
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Scalability of quantum computing based on
nanomechanical resonators

Li-gong Zhou (周立功), Ming Gao (高明), Jin-lin Peng (彭进霖), and Xiang-bin Wang (王向斌)
Phys. Rev. A 85, 042326 — Published 25 April 2012

DOI: 10.1103/PhysRevA.85.042326

http://dx.doi.org/10.1103/PhysRevA.85.042326


AF10874

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Scalable quantum computing with switchable nanomechanical-resonator interactions

Li-gong Zhou (±áõ),1 Ming Gao (p²),1, 2 Jin-lin Peng ($?�),1, 3 and Xiang-bin Wang (��R)1, 4, ∗

1State Key Laboratory of Low Dimensional Quantum Physics,

Tsinghua University, Beijing 100084, People’s Republic of China
2Department of Physics, National University of Defense Technology, Changsha 410073, People’s Republic of China

3School of Electronic and Electrical Engineering University of Leeds, Leeds, UK
4Shandong Academy of Information & Communication Technology, Jinan 250101, People’s Republic of China

We study scalability of quantum computing based on nanomechanical resonator (NAMR), in-
cluding the consequences of the effective next-nearest spin-spin couplings induced by the NAMRs,
NAMR frequency errors, and NAMR-spin coupling errors on the scalability of quantum computing
based on NAMRs. We show the fidelity change of the quantum operation due to these errors nu-
merically. Switchable interactions between NAMRs can be achieved by adding control gates. Based
on this modification, we present a method to perfectly avoid the next-nearest spin-spin couplings
and compensate for the negative effects due to the frequency errors and spin coupling errors.
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I. INTRODUCTION

Scalability is one of the most important issues in the re-
alization of quantum computing. For example, in order
to factorize a 200-digit number using a quantum com-
puter, one needs to manipulate thousands of qubits [1].
However, in realistic physical systems, there are many
imperfections, such as the quantum decoherence, the de-
vice errors, and so on. These imperfections seriously limit
the power of a quantum computing device. In particular,
in a large scale quantum computing, the small error of
each individual device can accumulate and this may lead
to the failure of the final result [2].
In recent years, methods for scalable quantum com-

puting based on artificial quantum systems have been ex-
tensively studied [1, 3–6]. A promising scalable quantum
computing architecture based on spin system of NAMRs
was proposed by P. Rabl et. al. [6]. The spins have a
long decoherence time and the NAMRs can be fabricated
on a large scale. The quantum motions of the NAMRs
can strongly interact with the spins [7] and induce strong
couplings between the spins [6, 8, 9].
However, the fact is that various kinds of errors in-

evitably exist in realistic systems, e.g., the next-nearest
interactions between the spins induced by the NAMRs
[6], the frequency errors of the NAMRs (about ±1.0%
deviations from the averaged frequency was experimen-
tally shown by E. Buks in Ref. [10]), the coupling fluc-
tuations between the NAMRs and the coupling fluctu-
ations between an NAMR and the corresponding spin
qubit. These intrinsic and device errors inevitably fluc-
tuate the effective interactions between the spins. These
errors (we mean the next-nearest spin-spin interactions
and the device errors, similarly hereinafter.) cause the
actual state deviating from the target state and finally
reduce the quality of the quantum gate and limit the
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scalability of the system. These quantum imperfections
may cause exponential suppression of quantum compu-
tations [11]. Thus it is an important issue to find out
quantitatively the impacts of these errors and the effi-
cient method to avoid or compensate for the significant
negative effects.

In this article, we consider a scalable quantum com-
puting architecture consisting of N spin qubits whose
interactions are mediated by an array of N NAMRs [6].
The device errors of the NAMRs shift the frequencies of
the collective modes, the NAMR-spin coupling strengths
and result in fluctuations in the effective spin-spin cou-
plings. For a given evolution time, the spins’ final state
depends on the coupling strengths among them. Sup-
posing a certain duration is needed as the right evolution
time to produce the target state in the ideal case of no
errors, the same evolution will produce a wrong state in
the actual case with errors. Here, we analyze the im-
pacts of these errors on the quantum operation fidelity.
The simulation results suggest that the next-nearest spin-
spin couplings and the device errors are very devastating
for the scalability. Based on the analysis, we propose a
method to compensate for these negative effects. Mean-
while by adding control gates between them to generate
switchable interactions, this method can also avoid the
effective next-nearest spin-spin couplings.

