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Abstract

Associative and Penning ionization cross sections are calculated for collisions

between metastable hydrogen 2s atoms at thermal energies. Cross sections

for deuterium 2s collisions are also reported. The associative ionization cross

sections behave as E−1 for collision energy E, in agreement with an existing

experiment. The Penning ionization cross sections dominate for all energies

and are found to follow the E−2/3 behavior that was predicted in previous

work for the total ionization cross section. The magnitudes of our theoretical

associative ionization cross sections for H(2s)+H(2s) collisions are between

two and four times larger than the experimental data.
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I. INTRODUCTION

Associative ionization is the most elementary bond-forming process that can occur during

a collision of two atoms. The translational energy of the colliding atoms is transferred into

kinetic energy of the ejected electron leaving the positively charged molecular ion in its

ground or excited rovibrational state. This process has been studied for metastable hydrogen

atom collisions with various targets [1–7] including ground state hydrogen atoms where it

provides a mechanism which is believed to contribute to the formation of H+
2 in astrophysical

environments that are not in local thermodynamic equilibrium. These include protostellar

outflows [8], envelopes of supernovae [9], and stellar atmospheres [10–12]. The inverse process

of dissociative recombination of H+
2 is also known to be important in many astrophysical

environments and due to its technological importance has been the subject of extensive

theoretical [13–22] and experimental [23–34] investigations. Associative ionization between

two metastable hydrogen atoms is less likely to occur naturally due to competition with

other reactions. Nevertheless, the process is of fundamental interest and has been studied

experimentally [6]. To our knowledge, there have been no theoretical studies reported for

associative ionization between two metastable hydrogen atoms. Theoretical results have

been reported [35] for associative ionization due to colliding pairs of excited helium atoms.

This system is similar to the case of metastable hydrogen but considerably more complex.

The theoretical simplicity of hydrogen makes it ideal for studying fundamental physics and

offers an opportunity to gain better insights into the collisional dynamics.

Production of cold metastable hydrogen atoms [36–40] also opens the door to a variety of

possible applications including the development of a Lyman-α laser [38,40], the use of H(2s)

atoms as a diagnostic in Bose-Einstein condensation [41–43], and improved accuracy in the

determination of fundamental constants [44]. An important prerequisite for achieving the

goal of high-resolution spectroscopy of metastable hydrogen is a detailed understanding of

the atomic collisions. The mutual destruction of 2s atoms in collisions limits the density of

metastable atoms that can be achieved. This limit has implications for schemes that use slow

beams of D(2s) atoms in a deuterium atomic parity violation experiment [45]. The process
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may also be important in the interpretation of precision measurements of the two-photon

transition frequency [46]. Collisional production of fast metastable hydrogen atoms from

cold H2 has recently been demonstrated [47] and may also lead to important applications.

Once formed, collisional quenching of pairs of H(2s) atoms may occur through either of

the associative and Penning ionization reactions:

H(2s) + H(2s) → H+
2 + e− (1)

H(2s) + H(2s) → H(1s) + H+ + e− (2)

or via the single and double excitation transfer reactions:

H(2s) + H(2s) → H(2s) + H(2p) (3)

H(2s) + H(2s) → H(2p) + H(2p) (4)

and likewise for D(2s) reactions. The competitive balance between the collisional quenching

processes (1)–(4) should be understood at the highest possible level of detail. A series of

calculations [48–52] have addressed this issue and provided theoretical benchmarks for this

fundamental system. However, the calculated trap loss rate coefficients are about 4 times

larger than the experimental values and show little temperature variation in the 100-200 µK

region where the experiment suggests there may be a significant decrease [39]. At such low

collision energies, there are many considerations that complicate the calculations including

spin-orbit, hyperfine, and non-adiabatic radial and angular couplings. At thermal energies,

these couplings become negligible, and it should be easier to gain insight into the ionization

part of the collisional quenching process. Additionally, there is experimental data [6] for the

associative ionization contribution that may be directly compared against.

The associative ionization process (1) competes with the Penning ionization process (2).

Both reactions are highly exothermic with ∆E ranging from 6.8 eV for Penning ionization

to 9.45 eV for associative ionization into the ground rovibrational state. The large number

of open final states effectively forms a complete set which justifies the use of a local potential

formulation. At the energies considered in the present work, the energy splitting between

the 2s and 2p states may be neglected which allows the dynamics of the ionization to be
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studied using only a single complex potential energy curve. The bound and continuum

rovibrational wave functions are computed using a square integrable Sturmian basis set.

