-
Radau quadrature (in the first element) or a Gauss-
Lobatto quadrature (in the others) is employed to
ensure continuity at the element boundaries.

2. A single element with a set of Gauss quadrature
points is used in the region [−1,+1] for the η coor-
dinate. If desired, multiple elements are also possi-
ble.

We refer the reader to [12, 18] for more comprehensive
discussions regarding the practical implementation of the
FE-DVR approach in prolate spheroidal coordinates. De-
tailed information about our implementation of the Lanc-
zos algorithm for the time propagation of the system can
be found in Refs. [12, 21] and will not be repeated here.

The physical information about the ionization process
can be extracted by projecting the temporal wave packet
at the end of the time evolution onto the relevant con-
tinuum states. We use the exact ab initio solution of the
two-center Coulomb wave to extract the angular distri-
butions. In prolate spheroidal coordinates, the partial-

wave expansion of the continuum state Φ
(−)
k

(r) with mo-
mentum vector k, satisfying the appropriate incoming
boundary conditions, is written as

Φ
(−)
k

(r) =
1

k

∑

ℓm

iℓe−i∆|m|ℓ(k)Y∗
ℓm(k)Yℓm(k, η, ϕ)Π

(k)
ℓm(ξ),

(1)

where Yℓm and Π
(k)
ℓm(ξ) are the angular “spheroidal har-

monics” and radial functions, respectively, and ∆|m|ℓ(k)
is the two-center Coulomb phase shift. The latter can be
determined by normalizing the numerical solution to the
known asymptotic behavior of the radial function,

Π
(k)
ℓm(ξ) →

1

ξR

√

8

π
(2)

× sin
(kR

2
ξ +

2

k
ln(kRξ)−

ℓπ

2
+ ∆|m|ℓ(k)

)

as ξ → +∞. This normalizes Φ
(−)
k

(r) to a δ-function

in momentum space, i.e., 〈Φ
(−)
k

|Φ
(−)
k′ 〉 = δ(k − k′). The

normalization of the continuum-state wave functions and
the two-center Coulomb phase shift are obtained through

matching the numerical solution of Π
(k)
ℓm(ξ) to its asymp-

totic behavior in Eq. (2).
Projecting the time-dependent wave function at the

end of the time evolution (t = te) onto the functions in
Eq. (1) yields

〈Φ
(−)
k

|Ψ(te)〉 =
1

k

∑

ℓm

(−i)ℓei∆|m|ℓ(k)Yℓm(k)Fℓm(k), (3)

where the partial-wave complex amplitude Fℓm(k) in the
(ℓ,m) ionization channel is given by

Fℓm(k) =
∑

ij

(

R

2

)3/2
√

ξ2i − η2j Π
(k)
ℓm(ξi) Ξ

(k)
ℓm(ηj)C

m
ij (te).

(4)

Here Π
(k)
ℓm(ξi) and Ξ

(k)
ℓm(ηj) are the expansion coefficients

of the radial and angular functions in terms of the nor-
malized DVR {fi(ξ)} and {gj(η)} bases, respectively,
while Cm

ij (te) denotes the expansion coefficient of the
wave function at t = te. This simple expression is a
direct consequence of the FE-DVR representation.
The probability density for ionization within the

momentum-space volume dk is given by

dPion

dk
=

∣

∣〈Φ
(−)
k

|Ψ(te)〉
∣

∣

2
. (5)

Consequently, the probability density for ionization
(dPion/dΩ) of the photoelectron scattered into the solid
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angle dΩ is

dPion

dΩ
=

∫

k2dk
∣

∣〈Φ
(−)
k

|Ψ(te)〉
∣

∣

2
(6)

=

∫

dk

∣

∣

∣

∣

∑

ℓm

(−i)ℓei∆mℓ(k)Yℓm(k)Fℓm(k)

∣

∣

∣

∣

2

.