This article is arranged as follows: In Sec. II we re-
view the model discussed in this article. Next, we give
the consequence of the influences of the next-nearest in-
teractions in Sec. III and the device errors in Sec. IV on
quantum operation fidelity by numerical simulations. We
study how the influences of these errors change with the
number of the NAMRs N . In Sec. V we present our theo-
retical method to avoid the next-nearest couplings and si-
multaneously resist the device errors. Finally, we present
discussions and conclusions in Sec. VI. The method of
diagonalizing the quadratic boson Hamiltonian are ap-
pended in the appendix.
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FIG. 1: (Color online.) Switchable coupling between two
NAMRs. A switchable control gate (dashed box) is added
between every two nearest NAMRs.

II. MODEL

We consider a system consisting of an array of N
NAMRs, which are charged and interact capacitively
with nearby wires interconnecting them [6]. A mag-
netic tip is attached on the free end of each NAMR.
An NAMR with fundamental frequency ωi and effective
mass m magnetically couples to an electronic spin qubit
associated with a nitrogen-vacancy (N-V) center [7, 12].
Each spin is driven by a local microwave to form a pair
of dressed states in order to match the NAMR frequency
[7]. The interaction Hamiltonian between the NAMR and

the corresponding spin qubit is Hi
sr =

λi

2 (a†i + ai)σ
i
z [6].

Here a†i (ai) is the natural creation (annihilation) opera-
tor of the fundamental vibrational mode of the ith NAMR
and σi

z is the Pauli-z operator of the ith spin. The cou-
pling strength λi = gsµBGma0i/~ with gs = 2, the Bohr
magneton µB, the magnetic field gradient Gm and the
amplitude of zero-point fluctuations a0i =

√
~/(2mωi).

The Hamiltonian of these N coupled NAMRs is (set-
ting ~ = 1) [6]:

Hph =

N∑

i=1

ωia
†
iai +

1

2

N∑

i,j

gi,j(ai + a†i )(aj + a†j), (1)

with gi,j is the coupling between the ith NAMR and the
jth NAMR. The derivation details of gi,j can be found in
the appendix. The interaction gi,j consists of two parts:
the self-coupling gi,i and the coupling between different
NAMRs gi,j (i 6= j). The first item of Hph is the free
Hamiltonian of the NAMRs and the second item is sum
of the interactions among them.
The Hamiltonian Hph can be diagonalized by defining

collective modes, the total NAMR-spin coupling Hamil-
tonian (the sum ofHi

sr over i) can be rewritten as the cou-
pling between the z-components of the electronic spins
and the collective modes of the NAMRs. After a trans-
formation, the effective spin-spin interactions mediated

by the NAMRs can be obtained

Heff =
∑

i,j

Mi,jσ
i
zσ

j
z , (2)

withMi,j the effective coupling strength between the spin
i and the spin j, which could be used for scalable quan-
tum computation [6].
We consider an array of Si-NAMRs with typical param-

eters: NAMR frequency ωr/(2π) varies from 1.0 MHz to
5.0 MHz, a0 ≈ 1.86 × 10−13 m and g/(2π) = 500 kHz
[6]. For gradient Gm = 9.6 × 106 Tm−1, the resulting
coupling strength between an NAMR with frequency ωr

and a spin is about λ/(2π) ≈ 50 kHz. In this case, the
effective nearest neighbour spin-spin coupling is about a
few kilohertz.

