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Quantum spin networks can be used to transport information between separated registers in a
quantum information processor. To find a practical implementation, the strict requirements of
ideal perfect state transfer models need to be relaxed, allowing for complex coupling topologies
and general initial states. Here we analyze transport in complex quantum spin networks in the
maximally mixed state and derive explicit conditions that should be satisfied by propagators for
perfect state transport. Using a description of the transport process as a quantum walk over the
network, we show that it is necessary to phase correlate the transport processes occurring along all
the possible paths in the network. We provide a Hamiltonian that achieves this correlation, and
use it in a constructive method to derive engineered couplings for perfect transport in complicated
network topologies.

PACS numbers: 03.67.Ac, 03.67.Hk

I. INTRODUCTION

In the quest toward a scalable quantum computer [1], a
promising model comprises distributed computing units
connected by passive wires that transmit quantum in-
formation [2–6]. This architecture would provide several
advantages, since the wires require no or limited con-
trol, easing the fabrication requirements and improving
their isolation from the environment. For a simpler in-
tegration in a solid-state architecture, the wires can be
composed of spins. Following seminal work by Bose [7],
which showed that spin chains enable transporting quan-
tum states between the ends of the chain, the dynam-
ics of quantum state transfer has been widely studied
(see Ref. [8] for a review), and protocols for improv-
ing the fidelity by coupling engineering [9–16], dual-rail
topologies [17], active control on the chain spins [18] or
on the end spins only [19–22] have been proposed. Re-
cently these studies have been extended to mixed state
spin chains [23–27], which are more easily obtained in
high-temperature laboratory settings – making them im-
portant protagonists in practical quantum computing.
A further challenge to experimental implementation of
quantum transport is the lack of chains with the desired
coupling strengths, since coupling engineering is limited
by fabrication constraints and by the presence of long-
range interactions. These challenges highlight the need
for a systematic study of mixed state transport in quan-
tum systems beyond chains, including more complex net-
work topologies. These topologies reflect more closely
actual experimental conditions as well as systems occur-
ring in nature. For example, there is remarkable recent
evidence [28, 29] that coherent quantum transport may
be the underlying reason for the high efficiency (of over
99%) of photosynthetic energy transfer [30].
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To derive explicit conditions for perfect transport we
quantify geometric constraints on the unitary propagator
that drives transport in an arbitrary network. As a con-
sequence, we find that transferring some mixed states in
a network in general requires fewer conditions than pure
state transfer. Transport conditions for pure states have
been previously quantified [31], however, our method –
relying on decomposing the propagator in orthogonal
spaces – is fundamentally different and more suitable for
mixed states.

Perfect transport occurs when the bulk of the network
acts like a lens to focus transport to its ends. To make
this physical picture more concrete, we describe mixed
state transport as a continuous quantum walk over the
network [32–34] which progressively populates its nodes.
Through this formalism, we derive constructive condi-
tions on the coupling Hamiltonian that results in the
correlation of transport processes through different pos-
sible paths in the network. The correlation of transport
processes leads to their constructive interference at the
position of the two end-spins, giving perfect transport.
While similar walk models have been applied to coherent
transfer before (see [35] for a review), our work provides
their first extension to transport involving mixed states.

The insight gained by describing quantum transport as
correlated quantum walks can be used to construct larger
networks where perfect transport is possible. Here we
show a strategy to achieve this goal by engineering the
coupling strengths between different nodes of the net-
work to construct weighted spin networks that support
perfect mixed state transport. Feder [36] had considered
a similar problem for pure states by mapping the quan-
tum walk of N spinor bosons to a single particle; this
has been extended in more recent work [37–39]. Here we
find far more relaxed weighting requirements for mixed
state transport, thanks in part to a fermionic instead of
bosonic mapping. In turn, this could ease the fabrication
requirements for coupling engineering.

The paper is organized as follows. In Sec. II we define
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the problem of mixed state transport. Sec. III provides
the geometric conditions on the propagator for perfect
transport in arbitrary networks. We finally present in
Sec. IV the quantum walk formalism, which allows the
correlation of transport processes over different paths and
the construction of families of weighted networks that
support perfect transfer.

II. TRANSPORT IN MIXED-STATE
NETWORKS

Consider an N -spin network N , whose vertices (nodes)
V represent spins and whose edges E = {αij} describe
the couplings between spins i and j (see Fig. 1). The
system dynamics is governed by the Hamiltonian H =∑

i<j αijHij , where Hij is the operator form of the in-
teraction. In the most general case, a spin of N may be
coupled to several others, for instance, in a dipolar cou-
pled network, αij ∼ 1/r3

ij is a function of the distance
between the spins in the network.

We assume that we can identify two nodes, labeled 1
and N , that we can (partially) control and read out, in-
dependently from the “bulk” of the network, and thus
act as the “end” spins between which transport will oc-
cur. The rest of the spins in the network can at most
be manipulated by collective control. This also imposes
restrictions on the network initialization [24–26]. To re-
lax the requirements for the network preparation, we as-
sume to work in the infinite-temperature limit [25] – a
physical setting easily achievable for many experimen-
tal systems – where the bulk spins are in the maxi-
mally mixed state, ρ ∝ 11. We will then consider the
transport of a slight excess polarization from node 1 to
node N . The initial state is ρi ∼ (11 + δZ1), where
Z1 is the Pauli matrix acting on spin 1 and δ � 1
denotes the polarization excess. Since only the trace-
less part of the density matrix evolves in time, we will
monitor the transport from ρ∆

i = Z1 to a desired final
state ρ∆

f = ZN . The fidelity of the transport process

is then defined as F (t) = Tr(ρ∆(t)ZN )/Tr(Z†1Z1), with
ρ∆(t) = U(t)ρ∆

i U
†(t) being the evolved state.