The positive energy pseudostates provide a discretized representation of the H+
2 continuum.

Transitions to bound states are summed over to obtain the associative ionization cross

section. Likewise, transitions to the positive energy pseudostates are summed over to obtain

the Penning cross section. The completeness of the rovibrational basis set is measured by

adding the associative and Penning ionization cross sections together and comparing with

the cross section obtained by using the unitarity property of the S-matrix. The sum rule is

found to be well-satisfied for metastable hydrogen and deuterium systems. Numerical results

for 1Σ+
g and 3Σ+

u symmetries are reported for H(2s)+H(2s), D(2s)+D(2s), and H(2s)+D(2s)

collisions, and comparisons are made with a Langevin model and an experiment [6] over a

wide range of energies.

II. THEORY

A pair of 2s hydrogen atoms may approach in either a 1Σ+
g or a 3Σ+

u molecular state. Since

the 2s and 2p states are nearly degenerate, the molecular interaction strongly couples the

atomic product state φ2sφ2s with φ2sφ2p and φ2pφ2p states of the same molecular symmetry.

States with different molecular symmetry are also coupled due to the spin-orbit interaction.

The full set of doubly excited molecular states converging to the H(n=2)+H(n′=2) limit, the

so-called Q(2) states, has been calculated over the entire range of internuclear distance R,

and the associated energies and autoionization widths have been used to construct complex

potential curves [49,51]. Multichannel scattering formulations have been used to calculate

the collision cross sections at low translational energies [48,50]. At thermal energies, the tiny

energy splitting between the 2s and 2p states may be ignored, and the contribution from the

Coriolis force is also expected to be weak. Therefore, it is possible to simplify the analysis

by considering only single channel scattering on the complex potentials V±(R) which have

the asymptotic behavior [48]

V±(R) ∼ ±C3

R3
+O(R−5) (5)
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where C3 = 9
√
6 and the energy is in atomic units. In this formulation, the wave function

describing the approach of one 2s atom on nuclei a with another 2s atom on nuclei b will

contain the incident plane wave

φ2s(a)φ2s(b) e
i~k·~R =

1√
2

(

ξ+ + ξ−
)

ei
~k·~R (6)

where k is the translational wave number, and ξ± are molecular eigenfunctions associated

with the V±(R) potentials. The molecular eigenfunctions tend to linear combinations of

atomic φ2sφ2s and φ2pφ2p product states as R → ∞, and the incident wave function (6)

evolves into

Ψ(~R) ∼ 1√
2

(

ξ+ + ξ−
)

ei
~k·~R +

1√
2

[

ξ+f (+)(θ, φ) + ξ−f (−)(θ, φ)
] eikR

R
(7)

where

f (±)(θ) =
1

2ik

∞
∑

l=0

(2l + 1)(e2iδ
(±)
l − 1)Pl(cos θ) (8)

is the amplitude for scattering through an angle θ by the complex interaction potential V±.

The complex phase shift δ
(±)
l contains information about the ionization. The differential

cross sections for elastic scattering may be obtained from the coefficient of the spherical

wave part of the wave function (7) by expressing the molecular eigenfunctions in terms of

their asymptotic atomic states. The result is [48]

dσ2s2s→2s2s

dΩ
=

1

4

∣

∣

∣f (+)(θ, φ) + f (−)(θ, φ)
∣

∣

∣

2
(9)

dσ2s2s→2p2p

dΩ
=

1

4

∣

∣

∣f (+)(θ, φ)− f (−)(θ, φ)
∣

∣

∣

2
(10)

It is assumed in this analysis that coupling to the single excitation transfer channel φ2sφ2p,

which vanishes at leading order in an expansion in inverse powers of R, may be neglected.

Recent investigations [51] have shown that significant nonadiabatic coupling to φ2sφ2p may

occur at higher order due to the dipole-quadrupole interaction, and that this coupling can

have a significant effect on the cross sections at very low energies [52]. In the present work,

however, we consider sufficiently high energies where the contribution from φ2sφ2p coupling
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is expected to be small. We tested this assumption for the lowest energies considered in this

work and found no significant change in the total ionization cross section when the φ2sφ2p

coupling is neglected. At this level of approximation, the total ionization cross section may

be obtained from equations (9) and (10) to be

σion =
π

k2

∞
∑

l=0

(2l + 1)
[

1− A2
l

]

(11)

A2
l =

∑

f

|S(l)
if |2 = 1

2

(

|A+
l |2 + |A−

l |2
)

(12)

where S
(l)
if is the scattering matrix connecting initial and final channels for partial wave l.