III. NEXT-NEAREST SPIN-SPIN COUPLINGS

Based on the model above, we analysize the effects of
the next-nearest spin-spin interactions and the device er-
rors. We shall calculate the fidelity of the target state

from the ideal model without any errors and the actual

state from the more realistic model with independent er-
rors.
From equation (2) we know that the NAMRs induce

next-nearest and higher order interactions between spins,
which lead to deviation from the target state. The next-
nearest interactions are intrinsic and dependent on the
nature of the quantum computation architecture. These
destructive interactions can’t be eliminated by improv-
ing the preparation technologies and lead to the decrease
of the quantum gate quality. The interactions between
the spins are Mi,i+m ∼ (g/ωr)

m−1 in the regime of
(g/ωr) ≪ 1 [6]. But the smaller the (g/ωr) is, the weaker
the effective nearest spin-spin coupling is. The value of
(g/ωr) can’t be too small if we want to obtain strong
enough nearest spin-spin coupling to complete a quan-
tum gate. Thus, the effect of these next-nearest couplings
should be studied quantitatively.
In the case of ideal situation, the coupling between

the spins can be described by Ising model and the cou-
pling strength between the nearest spins is denoted by
M . For N NAMRs with an initial state |ψin〉 = [(|0〉 +
|1〉)/

√
2]⊗N . We choose the evolution time

tg = (2N − 1)π/(4M), (3)

then the produced state is in the following form

|ψo(N, {j = ±1})〉 = 1

2N/2

N⊗

j=1

(
|0〉σj+1

z + |1〉
)
, (4)

with the convention σN+1
z = 1, which is equivalent to

the 1-D cluster state [13, 14]. In the realistic case, the
spins’ state is |φo(N, {j})〉 = Ug(tg)|ψin〉 with Ug(tg) the
evloution operator within time tg. The fidelity between
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FIG. 2: (Color online.) The influences of next-nearest spin-
spin interactions on quantum information processing with dif-
ferent NAMR frequencies. For N = 2, the fidelity F = 1
since there is no next-nearest spin-spin interactions. Here the
NAMR-NAMR coupling g/(2π) = 500 kHz and the NAMR
frequencies are given in the legend.

the state with only nearest and next-nearest interactions
and the target state with only nearest interactions is

F (N) = |〈φo(N, {j = i ± 1, i± 2})|φo(N, {j = i± 1})〉|.
(5)

For example, for N = 2, the evolution time should be
chosen as tg = π/(4|M |) [6], which is within the spin de-
coherence time and the dephasing time. For example, the
spin decoherence time T2 ≈ 6 ms [15] and the dephasing
time induced by nuclear-spin fluctuations T ′

2 ≈ 0.35 ms
for N-V centers [16] are observed experimentally.
The simulation results are shown in Fig. 2 with differ-

ent NAMR frequencies. This figure suggests that when
the NAMR-NAMR coupling g is comparable with the
NAMR frequency ωr, the next-nearest spin-spin interac-
tions are ignorable. This shows that, as the number of
qubits increases, the errors in the target state rise, hence
one may end up with a wrong result with large probabil-
ity in a large scale quantum computation.
Fig. 2 also suggests that the fidelity F oscillates with

the increasing of NAMR-spin block number N for a fixed
NAMR frequency. The fidelity F oscillates slower for
larger NAMR frequency. These fidelity oscillations are
due to the effective next-nearest spin-spin interaction in-
duced by the NAMRs and can be physically understood
as follows. The fidelity “phase shift” is induced by the
effective next-nearest spin-spin interactions and becomes
larger and larger as the number of the NAMR-spin blocks
increases. The fidelity comes back when the “phase shift”
runs up to 2π with a smaller value for the propagation
of error. For larger NAMR frequency, the effective next-
nearest spin-spin interactions are weak comparing with
the nearest spin-spin interactions. Thus, the 2π “phase

shift” needs more NAMR-spin blocks and the oscillation
period appears larger comparing with that of smaller
NAMR frequency case.

