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We calculate experimentally relevant properties of trapped fermionic alkaline earth atoms in an
optical lattice, modeled by the SU(N) Hubbard model. We employ a high-temperature expansion
that is accurate when the temperature is larger than the tunneling rate, similar to current regimes
in ultracold atom experiments. In addition to exploring the Mott insulator-metal crossover, we cal-
culate final temperatures achieved by the standard experimental protocol of adiabatically ramping
from a non-interacting gas, as a function of initial gas temperature. Of particular experimental
interest, we find that increasing N for fixed particle numbers and initial temperatures gives sub-
stantially colder Mott insulators after the adiabatic ramping, up to more than a factor of five for
relevant parameters. This cooling happens for all N , fixing the initial entropy, or for all N

∼
< 20

(the exact value depends on dimensionality), at fixed, experimentally relevant initial temperatures.

PACS numbers: 67.85.-d,37.10.Jk,75.10.Jm,03.75.Ss

Introduction.—The recent achievement of Fermi de-
generacy and Bose-Einstein condensation in ultracold al-
kaline earth atoms [1] opens great opportunities in quan-
tum information processing [2], quantum simulations [3],
atomic clocks experiments [4] and other precision mea-
surements [5]. One fundamental property of fermionic
alkaline earth atoms is their intrinsic SU(N = 2I + 1)
symmetry in the nuclear spin (I) degrees of freedom
(bosonic alkaline earth isotopes in contrast have even-
even nuclei and necessarily I = 0 [6]). Fermionic alka-
line earth atoms loaded in an optical lattice, as recently
realized in Ref. [7], are described by the SU(N) Hub-
bard model where N can be varied for a single isotope
from 2 to 2I+1 ≤ 10 by selectively populating hyperfine
levels. Cold atoms realizations of this model open up
a range of exciting and exotic physics relevant to con-
densed matter: it is a simple limit of multiorbital models
describing transition metal oxides, is important in theo-
retical generalizations of the Fermi-Hubbard model, and
displays phenomena such as possible antiferromagnetism,
superconductivity, nematic order, valence bond, and spin
liquid phases [3, 8, 9]. As a first step towards reaching
the low temperatures necessary to observe these states,
here we study the SU(N) Hubbard model’s finite tem-
perature Mott-metal crossover. One particularly inter-
esting finding is that increasing N while fixing the initial
temperature can lead to more than a five-fold decrease,
compared to N = 2, in final temperature, relative to the
temperature scales of interesting physics.

We calculate density and entropy profiles of lattice al-
kaline earth atoms to second order in t/T , the tunneling
rate over the temperature (see Eq. (1)). This calculation
is accurate for T ≫ t, regardless of the on-site interaction
U . This includes the “unquenched Mott insulator (MI)”
regime t ≪ T ≪ U that has been realized in SU(2)
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alkali gases [10]. For the SU(2) spin-1/2 case, sophisti-
cated, numerically intensive algorithms have yielded se-
ries to tenth order [11]. For properties in the experi-
mental regime, T ∼> t in three dimensions, the second
order expansion agrees quantitatively (∼< 1% error) with
longer series and dynamical mean field theory [12]. We
also calculate final temperatures achieved by standard
experimental adiabatic ramping protocols. Excitingly,
our calculations show that applying the same protocols
as in SU(2) experiments will generate colder, less com-
pressible MI states as N increases, up to N ∼ 20. An
entropic argument supplementing the high temperature
expansion supports that this effect persists down to tem-
peratures on the order of the superexchange energy where
interesting magnetic physics appears.
Alkaline earth atoms in deep optical lattices are well-

described by the SU(N) Fermi-Hubbard model [3]

H = −t
∑

〈ij〉,α

f †
α,ifα,j +

U

2

∑

i

n̂i(n̂i − 1) +
∑

i

Vini(1)

where fα,j is a fermionic annihilation operator destroying
a particle of flavor α at site j, satisfying anticommutation

relations {fα,i, f
†
α′,j} = δα,α′δi,j ,

∑

〈ij〉 indicates a sum

over nearest neighbors, Vi is the trapping potential at
site i, α and α′ are flavor indices that run from 1 to N ,

and the total on-site density is n̂i ≡
∑

α f †
α,ifα,i.