The quantity dPion/dΩ will also be referred to as the
angular distribution below.
When the concept of a cross section is appropriate [18],

the above probability density for ionization can be con-
verted to the differential cross section (DCS) through

dσ

dΩ
=

ω0

I0

1

Teff

dPion

dΩ
. (7)

Here ω0 and I0 are the central laser frequency and the
peak intensity of the laser field, respectively, while Teff

denotes the effective interaction time for single-photon
ionization.
Equation (6) shows that the two-center effect already

manifests itself in the angular distribution through the
coherent summation over the contributions from several
ionization channels (ℓ,m), even for single-photon ion-
ization. For the single-photon process, only ionization
channels with parity (−1)ℓ = −1 can contribute. This
result is independent of the relative orientation between
the molecular axis and the laser polarization direction.
Unlike in its atomic counterpart, the nonspherical poten-
tial in molecules may lead to amplitudes from other than
the p-channel (ℓ = 1) dominating the angular distribu-
tions. In fact, contributions from the f -channel (ℓ = 3)
or even higher ℓ-channels can overwhelm those from the
p-channel. Therefore, angular distributions of electrons
emitted from a diatomic molecule may exhibit charac-
teristics that deviate from the well-known dipole pattern
observed in atoms.

III. RESULTS AND DISCUSSION

The calculations described below were carried out for
linearly polarized laser pulses with a peak intensity of
1016 W/cm2. Since even the lowest photon energy is sev-
eral hundred eV, the intensity still falls into the pertur-
bative regime. Here we are only interested in ultrashort
x-ray pulses with duration of 160-410 attoseconds. The
ξ box can therefore safely be truncated at ξmax = 400.
Tests showed that the results for the angular distribu-
tions extracted from a box with ξmax = 500 did not
change within the line thickness shown in the figures be-
low. The essential difference compared to our previous
work [18] lies in the higher photon energies considered
here. The ionized electronic wave packet contains much
higher momentum components, e.g., k ≃ 5.2 atomic units
(a.u.) when the ionization occurs at R = 3.2 bohr at a
photon energy of 400 eV. Thus, even in the asymptotic re-
gion, the mesh points need to be rather dense in order to

resolve the rapid oscillations of the wave packet. We used
up to 2, 200 mesh points in the ξ box to ensure enough
points to span the de Broglie wavelength (λe = 2π/k) of
the photoelectron and hence to guarantee well-converged
angular distributions in both shape and magnitude. The
physical information was extracted using the procedure
outlined in the previous section, after solving the TDSE
with our parallelized Arnoldi-Lanczos method.
Classically, the bright and dark fringes in the double-

slit interference pattern correspond to R sin θn = nλe and
R sin θn = (n + 1/2)λe, respectively, where n is an inte-
ger. Note that the emission angle θn is measured with
respect to the direction perpendicular to the molecular
axis, i.e., the line connecting the two “slits”. Hence, the
relationship λe . R needs to be satisfied in order to
observe the interference pattern. Below we discuss the
similarities and differences between the angular distribu-
tion of photoelectrons from a quantal two-center molecule
and classical two-slit-like interference. We will show that
there are subtle differences between the quantum DCS
and the classical double-slit experiment. Note that Bal-
tenkov et al. [22] also argue that the resemblance between
the diffraction effect predicted by Cohen and Fano [1]
and that from the double-slit device has been vastly ex-
aggerated, even though the two arrangements share some
common features.

A. Angular distributions in the parallel geometry

Figures 1 and 2 display the angular distributions of
the photoelectron emitted from the H+

2 molecular ion in
the “parallel” geometry, where the electric field of the
linearly polarized radiation is parallel to the internuclear
axis, for photon energies of 200, 300, 400, and 500 eV. At
the smallest internuclear separation of 1.0 bohr consid-
ered here, the criterion (λe . R) is not satisfied for all the
above photon energies. As expected, therefore, we only
observe a dipole-like two-lobe structure, indicating that
the electron prefers to be emitted along the laser polar-
ization axis. Increasing the internuclear separation yields
a larger momentum of the ionized electron, and thus a
smaller de Broglie wavelength, so that the interference
criterion can be met. Consider, for example, the case of
300 eV photon energy. The interference criterion is met
if R & 1.42 bohr. When the internuclear separation is
increased further, the two-lobe structure is getting wider
and wider, finally evolving into a four-lobe structure. At
the same time, the dipole-like emission mode is strongly
suppressed. At the equilibrium distance, Req = 2.0 bohr,
the photoelectron emission mode along the polarization
direction has indeed disappeared completely at the pho-
ton energy of 300 eV.
This phenomenon depends sensitively on the combina-

tion of R and k. We therefore refer to it as the dynami-

cally forbidden mode, in contrast to being geometrically

forbidden by a selection rule. From Figs. 1 and 2, we also
observe that the disappearance of the dipole-like emission
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FIG. 1. (Color online) Angular distributions of the photo-
electron emitted from the H+