The polarization behaves like a wave-packet traveling
over the network N [40, 41]. In most cases, the Hamilto-
nian H drives a rapidly dispersive evolution, where the
wave-packet quickly spreads out into many-body corre-
lations among the nodes of N , from which it cannot be
recovered [34]. This is for example the case of evolu-
tion under the naturally occurring dipolar Hamiltonian,
which induces a fast-decay of the spin polarization as
measured in solid-state NMR, even if many-body corre-
lations can be detected at longer times [42].

In order to drive a dispersionless transport, thus en-
suring perfect fidelity, the network Hamiltonian should
satisfy very specific conditions. In this paper we will
investigate these conditions by answering the questions:
(i) What are the possible operator forms of the Hamilto-
nian Hij for dispersionless transport? (ii) What are the
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FIG. 1. (Color online) Transport in a spin network. The
network edges represent the interaction among spins (nodes).
The pink (dark) nodes represent the end spins between which
transport should occur. The shaded region comprising yellow
(light) nodes is the bulk network, HB . An initial polarization
packet (hatched) is prepared on spin 1 and allowed to propa-
gate on the network through various possible paths (arrows).
For perfect transport, the polarization refocuses at spin N .

coupling topologies and (iii) strengths αij that support
perfect transport?

III. CONDITIONS FOR PERFECT
TRANSPORT

A. Fidelity of mixed-state transport

The condition for perfect transport, F = 1, can be ex-
pressed in a compact form by using the product-operator
(PO) basis [43]. For the N -spin network system there are
22N basis elements,

B = B1 ⊗Bbulk ⊗BN = {11, X1, Y1, Z1, X2, . . . , X1X2,

. . . , Z1Z2, X1X2X3, . . . , . . . , Z1Z2 · · ·ZN−1ZN}, (1)

where B1,N and Bbulk are the basis for the end and the
bulk spins, respectively.

Using the PO basis, the propagator U(t) = e−iHt can
be represented by a vector |U〉 = [cB1

, cB2
, . . . , cB4N

]T

in the 22N dimensional Hilbert-Schmidt (HS) operator
space spanned by B [44]:

U(t) =
∑

i cBi
(t)Bi, with cBi

=
Tr(B†iU)

Tr(B†iBi)

From an initial state with a polarization excess on spin 1,
ρ∆
i = Z1, the system evolves to

ρ∆
f = Uρ∆

i U
† =

∑
i,j cBi

c∗Bj
BiZ1Bj , (2)

yielding the transport fidelity to spin N

F =
1

Tr(Z†1Z1)
Tr
[∑

i,j c
∗
Bi
cBj

BiZ1BjZN

]
=
∑

i cBi
c∗Bj

,

with Bj = ±Z1ZNBi, for [Bi, ZN ]∓ = 0. (3)

The last equation follows from the property that all ele-
ments of B, except 11, are traceless.
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The fidelity derived in Eq. (3) has a simple form in the
HS space. Note that in this operator space, the product
BiU is a linear transformation, T : |U〉 → P̂Bi

|U〉, where

P̂Bi
is a permutation matrix corresponding to the action

of Bi [44] (here and in the following we denote operators
in the HS space by a hat). The unitarity of U yields the
conditions:

‖U‖ = 〈U |U〉 = 1 〈U | P̂Bi |U〉 = 0 , Bi 6= 11. (4)

Let us partition the HS space in two subspaces G, G̃,

spanned by the basis G and G̃,

G = B1⊗Bbulk⊗{11, ZN}, G̃ = B1⊗Bbulk⊗{XN , YN},

and note that all elements of G commute with ZN , while

all elements of G̃ anti-commute with ZN . We will label
by superscripts G and G̃ the projections of operators in
these subspaces. Using this partition, we can simplify
the expression for the fidelity of Eq. (3) to obtain

F = 〈U | P̂Z1ZN
P̂R |U〉 , (5)

where P̂R is a reflection about G and P̂Z1ZN
is block-

diagonal in the {G, G̃} basis (since Z1ZN ∈ G):

P̂R =

[
11G 0

0 −11G̃

]
, P̂Z1ZN

=

[
P̂GZ1ZN

0

0 P̂ G̃Z1ZN

]
(6)

Rewriting the fidelity as the inner product between two
vectors, F = 〈(P̂Z1ZN

U)|P̂RU〉, provides a simple geo-
metric interpretation of the perfect transport condition,
as shown in Fig. 2. The vector P̂Z1ZN

|U〉 should be par-

allel to P̂R |U〉, which can be obtained if P̂Z1ZN
rotates∣∣∣U G̃

〉
by an angle π, while leaving

∣∣UG
〉

unaffected. Al-

ternatively, since P̂Z1ZN
just describes the π−rotation of

the vector |U〉 about the Z1ZN axis, for perfect transport

the rotation-reflection operation Ŝ = P̂Z1ZN
P̂R should be

a symmetry operation for |U〉.
From Eq. (4) we have 〈U | P̂Z1ZN

|U〉 = 0 and using
Eq. (5) we can derive explicit conditions to be satisfied
by the propagator to achieve perfect transport, F = 1

〈
UG
∣∣ P̂GZ1ZN

∣∣UG
〉

+
〈
U G̃
∣∣∣ P̂ G̃Z1ZN

∣∣∣U G̃
〉

= 0 (7)

〈
UG
∣∣ P̂GZ1ZN

∣∣UG
〉
−
〈
U G̃
∣∣∣ P̂ G̃Z1ZN

∣∣∣U G̃
〉

= 1 (8)

that simplify to

〈
UG
∣∣ P̂GZ1ZN

∣∣UG
〉

= −
〈
U G̃
∣∣∣ P̂ G̃Z1ZN

∣∣∣U G̃
〉

=
1

2
. (9)

When is this equation satisfied? By symmetry, it hap-

pens when ‖UG‖ = ‖U G̃‖ = 1/2, and
∣∣UG

〉
and

∣∣∣U G̃
〉

are

(up to a phase) eigenvectors of P̂GZ1ZN
and P̂ G̃Z1ZN

with
eigenvalues ±1 respectively:

P̂GZ1ZN

∣∣UG
〉

= +
∣∣UG

〉
; P̂ G̃Z1ZN

∣∣∣U G̃
〉

= −
∣∣∣U G̃

〉
(10)

U〉

P̂R|U

G

G̃

U
G̃

P̂Z1ZN U
G̃

|UGπ

|

〉

〉

| 〉

| 〉

FIG. 2. (Color online) Geometric interpretation of the condi-
tion for maximum Z1 → ZN transport fidelity. The unitary
U is represented as a vector |U〉 (red thick arrow) in the HS

space, with components
∣∣UG〉 and

∣∣∣U G̃〉 in the subspaces G
(represented by an axis) and G̃ (represented by the shaded

grey plane). P̂R |U〉 (blue dashed arrow) is the reflection of
|U〉 about the G axis. Maximum fidelity occurs only when the

P̂Z1ZN causes a π-rotation of
∣∣∣U G̃〉.