Atomic limit: experimental observables and T/U ≪ 1
and T/U ≫ 1 limits.—First we give results in the atomic
limit (t = 0), the zero’th order term in the high temper-
ature series expansion in t/T . Throughout, we present
analytic results for the free energy density F , from which
the other observables considered can be obtained by dif-
ferentiating: the average filling and entropy per site are
〈n〉 = −∂F/∂µ and s = −∂F/∂T .
For the homogeneous system, the grand canonical free

energy per site for t = 0 is [8] F0 = −T log z0 with the

on-site partition function z0 =
∑N

n=0 C
N
n e−βǫ0(n), where

ǫ0(n) ≡ (U/2)n(n − 1) − µn, β ≡ 1/T , kB = ~ = 1



2

throughout, and CN
n is the binomial coefficient. The av-

erage filling is n0 = 〈n〉0 where 〈O〉0 of a one-site opera-

tor O is defined as 〈O〉0 ≡ 1
z0

∑

n O(n)CN
n e−βǫ0(n). The

entropy is s0 = log z0 + (1/T ) 〈ǫ0(n)〉0.
It is illuminating to consider the observables in the

T ≪ U and T ≫ U limits. In the T ≫ {U, µ} limit the

on-site partition function is z0(T ≫ U) ≈
∑N

n=0 C
N
n =

2N , the density is n0(T ≫ U) ≈ N/2, and the entropy
density is s0(T ≫ U) ≈ N log 2. In contrast, in the MI
limit defined by t ≪ T ≪ U and µ 6= Un for all n,
one term dominates z0 so that z0 ≈ CN

n0
e−βǫ0(n0), with

n0 chosen to minimize ǫ0(n0), and s0 ≈ log(CN
n0
). The

metal boundary separating the n′ and n′ + 1 MI’s has
similarly simple expressions.
Cold atomic systems are confined in trapping poten-

tials, which we treat with a Thomas-Fermi or local den-
sity approximation (LDA) [13]. We take the trapped sys-
tem’s properties at a point in space r to be those of the
homogenous system at a chemical potential µ(r) = µ0 −
V (r). This is accurate when V varies slowly compared to
the state’s characteristic lengths, which is frequently well
satisfied. For simplicity, and as an accurate description
of most traps, we approximate V (r) = mω2r2/2 where
m is the particle mass and ω is the trap frequency.
Figure 1 shows the density n and entropy s profiles,

illustrating the Mott plateaux at low temperatures. It
also shows the effects of tunneling calculated later. At
temperatures T/U ∼> 0.2 all curves are smooth and lack
visible Mott plateaux (not shown). Fig. 1’s insets show
the N -dependence near n = 1 and n = N/2. Although
the density profiles shown are at temperatures below the
regime of validity t/T ∼> 1, one finds that the theory is
inaccurate only near the metal between Mott shells [12].
Working deeper in the approximation’s regime of validity
would lead to a smaller effect, invisible to the eye. How-
ever, the qualitative effects are the same, only smaller.
Adiabatic loading.—We theoretically study the proto-

col used to realize bosonic [14] and fermionic [10, 15]
MI’s, essential to understanding and optimizing the pro-
cess. Remarkably, we find that for the relevant N , the
final T substantially decreases with increasing N .
The procedure used to create MI’s is to first create a

degenerate, weakly interacting gas without a lattice. A
lattice is then ramped up to its final value. Ideally, the
ramp is sufficiently slow to be adiabatic. The adiabatic
limit is approached in recent boson experiments [14, 16],
and with (presumably much) less than ∼ 50% entropy
increases in SU(2) Fermi experiments [10, 15]. The limits
of adiabaticity are beyond the scope of our present work.
In the adiabatic limit entropy is conserved, and given

the initial state’s particle number N and entropy Si one
can determine the final temperature by matching particle
number and entropy to the initial state. Si is controlled
and measured through the temperature. Thus, we must
first determine Si from the initial temperature Ti.
For any initial state sufficiently cold to reach a MI, the