2 ion. The molecular axis is ori-
ented along the direction of the laser polarization (see bottom
left panel for illustration). The two left columns correspond
to angular distributions at the photon energy of 200 eV, while
the two right columns are for 300 eV. The angular distribu-
tions were scaled to the same magnitude. The label in each
panel denotes the internuclear separation distance R, which
ranges from 1.0 to 4.8 bohr.

is always accompanied by the emergence of new lobes.
These additional lobes (at θ1, θ2, · · · ) in the angular dis-
tributions correspond to the first-order and second-order
bright fringes in the classical optical double-slit interfer-
ence. At ~ω0 = 500 eV and R = 3.6 bohr, for example,
θ1 ≃ 18.2◦, θ2 ≃ 36.7◦, and θ3 ≃ 61.2◦ (again, with
respect to the normal direction to the molecular axis)
are obtained by solving the TDSE, while they are 17.1◦,
36.1◦, 62.1◦, respectively, in the double-slit scenario.
We clearly see that the positions of the maxima in the

angular distributions and the bright fringes in the clas-
sical double-slit device are in excellent agreement. How-
ever, this is not the case for the intensities of the max-
ima when we compare the double-slit interference pattern
with the quantal DCSs of the photoelectron from the H+

2

target. The classical intensities of the bright fringes fade
with increasing angle θn. In the H+

2 ion, on the other
hand, the magnitude of the DCS at θ2 is significantly
larger than at θ1 [c.f. Fig. 2]. In the classical double-
slit interference pattern, the brightest fringe always ap-
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FIG. 2. (Color online) Same as Fig. 1, but for photon energies
of 400 eV (the two left columns) and 500 eV (the two right
columns).

pears at θ0 = 0◦. In the parallel geometry, however, the
emission of the photoelectron along this direction (i.e.,
perpendicular to the internuclear axis) is geometrically
forbidden.
In order to shed more light on this nonclassical behav-

ior, we now present a partial-wave analysis based on the
contributions from various ionization channels. Figure 3
shows the squared magnitudes of the complex ionization
amplitude, |Fℓm(k)|2, for selected R-values at the pho-
ton energy of 400 eV [c.f. Eq. (4)]. At a small internu-
clear separation, e.g., R = 0.5 bohr, the p-channel indeed
dominates the back-to-back two-lobe emission mode in
the angular distribution. At this high photon energy,
however, even the two-lobe structure at R ≃ 1.0 bohr
observed in Fig. 2 is actually due to a strong mixture of
contributions from the p- and f -channels, rather than a
representation of pure p-channel characteristics. When
R increases to 2.5 bohr, the influence of the p-channel
fades quickly, and the contributions from channels with
higher ℓ dominate. This illustrates that the back-to-back
mode observed in most cases may be due to entirely dif-
ferent angular symmetries, although they appear similar
in shape.
The two-center nonspherical potential causes an in-

creased influence of the higher angular momenta in the
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FIG. 3. (Color online) The function |Fℓ0(k)|
2 at the photon

energy of 400 eV extracted from the time-dependent calcu-
lations with a peak intensity of 1016 W/cm2 in a 20-cycle
pulse with a sine-squared envelope function. The internu-
clear distance R takes values of (a) 0.5, (b) 1.0, (c) 1.6,
(d) 2.0, (e) 2.5, and (f) 3.0 bohr, respectively. The verti-
cal dashed line in each panel indicates the classical momen-
tum

√

2(~ω0 − I0(R)), where I0(R) is the ionization threshold
at R.

initial-state wave function when the molecular size de-
viates significantly from the united-atom (R = 0) limit.
Consequently, it shows the characteristics of the higher
ℓ values in the angular distributions through the dipole
coupling of ℓ ± 1 with the initial state. At this point, it
is understandable that multi-lobe patterns in the angular
distributions at largeR and large photon energy originate
from higher-order spherical harmonics. The high angular
momenta in the initial state are therefore reflected in the
angular distributions of the photoelectron. Our conclu-
sion coincides with the findings of Baltenkov et al. [22],
who arrived at them from an analysis of a zero-range
model potential.