To enable perfect transport, |U〉 must thus have an equal

projection on the two subspaces G and G̃, as shown geo-
metrically in Fig. 2. Also, intuitively from the symmetry
operation Ŝ, all components of |U〉 lying on the plane G
should be rotationally symmetric with respect to Z1ZN ,

while components of |U〉 lying on the plane G̃ should have
reflection symmetry about Z1ZN .

Note that Eq. (10) imposes fairly weak constraints on
the transport unitaries, as opposed to the constraints for
pure state transport [31, 45]. In particular Eq. (10) pro-
vides no explicit constraint on the bulk of the network.
For example, the two propagators,

U1 = Bbulk(11± Z1ZN ) +B
′

bulk(X1XN ± Y1YN ),

U2 = Bbulk(11± Z1ZN ) +B
′

bulk(X1YN ∓ Y1XN ),
(11)

with Bbulk and B
′

bulk arbitrary operators
(∈ span{Bbulk}) acting on the bulk, support per-
fect transport. Other propagators can be obtained
thanks to an invariance property that we present in
the next section. More generally, in Appendix A we
explicitly provide a prescription to construct classes of
unitaries for perfect mixed state transport.

B. Invariance of transport Hamiltonians

The fidelity F in Eq. (3) is invariant under a trans-

formation U
′

= V U , where V is unitary and commutes
with Ŝ, that is,

[V̂ , P̂Z1ZN
P̂R] = 0. (12)

This invariance can be used to construct Hamiltonians
that support perfect transport starting from known ones.
Consider an Hamiltonian H that generates the transport
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evolution U = exp(−iHt). Then the transport driven
by H is identical to that generated by the Hamiltonian
H
′

= V †HV , where V satisfies Eq. (12).

Ref. [46] proved similar symmetry requirements for
Hamiltonians that transport pure states; here, however,
we derived these Hamiltonian properties just from the
geometric conditions on U . Ref. [47] treated a similar
problem, defining classes of Hamiltonians that perform
the same action on a state of interest. A special case of
this result was used in [23] to study transport in a mixed-
state spin chain driven either by the nearest-neighbor
coupling isotropic XY Hamiltonian,

HXY =
∑

i αiT
+
ii+1 with T+

ij = (S+
i S
−
j + S−i S

+
j ) (13)

or double-quantum (DQ) Hamiltonian

HDQ =
∑

i αiD
+
ii+1 with D+

ij = (S+
i S

+
j + S−i S

−
j ),(14)

with S±j = 1
2 (Xj ± iYj). The unitary operator relating

the two Hamiltonians, V =
∏

k′ Xk′ , where the product

k
′

extends over all even or odd spins, does indeed satisfy
Eq. (12).

C. Quantum information transport via mixed state
networks

The requirements for perfect transport (Eq. (10)) can
be easily generalized to the transport between any two
elements of B, say from I to F . One has simply to

appropriately construct the subspaces G and G̃ and the
corresponding permutation operator P̂IF .

One could further consider under which conditions this
transport (for example, X1 → XN ) can occur simultane-
ously with the Z1 → ZN transport already considered.
More generally, the simultaneous transfer of operators
forming a basis for B1 would enable the transport of
quantum information [10, 25] via a mixed-state network.
The unitary U should now not only be symmetric un-
der Ŝ, but should also under a similar operator derived
for X1XN . The requirements on U thus become more
stringent and only a special case of the propagators con-
structed in Eq. (A3) in Appendix A is allowed,

U = Bbulk(11± Z1ZN +X1XN ± Y1YN ) . (15)

This is exactly a SWAP operation (up to a phase) be-
tween the end-spins, which can also lead to a transfer
of arbitrary pure states between 1 and N . Therefore,
we find that perfect transport of non-commuting mixed
states between the end-spins also allows transport in
pure state networks. We note that quantum information
could be encoded in multi-spin states [25, 48] that sat-
isfy proper symmetry conditions and thus do not impose
additional conditions on the transport propagators.

D. Which Hamiltonians support mixed state
transport?

It would be interesting to determine which Hamiltoni-
ans can generate propagators |U(t)〉 = exp(−iĤt) |11〉 for
perfect transport. Unfortunately, deriving requirements
for the Hamiltonian from the conditions on the unitaries
is non-trivial; however, as we show below, one can still
extract useful information.

A general Hamiltonian can be decomposed as H =

HG +H G̃ , where HG,G̃ lie in the subspaces G and G̃, re-
spectively. We cannot set H = HG since the Hamiltonian
does need to have a component that is non-commuting
with the target operator (ZN ) in order to drive the trans-

port. If H = H G̃ , odd powers of H are in G̃, while even
powers of H belong to G. Then the propagator has con-

tributions from
∣∣UG

〉
and

∣∣∣U G̃
〉

with

∣∣UG
〉

= |11〉+
(it)2

2!
Ĥ |H〉+

(it)4

4!
Ĥ3 |H〉+ · · ·

∣∣∣U G̃
〉

= it |H〉+
(it)3

3!
Ĥ2 |H〉+ · · · (16)

We can demonstrate that in this case the Hamiltonian
must satisfy two conditions to drive perfect transport.
First, the “vector” form of the Hamiltonian must be an
eigenstate of P̂Z1ZN

, P̂Z1ZN
|H〉 = − |H〉, which ensures

that the second equation in (10) is trivially satisfied, as

P̂Z1ZN

∣∣∣U G̃
〉

= −
∣∣∣U G̃

〉
. Second, since we have

P̂Z1ZN

∣∣UG
〉

= |Z1ZN 〉+
(it)2

2!
Ĥ |H〉+ (it)4

4!
Ĥ3 |H〉+ · · · ,

the first equation in (10) implies that H2n = 1
2 (11−Z1ZN )

for any n.