The absorption factors A±
l are determined by the imaginary components of the complex

phase shifts δ
(±)
l and may be obtained by solving the Schrödinger equation for the two

potentials V±(R).

A “Langevin” model based only on the long-range part of the potentials V±(R) is useful

to gain insight into the dynamics of the reaction. Ionization generally occurs when the

translational energy is greater than the potential energy barrier. The long-range part of

V+(R) repels the atoms so that A+
l = 1 for all l. This immediately reduces the opacity by

a factor of two as may be readily seen from equations (11) and (12). The contribution from

V−(R) may be estimated by considering the effective potential

Veff(R) =
l(l + 1)

2µR2
− C3

R3
(13)

where µ is the reduced mass of the system. Differentiating Veff with respect to R and

setting it to zero yields the location R0 and energy E = Veff(R0) of the barrier in terms of

the angular momentum. The opacity is expected to drop sharply at this value of angular

momentum which allows a convenient truncation of the sum in equation (11). Assuming

a unit step function opacity and dividing by two to account for the long-range repulsive

potential contribution yields the total ionization cross section

σion =
3π

2

(

C3

2E

)2/3

∼ 23E−2/3 a.u. (14)

Previous calculations [48,50] have shown that the total ionization cross sections for the 1Σ+
g

and 3Σ+
u states are 23E−2/3 and 15E−2/3, respectively.
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The above discussion may be modified to account for identical nuclei by allowing the

translational part of the incident wave function to be 1√
2
[exp(i~k · ~R)± exp(−i~k · ~R)] which

introduces a factor of 1√
2
[1 ± (−1)l] to the partial wave scattering amplitude due to the

rotational parity of the Legendre polynomial Pl[cos(π− θ)] = (−1)lPl(cos θ) in equation (8).

The total ionization cross section (11) is then modified to

σion =
π

2k2

∞
∑

l=0

wl (2l + 1)
[

1± (−1)l
]2 [

1− A2
l

]

(15)

where wl accounts for the nuclear spin statistics and the ± signs are determined by the

requirement that the total wave function be antisymmetric under interchange of the nuclei.

Note that this ± is not related to the notation that was used above to specify the V±

potentials. In order to avoid confusion, we remove the 1
2
[1± (−1)l]2 factor in equation (15)

and write the cross section as twice the sum over even or odd l. The choice of even/odd and

the statistical weights are determined by the molecular symmetry of the potential used to

compute the opacity. For example, hydrogen atoms in a spin-polarized gas would interact

only through states of 3Σ+
u symmetry and have wl = 1 for even l and wl = 0 for odd l. For

a hydrogen gas with a statistical mixture of nuclear spins, the cross sections are

σS
ion =

π

k2

(

1
4

∑

l=even

+ 3
4

∑

l=odd

)

(2l + 1)
(

1− |A−
l (S)|2

)

(16)

σT
ion =

π

k2

(

3
4

∑

l=even

+ 1
4

∑

l=odd

)

(2l + 1)
(

1− |A−
l (T )|2

)

(17)

where the opacities are calculated using the complex V−(R) potential with the appropriate

1Σ+
g or 3Σ+

u symmetry. The electron spins introduce additional statistical weights so that

the total ionization cross section is given by

σion = 1
4
σS
ion +

3
4
σT
ion . (18)

The total ionization cross section computed from the direct solution of the Schrödinger

equation together with the unitarity properties of the S-matrix must be equal to the sum

of the individual final state contributions. In the present work, the individual contributions
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coming from associative and Penning ionization are calculated from the solution to the

inhomogeneous differential equation

[

− 1

2µ

d2

dR2
+
l(l + 1)

2µR2
+ V−(R)−E

]

ψl(R) = χvj(R)

[

Γ(R)

2π

]1/2

(19)

where χvj(R) is the ro-vibrational wave function of the discrete state (or pseudostate) of

the H+
2 molecule, and Γ(R) is the autoionization width which is equal to twice the negative

of the imaginary part of V−(R). Energy conservation yields E = k2e
2
+ ǫvj − 6.8 eV where

ke is the electron momentum and ǫvj is the ro-vibrational energy. The wave function is

energy-normalized according to the asymptotic form

ψl(R) ∼
√

2µ
πk
eiδl sin(kr − lπ

2
+ δl) . (20)

If the 2s hydrogen atoms approach in the 1Σ+
g molecular state, then the emitted electron

must have even angular momentum, and the transition will obey the selection rule j = l.