Figures 1 and 2 also exhibit the pattern of dynam-
ically forbidden emission along the polarization axis
at some particular combinations of ~ω0 and R. Ac-
cording to the simple plane-wave model of Walter and
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FIG. 4. (Color online) The function kR plotted against the
internuclear distance R in the parallel geometry. The photon
energies are 50, 300, and 500 eV, respectively. The circles
(•) and squares (�) denote where the confinement effects are
predicted in our ab initio time-dependent calculations.

Briggs [23], the angular distribution is proportional to
(ǫ ·k)2 cos2(k ·R/2). In the parallel geometry, therefore,
emission along the ǫ direction is dynamically forbidden
only if the condition kR = nπ, where n is an odd inte-
ger, is satisfied. The phenomenon of strongly suppressed
emission along the polarization direction was termed the
“confinement effect” by Fernández et al. [13, 14], since it
resembled the situation of a quantum particle confined
to an infinitely deep well.
Note that the confinement effect only occurs in the

parallel geometry, but not in the perpendicular geometry
(see below). Close examination shows that in most cases
the above criterion for the confinement effect approxi-
mately coincides with our accurate numerical predictions.
At the photon energy of 200 eV, for example, confinement
happens at R = 2.4 bohr and k = 3.56 a.u. [c.f. Fig. 1],
and therefore kR = 2.7π ≈ 3π. The plane-wave model
also predicts that the confinement effect appears period-
ically, sensitively depending on both the photon energy
and R. These predictions are in qualitative agreement
with our accurate numerical results.
In Fig. 4 we further examine the validity of the plane-

wave model in the prediction of the confinement effect.
For the higher photon energy, we generally notice that
the plane-wave model slightly overestimates the internu-
clear separation where the effect occurs. For example,
our numerical result shows that confinement occurs at
R ≃ 4.63 bohr, while the plane-wave model predicts it
at R ≃ 4.75 bohr. This corresponds to n = 9. For
near-threshold ionization (i.e., low photon energy such
as ~ω0 = 50 eV), the plane-wave model predicts a forbid-
den emission mode along the ǫ axis to manifest itself at
R ≈ 6.2 bohr. Our ab initio calculation, however, shows
no confinement in this region of R for this low photon en-
ergy. For near-threshold ionization, we observe that the
chance for the electron to be ejected along the ǫ direc-
tion may be small in some cases, but it is not negligible
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FIG. 5. (Color online) Same as Fig. 1, but for the perpen-
dicular geometry. The molecular axis and the polarization
direction (double-headed arrow in the bottom left panel) are
oriented along the vertical and horizontal directions, respec-
tively.

compared to the dominant peaks. In other words, the
plane-wave model is not accurate for near-threshold ion-
ization, but it seems to catch the dominant features if
the photon energy is as high as a few hundred eV.

B. Angular distributions in the perpendicular

geometry

Figures 5 and 6 display the angular distributions in the
“perpendicular” geometry, where the electric field of the
linearly polarized radiation is perpendicular to the inter-
nuclear axis, for the same photon energies and R-values
as in Figs. 1 and 2. In this geometry, the confinement ef-
fect along the polarization direction completely vanishes.
Instead of being forbidden, ejection along the polariza-
tion axis is a favorite escape mode for the photoelectron
in the perpendicular geometry.
This feature can also be explained qualitatively with

the plane-wave model. In the perpendicular geometry,
electron emission along the molecular axis is forbidden.
Equation (1) shows that there is a node in the continuum-

state wave function Φ
(−)
k

(r) with Π symmetry, if k is
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FIG. 6. (Color online) Same as Fig. 2, but for the perpendic-
ular geometry.

oriented along the molecular axis. This intrinsic charac-
teristic associated with the dipole transition also occurs
in the plane-wave model, due to the term (ǫ · k)2.