These conditions are for example satisfied by the XY-
like Hamiltonian, H = BbulkT

+
1N , where Bbulk is any op-

erator acting on the bulk and T±1N = (S+
1 S
−
N ± S−1 S+

N ).
In this case, at t = π/4, all conditions in Eq. (10) are sat-
isfied and perfect transport is achieved. Indeed the XY
Hamiltonian has been widely studied for quantum trans-
port [7, 9] and it is interesting that we could derive its
transport properties solely by the symmetry conditions
on the propagator.

An Hamiltonian H = H G̃ with support only in G̃ is
however a very restrictive case as it refers to the situa-
tion where all nodes of the network are connected to N .
Hamiltonians with support in both subspaces are more
experimentally relevant, as they correspond to a common
physical situation, where the ends of the network are sep-
arated in space and direct interaction between them is
zero or too weak. In the following, we will consider this
more general situation, although restricting the study to
XY Hamiltonians in order to derive conditions for perfect
transport.
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IV. PERFECT TRANSPORT IN NETWORKS:
CORRELATED QUANTUM WALKS

In the following, we will consider the network N to
consist of spins that are coupled by XY-like interac-
tion, {T+

ij }. We focus on this interaction since it has
been shown that with appropriate engineered coupling
strengths, αij ∝

√
i(N − i)δj,i+1, the XY-Hamiltonian

can support perfect transport in linear spin chains (see
e.g. [10–12, 49]). Thanks to the invariance property
described in Sec. III B, this analysis applies to a much
broader class of Hamiltonians, in particular to the DQ
Hamiltonian.

We assume that the end spins of N are not directly
coupled, thus transport needs to be mediated by the bulk
of the network. The simplest such topology is a Λ-type
configuration where the end spins are coupled to a single
spin in the bulk. The Hamiltonian Λj = (T+

1j +T+
jN )/

√
2,

where j is a spin in the bulk, is enough to drive this
transport. In this case, (Λ2

j )n = Λ2
j ∀n, and hence the

propagator is

U = exp(−iHt) = 11 + [cos(t)− 1]H2 − i sin(t)H, (17)

where H2 = 1/2[(T+
1j)

2 +(T+
jN )2 +T+

1N ]. Since (11−2H2)

has the form of U3 in Eq. (A3), setting t = π ensures
U = U3, yielding perfect transport. This is an expected
result, since this simple lambda-network is just a 3-spin
linear chain. This result can be extended to longer chains,
as long as engineered couplings ensure that the resulting
Hamiltonian is mirror-symmetric [10, 16, 45].

A different situation arises when there is more than one
transport path possible, that is, the end spins are coupled
to more than one spin in the bulk with an Hamiltonian
H =

∑
j∈bulk αjΛj . For example, Fig. 3 depicts a net-

work similar to the one considered in [26, 50] where there
are three Λ paths between the end-spins. Even if each
path individually supports perfect transport, evolution
along different paths may not be correlated, leading to
destructive interference reducing the fidelity (see Fig. 3).

Perfect fidelity can be achieved only if different paths
can be collapsed into a single “effective” one that sup-
ports perfect transport (Fig. 8). This strategy not only
allows us to determine if an Hamiltonian can support per-
fect transport, but it also gives a recipe to build allowed
Hamiltonians, by combining simpler networks known to
support perfect transport into more complex ones.

To this end, we use the fact that linear chains enable
perfect transport with appropriate engineered couplings.
Our first step will then to give conditions under which
two chains of the same length (with end-spins in com-
mon) can be combined. To obtain these conditions, we
describe the evolution of the spin polarization as a quan-
tum walk over the operators in the network [33, 34]. This
description reveals the need to correlate the parallel paths
over the network, in order to achieve a constructive re-
focusing of the polarization at the other end of the net-
work. We then generalize the conditions by a recursive
construction to quite general networks.

N1

2 43(a)

0 1 2 3 4 5
t/α

0.00

0.25

0.50

0.75

1.00

T
ra
ns
p
or
t
F
id
el
it
y

T̃+
ij

T+
ij

(b)

FIG. 3. (Color online) (a) Λ-type network with three Λ paths
between the bulk and end-spins and equal coupling strength
α. (b) Transport fidelity as a function of normalized time
for the Λ-network coupled by the XY-Hamiltonian T+

ij (blue

dashed) and the modified XY-Hamiltonian T̃+
ij (red solid).

In the latter case, correlated quantum walks lead to perfect
transport.

A. Transport as a quantum walk over N

We describe the transport evolution as a quantum walk
over the network, which progressively populates oper-
ators in the HS space. We first expand the transport
fidelity F (t) (Eq. 5) in a time series,

F (t) =
〈
U0

∣∣∣P̂Z1ZN
P̂R

∣∣∣U0〉 − it〈U0

∣∣∣[Ĥ, P̂Z1ZN
P̂R]
∣∣∣U0

〉

+
i2t2

2!