IV. DEVICE ERRORS

Besides the intrinsic next-nearest spin-spin interac-
tions, there are also many other device errors due to
imperfect preparation processes. Here, we focus on the
NAMRs’ frequency errors, NAMR-NAMR coupling er-
rors and NAMR-spin coupling errors, which can be com-
pensated for by the proposal given in Sec. V.
Frequency errors. Denoting the frequency of each

NAMR ωi = ωr + ǫi with ωr the averaged frequency of
all the NAMRs and ǫi the frequency error, the coupling
strength between the NAMR and the corresponding spin
can be written as

λi = λ

√
ωr

ωi
, (6)

which means that the frequency errors generally fluctuate
the NAMR-spin couplings. The NAMR-spin coupling in
the form of collective operators can be rewritten as

N∑

i

λi
2
(ai + a†i )σ

i
z =

N∑

n,i=1

λn,i(bn + b†n)σ
i
z , (7)

with

λn,i = λi(J
−1
i,n + J−1

i,n+N ), (8)

the coupling strength between the nth collective mode
and the z component of the ith spin (The method
of diagonalizing this Hamiltonian is given in the ap-
pendix). Here {J−1

i,j } are the matrix elements of J−1.
Therefore the effective spin-spin coupling is Mi,j =∑

n λn,iλn,j/(4ω̃n) with ω̃n the collective frequencies and
b†n the corresponding creation operators. The collective
frequencies are shifted by the frequency errors and the
numerically result for N = 11 is as shown in Fig. 3.
For N NAMRs with an initial state |ψin〉 = [(|0〉 +

|1〉)/
√
2]⊗N , the relative frequency errors are denoted

by ∆i = εi/ωr. After some appropriate time tg (deter-
mined by N), the spins’ state becomes |φo(N, {∆i})〉 =
Ug(tg)|ψin〉. The fidelity between the state with fre-
quency errors only and the target state (without next-
nearest spin-spin interactions or any other errors) is

F (N, {∆i}) = |〈φo(N, {∆i})|φo(N, {∆i = 0})〉|. (9)

We consider the NAMRs given in Sec. II. Our nu-
merical simulations show that the fidelity F (N, {∆i})
decreases with the growth of N , as sketched in Fig.
4. The Fig. 4 gives F (2,∆m = 1.0%) ≈ 0.9997
while F (11,∆m = 1.0%) ≈ 0.9475; and F (2,∆m =
5.0%) ≈ 0.9944 while F (11,∆m = 5.0%) ≈ 0.2757. Here
F (N,∆m = 5.0%) is the value for F (N, {∆i}) where the
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FIG. 3: (Color online.) The collective frequencies of the
NAMRs are shifted by their random frequency errors for N =
11 with numerical calculations. The parameters used here are:
ωr/(2π) = 1 MHz, the coupling strength: g/(2π) = 500 kHz.
The left panel (a) is the result by running the program one
time while the right panel (b) is the average by running the
program 200 times. The offsets of the collective frequencies
are optimistic estimations.
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FIG. 4: (Color online.) The fidelity F decreases as the number
of the NAMRs N increases (we run the program 200 times for
average to get the tendency of the fidelity). The frequency
errors compared with the central frequency are: 1.0% , i.e.,
∆m = 1.0% and the same below, 3.0% , and 5.0%.

values of each ∆i are randomly chosen from the range
[−∆m,+∆m].

Errors of λi. The expression of λi [see eq. (6)] suggests
that the NAMR-spin coupling strength depends on the
NAMR’s frequency ωi and the coupling constant λ, which
is dependent on the magnetic moment of the tip, the
position of the spin and so on. We can reduce these
device errors to the NAMR-spin coupling fluctuations.
The influences of these device errors on quantum gate
also should be studied. The fidelity between the actual

state with only λi errors of different amplitudes and the
target state is simulated as shown in Fig. 5 (a).

Errors of gi,i±1. For the system we considered, we only
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FIG. 5: (Color online.) The fidelity F decreases as the num-
ber of the NAMRs N increases with (a) only λi errors and
(b) only gi,i+1 errors. The errors compared with the central
values are: 1.0%, 3.0%, and 5.0%. The results are averaged
by running the program 200 times. Here ωr/(2π) = 1 MHz
and the averaged NAMR-NAMR coupling g/(2π) = 500 kHz.

consider the nearest NAMR-NAMR interactions [6]. The
interactions between nearest NAMRs can’t be exactly the
same in practice and denoted by gi,i and gi,i+1 = gi+1,i.
The matrix A and B (see the appendix) are given by

A = B + diag
(ω1

2
,
ω2

2
, · · · , ωN

2

)
, (10a)

B =




1
2g1,1

1
2g1,2

1
2g2,1 g2,2

1
2g2,3

. . .
. . .