If the atoms approach in the 3Σ+
u state, then the emitted electron must have odd angular

momentum, and the transition will obey the selection rule j = l± 1 in order to preserve the

overall ungerade symmetry. Therefore, the cross sections are given by

σS
vj =

2π2

k2
wj (2j + 1)

∣

∣

∣〈ψj|Γ1/2|χvj〉
∣

∣

∣

2
(21)

σT
vj =

2π2

k2
wj

[

(j + 1)
∣

∣

∣〈ψj+1|Γ1/2|χvj〉
∣

∣

∣

2
+ j

∣

∣

∣〈ψj−1|Γ1/2|χvj〉
∣

∣

∣

2
]

(22)

where wj equals
1
4
for even j and 3

4
for odd j. We note that the equation (22) is the same as

that used by Bieniek and Dalgarno [53] for the analogous problem of associative detachment

in collisions of H and H−. For a statistical mixture of singlet and triplet molecular states,

the associative and Penning ionization cross sections are given by

σA =
jmax
∑

j=0

nj
∑

v=0

(

1
4
σS
vj +

3
4
σT
vj

)

(23)

σP =
jmax
∑

j=0

vmax
∑

v=nj+1

(

1
4
σS
vj +

3
4
σT
vj

)

(24)
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where nj is the index of the last bound vibrational level for the rotational level j. The

dissociative continuum is described by pseudostates with v > nj . The bound ro-vibrational

wave functions and the continuum pseudostates are obtained by diagonalization of the H+
2

Hamiltonian in the orthonormal Laguerre polynomial basis set

φl,n(R) =

√

an!

(n + 2l + 2)!
(aR)l+1 exp(−aR/2)L(2l+2)

n (aR) (25)

The inhomogeneous differential equation (19) is solved using the renormalized Numerov

method [54]. The sum of σA and σP computed using equations (23) and (24) is compared

with the total cross section computed using equation (18).

III. RESULTS

The calculations were performed using the potential curves shown in Figure 1. The

H(2s)+H(2s) curves were taken from previous work [49,51] and the H+
2 curve was obtained

from the code of Aubert-Frecon et al. [55]. The repulsive wall for the 3Σ+
u state occurs at

a larger separation than that of the 1Σ+
g state. Therefore, we would expect more efficient

ionization to occur for 2s atoms that approach on the 1Σ+
g state. This expectation was

observed in our calculations and will be discussed in detail below.

Convergence tests were performed with respect to vmax, jmax, and the Laguerre scale

parameter a for both singlet and triplet symmetries. Not surprisingly, the sensitivity to

the scale parameter a is much greater for Penning ionization than for associative ionization.

Figure 2 shows the scale dependence for 1Σ+
g calculations for three collision energies. The

Penning ionization cross sections are stationary for a = 14− 16, so we chose a = 15 for the

full calculations. Figure 3 shows the convergence pattern of the j-th partial cross section

as a function of j for the 1Σ+
g state at a collision energy of 0.001 a.u. The inhomogeneous

curve was computed by solving the inhomogeneous Schrödinger equation (19) followed by

a summation over both associative and Penning ionization contributions for v ≤ 50. Also

shown is the homogeneous solution to the Schrödinger equation which automatically includes

both ionization contributions. The plot shows that the two methods of solution are in
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excellent agreement for large-j. To bring the small-j results into the same level of agreement

requires an increase in vmax. We have found that vmax = jmax = 100 produces converged

results for the inhomogeneous problem (as measured by the very good agreement of the

summed cross section compared with the homogeneous solution) for all of the collision

energies considered in this work.

The sharp drop in the partial cross section seen in Figure 3 is a general feature of

ionization in collisions between metastable hydrogen atoms. It occurs when the centrifugal

barrier is large enough to prevent the atoms from a close approach where ionization can take

place. The angular momentum where the sharp decrease in the partial cross section occurs

may be estimated using the formula

j = (54µ3C2
3E)

1/6 (26)

which is obtained from the Langevin model. This equation predicts that the sharp decrease

will occur at j = 52 for E = 0.001 a.u. which is in good agreement with the location seen in

Figure 3. The oscillatory behavior in the figure is due to the nuclear spin statistical factor wj

which depends on whether j is even or odd. This factor also depends on the isotopic partner

assumed in the collision. In this work, we considered metastable hydrogen and deuterium

collisions. The results are summarized below.