〈
U0

∣∣∣
[
Ĥ,
[
Ĥ, P̂Z1ZN

P̂R

]]∣∣∣U0

〉
+ · · · (18)

with |U0〉 = |11〉. This process of progressively populat-
ing different parts of the HS space upon continuous time
evolution under the Hamiltonian can be considered as a
quantum walk [33, 34, 51]. Defining the nested commu-
tators,

C0 = P̂Z1ZN
P̂R ; Cn = [Ĥ, Cn−1] , (19)

Eq. (18) takes the form

F (t) =

∞∑

n=0

(it)n

n!
〈Cn〉, (20)

where the expectation value is taken with respect to |U0〉.
A large part of the Hamiltonian commutes with

P̂Z1ZN
P̂R and can be neglected. We can isolate the non-

commuting part by defining the operator Â via the rela-
tionship

[Ĥ, P̂Z1ZN
P̂R] = ÂP̂Z1ZN

P̂R . (21)

The operator Â and its nested commutators CAn =

[Ĥ, CAn−1] (with CA0 = Â) have a simple graphical con-
struction. The commutation relations,

[
T+
ij , T

±
jk

]
= −ZjT

∓
ik ;

[
T+
ij , T

+
kl

]
= 0 , (22)
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i

j

k

T+
ij T+

jk

=ZjT
−
ki

i

j

k

T̃+
ij T̃+

jk

(a) (b)

[T+
ij ,T

+
jk] = T̃−

ki[T̃+
ij T̃+

jk],

FIG. 4. (Color online) Graphical representation of commu-
tators for (a) the XY and (b) the modified XY Hamiltonian.
The commutator between two top legs (blue) of the directed
graph is the third edge (red). In case of the XY Hamiltonian,
the commutator is conditioned on node j.

(see Fig. 4) can be used to provide a simple prescription
to graphically determine the flip-flop terms in CAn . For
any two edges, one in CAn−1 and one in H, that share a

common node, CAn contains the edge required to complete
the triangle between them. Thus, each higher order in
the commutation expansion creates a link between nodes
in the network, progressively populating it. We will refer
to the operators CAn as quantum walk operators, since as
we show below, the nested commutators Cn in Eq. (20)
can be built exclusively out of them.

Consider the network of Fig. 5(a), with coupling

strengths αij = 1: Â contains only the edges of N that
connect to node 1, as represented by the red lines in
Fig. 5(b). Fig. 5(c-d) represent the higher order commu-

1

2 3

N

54

P1

P2

1

2 3

N

4 5

1

2 3

N

4 5

1

2 3

N

4 5

1

2 3

N

4 5

1

2 3

N

4 5

(a) H (b) CA
0 (c) CA

1

(d) CA
2 (e) CA

3 (f) CA
4

FIG. 5. (Color online) (a) A six spin network with two paths
P1 and P2 between the end spins. (b)-(f) represent graphically
the successive orders of the quantum walk operators CAn : A
red line linking two nodes indicates that there is a flip-flop
term T±ij between them, while path-dependent prefactors are
not depicted. Once the walk has covered the entire network,
successive orders in CAn reproduce CA3 and CA4 . The explicit
expressions for the commutators are shown in Table I.

tators, with a red line linking two nodes denoting a term
T±ij between them. We note that the graphical construc-

tion only predicts the presence of a flip-flop term T±ij link-

ing two nodes in the commutator CAn , while the explicit
forms of the commutators is generally more complex, as
shown in Table I, with additional appropriate weights for
arbitrary coupling strengths αij . Still, as we now show,
only the T±ij terms are important to determine the fi-

delity, and the presence of a T±1N term in the graphical
series is an indication that transport can occur between
the end-nodes.

The commutators Cn can indeed be written in terms
of the CAn nested commutators,

Cn =

n−1∑

k=0

(
n− 1

k

)
CAn−1−kCk, (23)

yielding an expression for the fidelity containing only
products of the nested commutators CAn :

Cn =

n−1∑

k1=0

k1−1∑

k2=0

· · ·
kn−1−1∑

kn=0

(
n− 1

k1

)(
k1 − 1

k2

)
· · ·
(
kn−1 − 1

kn

)
CAn−k1−1CAk1−k2−1 · · · CAkn−1−kn−1P̂Z1ZN

P̂R . (24)

For a commutator Cn to yield a non-zero contribution
to the fidelity, the product of the operators CAk should
be proportional to Z1ZN , that is, it should evaluate to
even powers of T±1N . Hence very few terms appearing in

Eq. (24) actually contribute to the transfer fidelity F .

The geometric construction of CAn only yields the XY
operators contained in each commutator, but it does not
reflect the appearance of prefactors ∝ Zj (due to the
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Walk Operator XY Hamiltonian Modified XY Hamiltonian

CA0 T+
12 + T+

14 T̃+
12 + T̃+

14

CA1 Z2T
−
13 + Z4T

−
15 T̃−13 + T̃−15

CA2 T+
12 − T+

23 − Z1Z2T
+
34 + Z2Z3T

+
1N T̃+

12 − T̃+
23 − T̃+

34 + T̃+
1N

+T+
14 − T+

45 − Z1Z4T
+
25 + Z4Z5T

+
1N +T̃+

14 − T̃+
45 − T̃+

25 + T̃+
1N

CA3 (Z4Z5ZN + 4Z2)T−13 + (Z2Z3ZN + 4Z4)T−15 5T̃−13 − 4T̃−2N
−2(Z1Z4Z5 + Z3)T−2N − 2(Z1Z2Z3 + Z5)T−4N +5T̃−15 − 4T̃−4N

(411 + Z3Z4Z5ZN )T+
12 + (411 + Z2Z3Z5ZN )T+

14 + 9(Z2Z3 + Z4Z5)T+
1N 5T̃+

12 + 5T̃+
14 + 18T̃+

1N

CA4 −(611 + 3Z1Z4Z5ZN )T+
23 − (6Z1Z4 + 3Z3ZN )T+

25 − (6Z1Z2 + 3Z5ZN )T+
34 −9T̃+

23 − 9T̃+
25 − 9T̃+

34

+2(11 + Z1Z2Z4Z5)T+
36 − (611 + 3Z1Z2Z3ZN )T+

45 + 2(11 + Z1Z2Z3Z4)T+
56 +4T̃+

36 − 9T̃+
45 + 4T̃+

56

TABLE I. Nested commutators CAn (walk operators) corresponding to the graphs in Fig. 5 if the edges represent the XY
Hamiltonian or the modified XY Hamiltonian. In the first case, note the presence of path dependent Zj prefactors, which are
absent if the modified XY Hamiltonian is used. This allows for the correlation of transport through parallel paths.

commutator in Eq. (22)) that are explicitly written out
in Table I. Thus, the geometric construction gives a nec-
essary condition for transport, but not a sufficient one.