. . .
1
2gN−1,N−2 gN−1,N−1

1
2gN−1,N

1
2gN,N−1

1
2gN,N




N×N

.

(10b)

The effects of the NAMR-NAMR coupling fluctuations
on the fidelity between the actual statewith only gi,i+1 er-
rors of different amplitudes and the target state are shown
in Fig. 5 (b) by numerical simulations.

V. COMPENSATION METHOD

As analyzed above, the device errors (e.g., frequency
errors) lead to fidelity decease of the quantum operation.
The infidelity cannot be compensated by simply adjust-
ing the evolution time tg when N > 2, as shown in Fig.
6. In what follows, we propose a method to solve this
problem. The main idea is that the device errors can
be perfectly compensated for by controlling the interac-
tion time of each two adjacent spin qubits block. With
this compensation method, one can produce arbitrarily
large-scale states with whatever large device error of each
NAMR. In addition, this method also avoid the effective
next-nearest spin-spin couplings.
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FIG. 6: (Color online.) The fidelity F changes as a function
of the evolution time tg with only frequency errors. Here F
denotes the fidelity between the target state and the actual
state at an arbitrary time tg. These curves suggest that the
infidelity (1−F ) caused by frequency errors can’t be compen-
sated for by only adjusting the evolution time tg when N > 2.
In this figure, the frequency errors are within 1.0% compared
with ωr. The black (solid) curve is for N = 2, the dashed
(red) curve is for N = 5 and the dotted (blue) curve is for
N = 8.

A. Switchable nearest NAMR-NAMR coupling

For a one-dimensional N NAMR-spin chain, an aux-
iliary switchable control voltage gate is added between
every two nearest NAMRs to obtain switchable coupling
between them, as depicted in Fig. 1. When the con-
trol voltage Uc12 is zero, the nearest NAMRs couple
with each other and induce effective spin-spin interac-
tions; and when the control voltage Uc12 is switched on
and equals to the NAMR’s gate voltage Uv, the coupling
of the two NAMRs connected this gate is switched off,
hence the NAMRs induce no effective spin-spin interac-
tions. The effective coupling strength between every two
nearest spins in the case of device errors can be theoreti-
cally measured and denoted by Mi,i±1 by assuming that
the other NAMRs and spins do not exist.

The Hamiltonian for coupled NAMRs is

Hp =
∑

i

p2i
2mr

+
1

2
miω

2
r z

2
i +

∑

i

U
(1)
el (zi)+

1

2

∑

i6=j

U
(2)
el (rij).

(11)
Here, pi, mr, ωr and zi are the effective momentum,
mass, frequency and tip position of the ith NAMR,

U
(1)
el (zi) is the electrostatic potential acting on each in-

dividual NAMR and U
(2)
el (rij) is the electrostatic energy

depending on the relative position between NAMRs with
rij = |zi − zj |. We define new equilibrium positions by

mrω
2
r zi +

∂U
(1)
el

∂rij

∣∣∣∣∣
z=0

zi +
∑

i6=j

∂U
(2)
el

∂rij

∣∣∣∣∣∣
r=0

(zi − zj) = 0.

(12)
Then the Hamiltonian of these NAMRs can be rewritten

VU

c12U

1 1C (z )

2 2C (z )

w12C

c23U

3 3C (z )
w23C

2 2C ( z ) !

NAMR1

NAMR2

NAMR3

FIG. 7: (Color online.) The equivalent circuit model of cou-
pling switchable NAMRs. Here Uv is the gate voltage ap-
plied on each NAMR, Ci(zi) (i = 1, 2, 3) is the capacitance
of each NAMR with Ci(zi) = C0(1 − zi/h). For Uc12 = Uv

and Uc23 = 0, there is no energy associated with charge flow-
ing from the gate capacitors onto the wire and thereby the
coupling between the first two NAMRs is switched off.

as

Hp =
∑

i

p2i
2mr

+
1

2
mrω

2
r z

2
i +

1

4

∑

i6=j

Kij(zi − zj)
2, (13)

with Kij = ∂2U
(2)
el (rij)/∂r

2
ij . After quantization, the

interaction between these NAMRs can be described by

~

2

∑

ij

gij(ai + a†i )(aj + a†j), (14)

with

gij = z20Ki,j/~, (15)

here, z0 =
√
~/(2mrωr).