A. H(2s)+H(2s)

Figure 4 shows the associative and Penning ionization cross sections for hydrogen atoms

approaching on the 1Σ+
g molecular state over a broad range of energies. Also shown in

the figure are energy-dependent fits to the theoretical data which are seen to be in good

agreement. The E−1 dependence of the associative ionization cross section follows directly

from the prefactor of equation (21). The E−2/3 dependence of the Penning cross section

shows that the exact numerical solution to equation (19) agrees very well with the Langevin

model (14) and confirms that all atoms that cross the centrifugal barrier will react.

The reaction probability is not unity when the centrifugal barrier is surmounted for

hydrogen atoms approaching on a 3Σ+
u molecular state. In this case, there are two separate
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terms that contribute to equation (22), and in both cases, the probability for ionization is

reduced due to the location of the inner repulsive wall (see Figure 1). The energy dependence,

however, continues to follow E−1 and E−2/3 behavior for a wide range of energies as shown

in Figure 5. Although the Penning cross section is reduced for the 3Σ+
u case, both of the

associative ionization contributions to equation (22) are approximately equal, and their sum

is approximately the same as the cross section for the 1Σ+
g case.

For an unpolarized gas, a statistical mixture of singlet and triplet molecular states is

assumed which yield the cross sections given in equations (23) and (24). The results are

shown in Figure 6 along with the experimental data of Urbain et al. [6] for associative

ionization. The comparison shows that our theoretical calculations are within a factor

of two with experiment at high energies and within a factor of four at the lower energies

considered. It is interesting that the discrepancy between the present theory and experiment

is approximately the same as the one seen previously for the same system at much lower

energies [52].

B. D(2s)+D(2s)

For deuterium atoms, the nuclear spin statistical factor wj equals
2
3
for even j and 1

3
for

odd j. At thermal energies, this difference in spin statistics compared to hydrogen atoms

does not have a significant effect. Figure 7 shows the associative and Penning ionization

cross sections for a pair of D(2s) atoms. The Penning ionization cross section for D(2s)

atoms approaching on the 1Σ+
g state is identical to the result for H(2s). These collisions are

governed by the same conditions that led to equation (14) where there is no reduced mass

dependence. The Penning ionization for the 3Σ+
u state is larger than the value for hydrogen

but still less than the Langevin limit with unit reaction probability. Unlike hydrogen, the

associative ionization cross section for the 3Σ+
u state of deuterium is approximately two

times larger than that of the 1Σ+
g state, and both cross sections are smaller than their

corresponding values for hydrogen. The energy-dependent fitting functions are included in

the figure for each state.

11 (March 29, 2012)



C. H(2s)+D(2s)

Figure 8 shows the ionization cross sections for H(2s)+D(2s) and again confirms that

there is no reduced mass dependence in the Penning ionization cross section for the 1Σ+
g

state. For the 3Σ+
u state, the Penning cross section lies in between that of H(2s)+H(2s) and

D(2s)+D(2s) and the reduced mass scaling was found to follow the approximate formula

σP (µ) = σP (H2)

[

µ

µH2

]1/4

(27)

for 0.5 ≤ µ ≤ 1.5. The associative ionization cross sections for the 3Σ+
u and 1Σ+

g states are

nearly the same for H(2s)+D(2s), similar to what was found for H(2s)+H(2s). The magni-

tude of the associative cross sections lie in between that of H(2s)+H(2s) and D(2s)+D(2s),

but unlike the Penning cross section, they tend to decrease with increasing reduced mass.

The ratio

R(µ) =
σA(µ)

σA(H2)

[

µ

µH2

]3/2

(28)

was used to scale the associative ionization cross sections to that of hydrogen. Figure 9

shows that the scaling ratio is a good approximation to unity for the 1Σ+
g state but not for

the 3Σ+
u state. This observation shows that it is not possible to find a reduced mass scaling

formula for the associative cross section when the opacity deviates from a unit step function.