initial gas will be deeply degenerate, Ti ≪ µ. For large
N , the harmonic trap can be treated as having a continu-
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FIG. 1: Observables as a function of distance to trap center
r for N = 4 at T/U = 1/15, µ/U = 3.0, and in three dimen-
sions. Top: density (solid: atomic limit; dashed: t/U = 0.04).
Although the value of the t/T is not deep in the regime where
the high temperature expansion is valid, such a large value
was chosen so the effects would be visible in the density pro-
file. Insets: density versus µ for N = 2, 5, and 10, showing
N and n-dependence. Left inset: zoom around n = 1 shell.
Right inset: zoom around n = 1, 3, 5 for N = 2, 5, 10 with
density and µ shifted by ns = 0, 2, 4 and µs = 0, 2, 4 so that
the Mott shells nearly overlap on the plot. Bottom: entropy
(solid: atomic limit; dashed: t/U = 0.016; thin horizontal:
T ≪ U deep Mott and deep metal limits discussed in text).

ous density of states ν(ǫ) = (ǫ/ω)d−1/(ω(d−1)!)Θ(ǫ) with
Θ(ǫ) the Heaviside step function. Using this, the total
particle number and entropy of a d-dimensional trapped

system are N = N
d!

(

µ
ω

)d
and Si = Ti

ω
Nπ2

3(d−1)!

(

µ
ω

)d−1

to lowest order in Ti/µ. (To the same accuracy, the
Fermi temperature is TF = µ.) At fixed N , these imply
Si ∝ N1/3. This will be crucial, and the Supplemental
Information derives and explains it.

Figure 2 shows our adiabatic loading results for a three
dimensional system. Although specific values depend
on microscopic parameters such as the scattering length
as, lattice spacing a, and trap length ℓ, our qualita-
tive findings are independent of these. We determine
the Hubbard parameters using the standard deep lattice
results [18] for experimental parameters consistent with
Ref. [17].

Figure 2 shows the final temperature after adiabatic
loading on a logarithmic scale as a function of Ti for N =
2, 4, 6, using experimentally relevant parameters at fixed
final lattice depth. Fig. 2 (inset) illustrates the effect of
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cooling on density profiles obtained by increasing N . For
reference, the coldest alkaline earth gases in the weakly
interacting regime (initial state) have roughly Ti/µ =
0.14 for 173Yb (N = 6) and Ti/µ = 0.26 [17] for 87Sr
(N = 10) [1]. Also, we have found that for deep lattices,
the final rescaled temperature T/U as a function of Ti/ω
is nearly independent of lattice depth V0, except for an
overall scale factor.

One of our most remarkable findings is the final tem-
perature’s N -dependence: increasing N produces colder
MI’s when initial parameters are fixed in an experimen-
tally realistic way. In particular, this holds for fixed Ti,
as occurs when the initial gas is sympathetically cooled
by another species — an even more favorable situation is
considered below. A corollary follows since SU(N) gases
can be produced with Ti’s comparable to current alkali
SU(2) lattice experiments: MI’s with T ∼ t ≪ U or even
lower are well within reach for SU(N) systems.

Our findings are a direct consequence of the rapidly in-
creasing t ≪ T ≪ U MI entropy. Considering the n = 1
state for simplicity, its entropy grows as Sf ∝ logN ,
since each of the N flavors is equally likely to occupy
a site (the reduced Pauli blocking plays no role in the
atomic limit). For the relevant range of N , N ∼< 20,
this logarithm grows faster than the initial state entropy,
Si ∝ N1/3, given previously. Increasing N , the MI’s
entropy increased more than does Si, and therefore the
resulting MI is colder as one increases N , as observed
in Figs. 2. In the t ≪ T ≪ U limit of the atomic limit
theory for central unit occupation and negligible multiple
occupancy, in addition to the LDA approximation used
perviously, the calculation yields a simple expression for
Tf : Tf = aN2/3(Ti/ω)− b logN . This demonstrates the
decreasing temperature Tf with increasing N for small
Ti/ω. The details and values of a and b are discussed
in the Supplementary Information. The situation is even
more favorable if one lets n scale with N : one finds that
the MI entropy is proportional to N and thus the final
states get colder with increasing N for all N . A simi-
lar argument explains the reversal of this effect at high
temperatures (see Supplementary information).