Now, we drive the expression of U
(2)
el . The equivalent

circuit of the model in Fig. 1 is as shown in Fig. 7 for
N = 3. The equivalent inductance and the equivalent
resistance are not shown in this circuit. The NAMRs
serve as the left plates of the capacities identified by the
red bold line. The capacities of the wires connecting the
NAMRs are labeled by Cw12 and Cw23. The voltages
Uc12 and Uc23 are the coupling control voltages between
the first two NAMRs and the last two NAMRs.
In the case of Uc12 = Uc23 = 0, the electrostatic energy

stored in this circuit is

U
(2)
el =

1

2
(C12 + C23)U

2
v , (16)

with C−1
12 = [C1(z1) + C2(z2)]

−1 + C−1
w12 and C−1

23 =
[C′

2(−z2)+C3(z3)]
−1+C−1

w23. Therefor the three NAMRs
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FIG. 8: (Color online.) A sketch for the procedures to com-
pensate for the device errors. Meanwhile, this method can
avoid the influences of the effective next-nearest spin-spin cou-
plings.

couples together. When we set the control voltages
Uc12 = Uv and Uc23 = 0, the energy gives

U
(2)
el =

1

2
C12(Uv − Uc12)

2 +
1

2
C23U

2
v =

1

2
C23U

2
v . (17)

Thus the coupling of the first two NAMRs is switched
off. In the two NAMR case, the the expression of gij can
be derived from the equation (15)

g =
C2

0C
2
w23U

2
v

(2C0 + Cw23)3
a20
h2
. (18)

Here C0 is a constant with the dimension of capacitance
and h is the electrode spacing of the two NAMRs.

B. Generating entanglement

For simplicity, we assume N is an even number (for an
odd N , we only need to regard the last spin as an already
entangled spin pair). One can achieve the perfect entan-
glement through the following procedures as sketched in
Fig. 8: (1) switch on the odd-even NAMR nearest cou-
plings and switch off the even-odd NAMR nearest cou-
plings. (2) control the evolution times between each two-
spin pair to obtain the maximal entanglement between
them and then switch off the coupling, respectively. (3)
switch on the even-odd NAMR nearest couplings when
all the couplings in (2) are switched off. (4) repeat (2).
The total time needed for all these processes is approx-
imately two times of that in the case of no frequency
errors.
In our solution, the effective next-nearest spin-spin

couplings no longer exist and thus this method avoid
their destructiveness. In addition, we should note that
the influences of other device errors can also be compen-
sated for since these errors can be reduced to the effective
spin-spin coupling errors.

Proof. The operators of different spins communicate with
each other. In the case of no errors, the NAMR-spin
couplings reduce to a constant and can be denoted by λ.
All the effective nearest spin-spin couplings induced by
the NAMRs are equal to each other and denoted by M .
According to the Ising model, the evolution operator of
the spin chain for a given evolution time tg is:

Ug(tg) = exp

{
i

N−1∑

i=1

Mσi
zσ

i+1
z tg

}

=
N−1∏

i=1

exp
{
iMσi

zσ
i+1
z tg

}
.

(19)

In the case of errors, the NAMR-spin couplings and the
collective modes of the NAMRs are shifted by the device
errors. Denoting the coupling strength between the ith

and (i+ 1)th spins as Mi,i+1, the maximal entanglement
between two spins can be obtained by adjusting the evo-
lution time in the two spin case as shown in Fig. 6 and
the evolution time needed is denoted by ti,i+1. When
all the four steps are completed (Fig. 8), the evolution
operator of these spins can be described by:

Ug(t1,2 · · · tN−1,N ) =

N−1∏

i=1

exp
{
iMi,i+1σ

i
zσ

i+1
z ti,i+1

}
.