The operators CAn describe the sum of walks over dif-
ferent paths: for example in CA2 , Z2Z3T

+
1N can be in-

terpreted as the information packet reaching node N
through path P1 in Fig. 5(a), while Z4Z5T

+
1N represents

propagation via path P2. These two terms could in prin-
ciple contribute to the fidelity, as they contain T+

1N . How-
ever, the additional path dependent factors

∏
k Zk lead

to a loss of fidelity. Transport through different paths
yield different

∏
k Zk factors, resulting into a destructive

“interference” effect. Note also that since different paths
are weighted by different correlation factors, they cannot
be canceled through some external control to recover the
fidelity. In the following section we show how a modified
Hamiltonian can remove this path-conditioning and thus
drive perfect transport. Note that the path-dependent
factors are as well unimportant in the case of pure states,
provided the states reside in the same excitation mani-
fold [25, 52, 53].

B. Correlating quantum walks over N : Modified
XY-Hamiltonian

To remove the path-conditioning one should modify
the Hamiltonian so that the Zj term in the commutator
Eq. (22) disappears.

This can be done via a modified XY-Hamiltonian

T̃±ij = T±ij
∏

i<u<j

Zu (25)

since it satisfies this condition:
[
T̃+
ij , T̃

±
jk

]
= −T̃∓ik ;

[
T̃+
ij , T̃

+
kl

]
= 0 (26)

These operators now depend on the number of nodes be-
tween i and j, thus introducing a metric in the spin-space
that distinguishes paths between the two nodes i and j.

Note that when the network N is a simple linear chain
with nearest-neighbor couplings the modified Hamilto-

nian T̃+
ij is equivalent to the bare XY Hamiltonian. The

modification in Eq. (25) of the XY-Hamiltonian could
also be seen as mapping the spin system into a set of non-
interacting fermions [54, 55] via a Jordan-Wigner trans-
formation [56, 57], since Ci =

∏
u<i ZuS

+
i are operators

that satisfy the usual fermionic anti-commutation rela-
tionships. When these modified operators are employed
in the network N of Fig. 5(a), the two paths P1 and P2

in Fig. 5(a) are indistinguishable or, equivalently, they
become perfectly correlated (see Table I). In effect, the
modified XY Hamiltonian drives the quantum walks over
different paths through a common set of operators of B.
This is shown in Fig. 6 for a simple Λ-network consisting
of two Λ paths.

Z1 i˜T−12 Z2 i˜T−2N ZN

i˜T−1N

Z1 i˜T−13 Z3 i˜T−3N ZN

i˜T+
23

(b)

Z1 iT−12 Z2 iT−2N ZN

iZ2T
−
1N

(a)

Z1 iT−13 Z3 iT−3N ZN

iZ3T
−
1N

Walk 1→ 2→ N

Walk 1→ 3→ N

Bridge

FIG. 6. (Color online) Operators appearing in the quantum
walk of a network consisting of two Λ paths, 1 → 2 → N
and 1 → 3 → N . In panel (a), where the transport is driven
by the XY-Hamiltonian, the two paths through spins 2 and
3 are different, as they traverse a different set of operators,
and are thus depicted in two separated grey panels. In panel
(b), where we consider the modified XY Hamiltonian, both
walks go through a common set of operators. The previously
separate walks are bridged by the operators in the red box,
making both walks indistinguishable and hence correlated.
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√
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√
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√
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√
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√
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3
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√
3
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(b)

Collapse

0 1 2 3 4 5 6
t/(απ)

0.0
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0.6

0.8

1.0

T
ra
ns
p
or
t
F
id
el
it
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ij

T+
ij

(c)

FIG. 7. (Color online) Engineered spin networks. (a) The network of Fig. 5(a), correlated by means of the modified flip-flop
Hamiltonian, can be engineered to yield perfect transport by weighting the coupling strength α with the coefficient shown.
Here γ is any positive parameter, γ < 1. The two paths P1 and P2 can be collapsed to form a linear chain, since nodes (2, 4)
and (3, 5) are equivalent. (b) A more complicated network consisting of three paths P1 − P3 (black arrows), with engineered
strengths parametrized by 0 < γ1, γ2 < 1. The three paths can be collapsed into an effective 4-spin linear chain, with equivalent
nodes (2,5) and (3,4,6). (c) Transport fidelity as a function of normalized time for the network in (b) with γ1 = 0.8, γ2 = 0.5,

in case the edges are the XY {T+
ij } or modified XY {T̃+

ij } operators. In this last case perfect fidelity is achieved, while for the
usual XY-Hamiltonian the path-conditioned interference leads to poor transport fidelity.

The graphic construction used to calculate the trans-
port over the network in Fig. 5 remains unchanged, ex-
cept that now the red lines between two nodes denote

modified flip-flops T̃±ij between them. Crucially there are
no path dependent prefactors and symmetric nodes in
each path become equivalent in each of the operators CAn .
It is then possible to collapse different paths into a single
effective one, until a complex network N is collapsed into
a linear chain. This is depicted in Fig. 7(a).

We can express this result more formally, by defining
collapsed XY operators, where we denote in parenthesis
equivalent nodes in two parallel paths:

T̃±i(j,k) =
1√

γ2
ij + γ2

ik

(
γij T̃

±
ij + γikT̃

±
ik

)
, (27)

where γij and γik are arbitrary parameters, 0 < γij , γik <
1 (see also Appendix B). Remarkably, these operators
satisfy the same path-independent commutation rela-
tions as in Eq. (26)

[
T̃+
i(j,k), T̃

±
(j,k)`

]
= −T̃∓i` , (28)

thus showing that intermediate equivalent nodes can be
neglected in higher order commutators. In addition the
nested commutators CAn , and the graphical method to
construct them (Fig. 4), remain invariant when substi-
tuting the modified XY operator with the collapsed op-

erators T̃±i(j,k).