We emphasize that the interference effect in the per-
pendicular geometry is different from that in the parallel
case. According to the plane-wave model, the maxima
in the angular distributions for the perpendicular geom-
etry appear when the condition cos(θkR) = 2nπ/(kR) is
fulfilled. Here n is an integer and θkR denotes the an-
gle between k and the molecular axis. At the photon
energy of 500 eV and R = 4.8 bohr, for example, the
plane-wave model predicts five peaks in the angular dis-
tributions for 0◦ 6 θkR 6 90◦. Specifically, they are at
θkR = 90.0◦, 75.6◦, 60.3◦, 42.0◦, and 7.8◦, respectively.
This is in qualitative agreement with our numerical solu-
tions [c.f. Fig. 6], in particular, for the large angles. Our
predictions are 90.0◦, 77.5◦, 64.6◦, 49.6◦, 31.1◦, respec-
tively, for these five maxima. The plane-wave model is
not accurate when the angular distributions are relatively
small, which corresponds to small angles θkR.

Overall, the plane-wave model predicts the essential
physics correctly in most cases, although the details are
not the same as in our numerical results. Therefore, one
might wonder how the angular distribution determined
by Eq. (6) and (ǫ ·k)2 cos2(k ·R/2) from the plane-wave
model are related. In our present formalism [c.f. Eq. (6)],
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the angular part of the momentum k is contained in the
spheroidal harmonics functions Yℓm(k), which are fur-

ther expanded in terms of spherical harmonics Yℓm(k̂)
with the same parity (odd here) and magnetic quantum
number m. In the molecular frame, where the direction

of k̂ is measured with respect to the molecular axis, the

odd-order Yℓ0(k̂) functions contain a factor cos θ in the

parallel geometry while the Yℓ1(k̂) functions contain sin θ
in the perpendicular geometry. This is independent of the
magnitude of the momentum k. Consequently, the angle-
differential cross section is proportional to cos2 θ in the
parallel case and to sin2 θ in the perpendicular geometry.

Both cases can be unified as (ǫ · k̂)2. This result is inde-
pendent of the relative angle between the ǫ and ζ axes,
and it is also independent of the internuclear separation.

Hence the partial angular dependence, (ǫ · k̂)2, predicted
in the plane-wave model is correct not only for atoms but
also for molecules in single-photon ionization.

At this point, we can separate the contributions to
the photoelectron DCS for diatomic molecules into two

parts: the first one is the universal term (ǫ · k̂)2 dis-
cussed above while the second part contains information
about the multi-center nonspherical molecular effect. In
other words, the difference between our Eq. (6) and the
prediction of the plane-wave model lies in the second
term, which contains the contributions from high-ℓ an-
gular components.

Note that the plane-wave idea is used in both the
quantum plane-wave model of Walter and Briggs [23]
and the classical double-slit formalism. We might then
ask whether or not they predict the same interference
patterns. In both geometries, kR cos θkR = 2nπ and
R sin θn = nλe are indeed identical in predicting the an-
gles of the maxima in the DCS and the bright fringes.
However, the relative intensities are different. The inten-
sity of the bright fringes in the double-slit setup is given
by I(θn) ∝ cos2(πR sin(θn)/λe), which is the same as

cos2(k ·R/2). The universal term (ǫ · k̂)2 in the quantum
model, however, is missing in the double-slit counterpart.

This may indeed lead to noticeable modifications in
the interference patterns. In particular, the difference in
the predicted intensities is more visible in the parallel ge-

ometry because of (ǫ · k̂)2 = sin2 θn. Consequently, the
primary fringe in the double-slit experiment (θ0 = 0◦) is
missing in the quantum DCS for photoelectron emission
from the H+

2 ion in the parallel geometry. On the other
hand, the primary peak always persists in the perpendic-

ular geometry, since (ǫ · k̂)2 = cos2 θn.