(20)

By precisely controlling the evolution time ti,i+1 =
(Mtg)/Mi,i+1, the evolution operators in the two cases
are equal to each other and the two final states must
be the same if the system evolutes from the same initial
state.

We should point out that the entanglement of the spins
prepared by the following steps is not perfect: (1) switch
on all the nearest NAMR-NAMR couplings. (2) switch
off the coupling when the nearest spins involute to the
maximal entanglement sates, respectively. A spin in-
teracts with all the other spins through the collective
modes of the NAMRs when the control voltage is zero.
These interactions inevitably include next-nearest inter-
actions and so on. These next-nearest interactions decay
as Mi,i±m ∼ (g/ωr)

m−1 [6], but their influences are gen-
erally comparable with those due to device errors. Un-
wanted entanglement between the spins which are not
nearest neighbours is generated and the Ising couplings
produced by the above two steps is unsatisfactory.

VI. DISCUSSIONS AND CONCLUSIONS

Although only the one-dimensional case is discussed in
the context, the similar analysis on the two-dimensional
NAMR-spin quantum computing architecture [6] can also
be handled by using the same method. In the two-
dimensional configuration, NAMRs are ordered on a two-
dimensional lattice and couple to their four neighbours
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electrostatically. In the two-dimensional case, the effects
of the device errors can be analysed by adjusting the
matrix B in equation (10b) to be a general matrix in-
stead of a tridiagonal matrix when considering the near-
est couplings. In the compensation method, a switchable
voltage gate should be added between each two nearest
NAMRs.
In summary, we study the consequence of the next-

nearest spin-spin couplings and other device errors on the
scalability of the NAMRs-based-on quantum computing
architecture. The influences on the quantum operation
fidelity are analyzed, and a method is given to compen-
sate for the negative effects of these device errors and
void the effective next-nearest spin-spin couplings.
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Appendix A: Diagonalizing the quadratic boson

Hamiltonian

When the frequencies of the NAMRs are exactly
the same (denoted by ωr) and the nearest NAMR-
NAMR coupling is a constant g, the frequencies of col-
lective modes can be obtained by solving the eigen-
value equations analytically and are given by ω̃n =√
ω2
r + 4ωrg{1 + cos[(n+ 1)π]/N}. In practice, the fre-

quencies of all the NAMRs can’t be exactly the same due
to imperfect fabrications. These frequency errors of each
NAMR are independent and are not the same, the fre-
quencies of the collective modes ofN coupled NAMRs ω̃n

can’t be simply calculated by the perturbation method.
A useful method is described as follows.
The Hamiltonian (1) in the context can be rewritten

as

Hph = â
†D â =

N∑

k=1

ω̃kb
†
kbk, (A1)

with b†k (bk) the creation (annihilation) operators
for the phonons of the collective modes and â ≡
[a1, · · · , aN , a†1, · · · , a†N ]T the natural creation (annihila-

tion) operators of all the NAMRs. Here D =

[
A B
B A

]
,

A is an N × N diagonal real matrix depending on the
free Hamiltonian of these NAMRs and B is an N × N
symmetric real matrix governed by the coupling model
between NAMRs.
Introducing an auxiliary matrix D = A2 − B2, the

para-values and para-vectors [17] (and also the diag-
onalizing para-unitary matrix [18]) of D can be con-
structed from the eigenvalues (denoted by dk with
k = 1 · · ·N) and eigenvectors (denoted by ξk) of
D [19]. Then the 2N × 2N transformation ma-
trix is given by J−1 ≡ [ζ1ζ2 · · · ζN ζN+1 · · · ζ2N ] with
ζk and ζN+k [20] are 2N -column vectors [19]. The
transformation matrix should satisfy (J†)−1DJ−1 =

diag(d
1/2
1 , d

1/2
2 , · · · , d1/2N , d

1/2
1 , d

1/2
2 , · · · , d1/2N ) to preserve

the commutation relations of bosonic operators. The col-
lective frequencies of these NAMRs are

ω̃k = 2d
1/2
k . (A2)

By denoting b̂ = [b1, · · · , bN , b†1, · · · , b†N ]T , we obtain the
relation

â = J−1
b̂. (A3)
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