Using the collapsed operators, the network of Fig. 5(a)
can thus be reduced to a simpler linear chain (Fig. 7).
Analogous arguments for path-collapsing were presented
in [58], and have been applied before to some classes
of graphs [9, 38]. In the following we show that path-
equivalence could be constructed even for more complex
network topologies, since, as we described, path collaps-
ing can be derived just from the commutation relation-
ships between the edges of the network.

C. Engineered spin networks

The path collapsing described in the previous section
provides a constructive way to build networks, with ap-
propriate coupling geometries and strengths, that achieve
perfect transport. Alternatively, given a certain network
geometry, the method determines all the possible cou-
pling strength distributions that leave its transport fi-
delity unchanged.

For example, starting from a linear chain, any node can
be substituted by two equivalent nodes, thus giving rise
to two equivalent paths. Then, within the subspace of the
equivalent nodes, the couplings can be set using Eq. (27)
with arbitrary weights γ, thus giving much flexibility in
the final allowed network. The engineered network cor-
responding to Fig. 5(a) is represented in Fig. 7(a), where
equivalent nodes from P1 are weighted by γ, while those

from P2 are weighted by
√

1− γ2.

A more complex example is shown in Fig. 7(b), where
the network is built combining the networks in Fig. 3(a)
and Fig. 5(a). It consists of three paths and can be col-
lapsed into a 4-spin linear chain. The couplings shown
lead to perfect Z1 → ZN transport for arbitrary path
weights γ1 and γ2, with 0 < γ1, γ2 < 1, as shown in
Fig. 7(c). The network engineering scheme can be re-
cursively integrated to construct larger and more com-
plicated network topologies (see for example Fig. 8).

Similar weighted networks have been consider before
for bosons [36]. The engineered couplings derived by
mapping quantum walks of N spinor bosons to the walk
of a single particle are however much more restricted than
what we found here via the mapping of spins to non-
interacting fermions.
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1

N

HB

� 1 � 2 � 3 � 4 � 5 � 6

FIG. 8. (Color online) A complex network topology that can
be engineered for perfect transport with the modified XY
Hamiltonian. Collapsing the equivalent nodes along the lines
`2 − `5 leads to three equivalent paths that can be suitably
engineered for perfect transport.

V. CONCLUSIONS AND OUTLOOK

Experimental implementation of quantum information
transport requires relaxing many of the assumptions
made in ideal schemes. In this paper we analyzed a
physical situation that is closer to experimental settings
– information transport in mixed-state spin networks
with complex topologies. We first derived general con-
ditions on propagators that allow perfect transport in
these mixed-state spin networks. We used the conditions
on the propagators to show that there exist classes of
symmetry transformations on the Hamiltonians driving
the transport for which the transport fidelity is invari-
ant. We also showed that the propagator conditions
also imply that transporting some mixed states requires
fewer control requirements than pure state transport, an
added advantage to using mixed-state channels in quan-
tum information architectures.

In order to study quantum transfer in complex spin
networks, we described the dynamics as a continuous
quantum walk over the possible paths offered by the
network. This description provided a graphical con-
struction to predict the system evolution, which high-
lighted the need of correlating the transport processes
occurring along different paths of the network to ob-
tain perfect transport. We thus introduced a modified
XY-Hamiltonian, based on Jordan-Wigner fermioniza-
tion, that achieves correlation among paths by establish-
ing a metric for the quantum walks occurring on the net-
work. Conversely, the graphical construction could be
as well used to study the generation from the usual XY-
Hamiltonian of states of interest in measurement-based
quantum computation [59].

Finally, the quantum-walk picture and the graphical
construction lead us to define a constructive method to
build complex networks from simpler ones, with appro-
priate coupling geometries and strengths, that achieve
perfect transport. We thus found that there is consid-
erable freedom in the choice of topology and interaction

strength that still allows perfect transport in complex
networks. While the requirement of a well-defined net-
work topology could be further relaxed [60], the precise
construction proposed in this paper would provide faster
transport and the freedom in the coupling distributions
could make these networks implementable in experimen-
tal systems.
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Appendix A: Constructing perfect transport
unitaries

Here we show how the conditions specified in Eq. (10)
could be used to construct perfect transport propagators.
Our motivation for this is to demonstrate that the con-
ditions of Eq. (10) are very weak, in the sense that is
possible to construct an infinite classes of unitaries that
support Z1 → ZN transport.

Consider the matrix forms of P̂GZ1ZN
and P̂ G̃Z1ZN

in the

two-dimensional {1, N} subspace of G and G̃:

G∼
{
{11, Z1ZN}, {Z1, ZN}, {X1, Y1ZN}, {Y1, X1ZN}

}

G̃∼
{
{X1XN , Y1YN}, {X1YN , Y1XN}, {XN , Z1YN},

{YN , Z1XN}
}

(A1)

where the ∼ refers to the restriction in the {1, N} sub-
space. Then, for this order of basis, the matrix forms are
block diagonal

P̂GZ1ZN
= diag([X,X,−Y, Y ])

P̂ G̃Z1ZN
= diag([−X,X,−Y, Y ]) (A2)

where X and Y are the standard Pauli matrices, whose
eigenvectors with eigenvalues ±1 are respectively [1,±1]T

and [1,±i]T ; this imposes a restriction on U . If

Bbulk, B
′

bulk ∈ span{Bbulk}, one can explicitly list from
Eq. (10) possible forms of U for perfect transport,