At this point, we realize that the DCS in the perpendic-
ular geometry closely resembles the classical double-slit
scenario, while it does not do so in the parallel case. From

the discussion above, the term (ǫ · k̂)2 is universal for
single-photon ionization in both atomic and diatomic tar-
gets. It simply shows that the geometrical factor in the
quantum dipole transition is determined by a selection
rule. This is a pure quantum effect and therefore lacks
a classical counterpart. Depending on where the nodes

appear in the final continuum states, the primary fringe
observed in the classical double-slit experiment may or
may not survive in a quantum two-center target.

IV. PROBABILITY DENSITIES IN THE

PARALLEL AND PERPENDICULAR

GEOMETRIES

Figures 7 and 8 display the probability densities
(|Ψ(r, t)|2) in configuration space and the momentum
distributions (dPion/dk) at the end of the laser pulse, re-
spectively, in the parallel and perpendicular geometries.
Rich information on the ionization dynamics is already
revealed after examining |Ψ(r, t)|2 in configuration space.
There is a one-to-one correspondence between the pat-
terns seen in the configuration and momentum spaces for
the preferable directions of emission modes. Although
the time evolution of the wave packet |Ψ(r, t)|2 does
not directly reveal the dominant magnitude of the mo-
mentum of the photoelectron, it clearly shows both the
preferable and forbidden emission directions. For some
cases, particularly in the parallel geometry, the proba-
bility density for the electron being ionized along the
polarization axis is completely negligible [c.f. Fig. 7(b)
at R = 2.0 bohr]. This corresponds to the confinement
effect observed in the angle-resolved momentum distri-
bution [c.f. Fig. 7(g) at the same R].
Similar correspondences can also be established for

the perpendicular geometry [c.f. Fig. 8]. At large values
of R, well-resolved bouquet-shaped probability densities
in the perpendicular geometry are directly related to the
double-slit interference patterns observed in the momen-
tum distributions.
In order to further visualize the time development of

the angular distribution pattern, we have created Quick-
Time movies for selected cases. These can be found at
http://bartschat.drake.edu/H2+interference.html.

V. SUMMARY AND OUTLOOK

We have investigated the photoionization of the
homonuclear hydrogen molecular ion irradiated by an
x-ray laser at high photon energies between 200 and
500 eV. We solved the TDSE in two-center prolate
spheroidal coordinate in the fixed-nuclei approximation.
The connection between the angular distributions of the
photoelectron and the classical double-slit interference
was discussed for both the parallel and perpendicular ge-
ometries. The similarities and differences between the
predictions from our accurate ab initio calculations, a
plane-wave model, and classical double-slit interference
were analyzed.
Photoionization of heteronuclear molecular ions such

as HeH2+ [24, 25] may provide even more interesting
perspectives to depict two-center interference patterns.
Not only would we need to launch the HeH2+ ion from
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FIG. 7. (Color online) Probability densities (top row, panels (a)-(e)) and momentum distributions (bottom row, panels (f)-(j))
of the photoelectron from the H+

2 ion at the end of the laser pulse for the parallel geometry. The laser pulse, with a sine-squared
envelope function, contains 20 cycles. It has a central photon energy of 300 eV and a peak intensity of 1016 W/cm2. The
polarization axis of the laser is oriented horizontally . The momentum distributions (dPion/dk) are presented in units of 10−6

per momentum in a.u. The dimensions in the configuration space (top row) are given in units of bohr, while the momentum
space (bottom row) is in a.u.

FIG. 8. (Color online) Same as Fig. 7, but for the perpendicular geometry. The molecular axis is oriented along the vertical
direction, while the polarization axis of the laser pulse is along the horizontal direction.

an initial state with a different symmetry (1sσ does not
support a bound state in this case), but the intensities
of the electronic wave packets emitted from the two nu-
clei will differ as well. Therefore, the complete scenario
comparing classical double-slit-like interference and pho-
toionization in a general two-center molecular target can
be established. Work in this direction is currently in
progress in our group.

The present study is also an important stepping stone
towards the investigation of much more challenging two-
electron phenomena. Our long-term goal is to explore
the essential differences in the electron diffraction pat-
tern between two-electron waves and one-electron waves
from H2. This will enable us to better understand the

role of correlation effects in the interference patterns be-
tween the two ionized two-electron wave packets. Re-
call that double ionization is forbidden without correla-
tion between the two electrons in single-photon ioniza-
tion [12].
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