IV. SUMMARY

Associative and Penning ionization cross sections have been calculated for H(2s)+H(2s),

D(2s)+D(2s), and H(2s)+D(2s) collisions at thermal energies. Excellent agreement is found

between the summed state-to-state cross sections and the total cross section obtained from

direct solution of the Schrödinger equation. This agreement confirms the validity of the

closure approximation and justifies the use of the local complex potential formulation for

these collision partners. The E−1 energy dependence of the associative ionization cross

section agrees with an existing experiment [6]. However, the magnitude of our theoretical

cross sections are found to be about 2-4 times larger than the experimental data over a
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wide range of energies. This discrepancy is consistent with one seen previously at ultracold

energies and suggests that there may be a systematic oversight in the theoretical formulation.

In an effort to uncover possible oversights in the theory, we have reviewed in detail

the coupled states scattering formulation that was used in our calculations. We have also

tested the assumption that the ionization is insensitive to non-adiabatic radial coupling by

expanding the basis set to include the φ2sφ2p state. Consistent with previous calculations

at ultracold energies [52] we find some changes in the relative contributions from the single

and double excitation transfer reactions (3) and (4) but no change in the total ionization

cross section. Inclusion of the fine structure and Lamb shift energy defects also produced

no significant changes at high energies. Another possible source of the discrepancy is the

neglect in our calculations of the Coriolis interaction when solving the Schrödinger equation

in the body-fixed frame. Previous calculations [52] attempted to deal with this issue by

transforming from molecular gauge to atomic gauge where the uncalculated non-adiabatic

angular terms have the proper long-range fall-off. This procedure uncovered some sensitivity

to short-range radial couplings that are negligible within the coupled states approximation.

Our expectation, however, is that Coriolis coupling to the φ2sφ2s state should be weak and

become even less important with increasing energy. Figure 6 appears to support the second

part of our expectation as the discrepancy changes from a factor of 4 at low energy to a

factor of 2 at the higher energies. This issue requires further investigation.

As a concluding remark, we note that our calculations provide detailed cross sections

for the formation of H+
2 (v, j) for all vibrational and rotational levels. If the theoretical

formulation is indeed responsible for the discrepancy discussed above, it is possible that

the relative state selected cross sections may still be reliable. If the ejected electron energy

spectra could be measured as in the case of metastable helium atom collisions [35], then the

theory given here could be further constrained.
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Figure 1: (Color online) Potential curves used to compute the ionization cross sections. The H(2s)+H(2s)

potentials also have imaginary components which were reported in [49].
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Figure 2: Penning ionization cross sections as a function of Laguerre polynomial length scale a. The

associative ionization cross sections are numerically well-converged for the range 10 < a < 30 and are not

shown. The Penning cross section is stationary with a = 15 for all energies considered in this work.
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Figure 3: (Color online) Total ionization cross section at E = 0.001 a.u. The inhomogeneous curve was

computed by solving equation (19) and adding the associative and Penning contributions for v ≤ 50. The

homogeneous curve was computed by direct solution of the Schrödinger equation. The convergence with v

is generally slower for small-j. Increasing the upper limit to vmax = 100 brings the two curves into excellent

agreement for all j.
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Figure 4: (Color online) Associative and Penning ionization cross sections for H(2s)+H(2s) approaching

on the 1Σ+
g state. Also included is a curve fit (0.04E−1) to the associative ionization cross section and a

curve fit (23E−2/3) to the Penning ionization cross section. These calculations include all contributions for

vmax = 100 and jmax = 100.
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Figure 5: (Color online) Associative and Penning ionization cross sections for H(2s)+H(2s) approaching

on the 3Σ+
u state. Also included is a curve fit (0.04E−1) to the associative ionization cross section and a

curve fit (14.4E−2/3) to the Penning ionization cross section. These calculations include all contributions

for vmax = 100 and jmax = 100.
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Figure 6: (Color online) Associative and Penning ionization cross sections for unpolarized H(2s)+H(2s)

collisions. The experimental data is taken from Urbain et al. [6] for associative ionization. All of the

experimental data lies within the dashed curves, which were obtained by dividing our theoretical associative

ionization cross sections by 2 and 4.
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Figure 7: (Color online) Associative and Penning ionization cross sections for D(2s)+D(2s) collisions.

Energy-dependent fits to the data are given in the legend and plotted as solid lines on the graph.
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Figure 8: (Color online) Associative and Penning ionization cross sections for H(2s)+D(2s) collisions.

Energy-dependent fits to the data are given in the legend and plotted as solid lines on the graph.
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Figure 9: R(µ) versus µ for 1Σ+
g and 3Σ+

u states. These results show that a reduce mass scaling formula

may be obtained for 1Σ+
g but not for 3Σ+

u states.
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