U1 = Bbulk(11± Z1ZN ) +B
′

bulk(X1XN ± Y1YN ),

U2 = Bbulk(11± Z1ZN ) +B
′

bulk(X1YN ∓ Y1XN ),

U3 = Bbulk(Z1 ± 11ZN ) +B
′

bulk(X1XN ± Y1YN ),

U4 = Bbulk(Z1 ± ZN ) +B
′

bulk(X1YN ∓ Y1XN ),

U5 = Bbulk(X1 ± iY1ZN ) +B
′

bulk(XN ∓ iZ1YN ),

U6 = Bbulk(X1 ± iY1ZN ) +B
′

bulk(YN ± iZ1XN ),

U7 = Bbulk(Y1 ± iX1ZN ) +B
′

bulk(XN ± iZ1YN ),

U8 = Bbulk(Y1 ± iX1ZN ) +B
′

bulk(YN ∓ iZ1XN ),

(A3)
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Note that the bulk of the network specified by Bbulk and
B
′

bulk can be in any arbitrary state. In fact, the invari-
ance described in Sec. III B could be used to show that
the eight forms of U in Eq. (A3) are equivalent to U1 or
U2.

Of course, one can combine the forms in Eq. (A3)
to form larger propagators that continue to support
perfect transport. Consider for example a propaga-
tor constructed out of U1 and U2 in Eq. (A3), with

Bbulk, B
′

bulk = 11

U = λ1(1±Z1ZN )+λ2(X1XN±Y1YN )+λ3(X1YN∓Y1XN )

where λj are coefficients to be determined. Then, from
Eq. (4) we have

〈U |U〉 = 1⇒ |λ1|2 + |λ2|2 + |λ3|2 = 1

〈U | P̂Z1ZN
|U〉 = 0⇒ |λ1|2 = |λ2|2 + |λ3|2

〈U | P̂ZN
|U〉 = 0⇒ Im(λ∗2λ3) = 0 (A4)

Other conditions in Eq. (4) are satisifed trivially.
Eq. (A4) can be solved exactly; for example λj =

{1/
√

2, 1/2, 1/2} is a solution. Importantly however, if

Bbulk and B
′

bulk were different from each other, the set
of equations Eq. (A4) becomes far simpler.

In summary, achieving Z1 → ZN transport requires
weak conditions on the propagator driving the transport.
This is as opposed to perfect pure state transport, that
requires the propagators to be isomorphic to permutation
operators [31] that are mirror symmetric [45] about the
end spins of the network.

Appendix B: Properties of flip-flop and
double-quantum Hamiltonians

In this appendix, we present simple relations satisfied
by the flip-flop (XY) operators that will be used in the
main paper. Note that the double-quantum (DQ) oper-
ators in Eq. (14) follow analogous equations. In what
follows, distinct indices label distinct positions on the
spin network unless otherwise specified. We start with
the definition of the operators S and E:

E±j =
1

2
(11± Zj) , S±j =

1

2
(Xj ± iYj). (B1)

These operators satisfy the following product rules:

ZjS
±
j =±S±j , (S±j )2 =E±j E

∓
j = 0,

S±j S
∓
j =(E±j )2 = E±j .

(B2)

We define the flip-flop operators T±ij and L±ij :

T±ij = (S+
i S
−
j ±S−i S+

j ); L±ij = (E+
i E
−
j ±E−i E+

j ) (B3)

From the definition in Eq. (B3) it follows that

T±ij = ±T±ji ; ZjT
+
ij = T−ij .

We have then the following product relations:

(
T±ij
)2

= ±L+
ij , T±ijL

+
ij = L±ijT

+
ij = T±ij ,(

L±ij
)2

= L+
ij , T±ij T

+
jk = 1

2

(
T±ik − ZjT

∓
ik

) (B4)

and the commutation relations:
[
T+
ij , T

+
jk

]
= −ZjT

−
ik ,

[
T+
ij , ZjT

+
ik

]
= T−kj ,[

T+
ij , Zi

]
= −2T−ij ,

[
T−ij , Zi

]
= −2T+

ij .
(B5)

We define the modified flip-flop operators T̃±ij ,

T̃±ij = T±ij
∏

i<u<j

Zu, (B6)

obtained by multiplying the flip-flop operator in Eq. (B3)
by a factor of Zu for all nodes between i and j. The
modified flip-flop operators follow especially simple com-
mutation rules

[
T̃+
ij , T̃

±
jk

]
= −T̃∓ik ;

[
T̃+
ij , T̃

±
k`

]
= 0 (B7)

Note that crucially, these commutators only depend on
the initial and final nodes (i and k), and are indepen-
dent of intermediate nodes. In a physical analogy, the

modified operators T̃+
ij behave as if they were path inde-

pendent. Thus, when considering two (or more) paths,
we could omit any intermediate node, since it would
not enter in the ensuing commutators. We then denote
equivalent nodes in parenthesis –for example, (j, k) means
nodes j and k are equivalent– and define the collapsed
operators:

T̃±i(j,k) =
1√

γ2
ij + γ2

ik

(
γij T̃

±
ij + γikT̃

±
ik

)
, (B8)

where γij , γik are arbitrary parameters, 0<γij ,γik< 1.
The collapsed operators satisfy commutation relations
similar to Eq. (B7):

[
T̃+
i(j,k), T̃

±
(j,k)`

]
=−T̃∓i` ,

[
T̃+

(j,k)i, T̃
±
i`

]
=−T̃∓(j,k)`,[

T̃+
(j,k)i, T̃

±
i(m,n)

]
= −T̃∓(j,k)(m,n)

(B9)

The collapsed operators in Eq. (B8) can be generalized. If
I = (a1, a2, · · · , am) and J = (b1, b2, · · · , bn) denote two
sets of equivalent nodes, we have the collapsed operator

T̃±IJ =
1√∑m

i=1

∑n
j=1 γ

2
aibj

m∑

i=1

n∑

j=1

γaibj T̃
±
aibj

, (B10)

which satisfies the commutation relationships:

[
T̃+
IJ, T̃

±
JK

]
= −T̃∓IK ;

[
T̃+
IJ, T̃

±
KL

]
= 0. (B11)
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