While we observe this dramatic cooling when fixing Ti,
the actual situation may be even more favorable. Other
cooling procedures may fix Si, or equivalently Ti/µ, in-
dependent of N . An alternative way to think about this
is to realize that the thermodynamic limit is taken fixing
ω(N/N)1/d. Thermodynamic functions are functions of
this quantity, and thus Si is a function of T/[ω(N/N)1/d],
so that, fixing Si leads to Ti ∝ 1/N1/d, which decreases
with increasing N . Thus, the final temperature decreases
even faster than in the fixed Ti case. Since we know how
Ti scales with N at fixed Si, Fig. 2 allows one to read off
the final temperatures. For fixed Si the MI will get colder
with increasing N for all N , even for n = 1. Evaporative
cooling is a candidate to fix Si, with an added benefit that
Pauli blocking becomes less important as N increases so
that Si ∝ Ti/µ may actually decrease.

Returning to the adequacy of our description of the

experimental loading process, there are two main issues:
non-adiabaticity and external confinement changes due
to the lattice laser. Although non-adiabatic effects are
difficult to calculate, if one assumes the entropy increases
by a factor of F during the lattice ramp, it is simple to
read off the final temperature from Fig. 2: a factor of F
increase in entropy is equivalent to a factor of F increase
in Ti, since Si ∝ Ti. We have treated the effects of exter-
nal confinement changes (not presented) and find that,
as expected from our qualitative arguments, this affects
the reduction in temperature obtained from increasing N
by amounts on the order of a few percent.
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FIG. 2: Adiabatic loading: final temperature T/U on a log
scale as a function of initial temperature Ti/ω for N = 2, 4, 6
(top to bottom at low temperatures) at lattice depth V0 =
18ER, in three dimensions for t/U = 0 (solid) and t/U = 0.07
(dashed) calculated with the second order high tempera-
ture series. Parameters are fixed to experimental values for
173Yb[17]: we find U/ω = 50, a/ℓ = 0.4, and N = 5×104 par-
ticles using standard optical lattice results for U [18]. The ex-
perimental initial gas temperature is Ti/ω = 5.2 (Ti/µ = 0.14
for N = 6). Parameters are roughly the same for other al-
kaline earth atom experiments. Inset: Density profiles after
adiabatic loading for Ti/ω = 7.3 (Ti/µ = 0.14, 0.17, and 0.20
for N = 2, 4, 6, respectively).

Non-zero tunneling.—To incorporate tunneling, we
perform a second order expansion in t/T , equivalent to
a finite temperature t/U expansion. Analogous results
were recently applied to SU(2) experiments [12], where
they are quantitatively accurate (∼< 1% error) when T ∼> t
for the metallic region (e.g. n ∼ 1.3) and for much lower
T elsewhere (e.g., n ∼ 0, 1, and 2) [19, 20]. Present
experiments are in this regime, although SU(2) experi-
ments have begun to reach T ∼< t. Longer series main-
tain agreement for T ∼> t, but, being divergent, series of
all lengths give unphysical results for T ∼< t. Neverthe-
less, they may be useful to understand low temperature
physics by analyzing their analytic structure [11].

We find the free energy density to O[(t/T )2] is F =



4

F0 − Tz
(

t
U

)2
〈n〉r

[

1−
〈nl〉

r

N〈n〉
r

]

where we define

{

〈n〉r
〈nl〉r

}

=
1

z20

[

1

2

(

U

T

)2
∑

n

(

CN
n

)2
{

n
n2

}

e−2βǫ0(n)

+

N
∑

l=0

N
∑

l=0,
l 6=n

{

n
nl

}

gnl

]

, (2)

with gnl ≡ CN
n CN

l

[

e−βU(n−l+1)+βU(n−l+1)−1

(n−l+1)2eβ(ǫ0(n)+ǫ0(l))

]

. We note

the second-order corrections can capture some nearest-
neighbor spin-spin correlations, in contrast to the atomic
limit.
Figure 1 shows tunneling’s consequences. In the den-

sity profiles, we see that it reduces the MI’s size, as
expected. In the entropy profiles, tunneling slightly in-
creases the MI entropy while significantly decreasing the
metal entropy: in the MI, tunneling reduces the excita-
tion gap, increasing the entropy, while in the metal, the
increasing bandwidth lowers the low energy density of
states, decreasing the entropy. We also observe (Fig. 1
insets) that although the magnitude of the tunneling cor-
rections depends only weakly on n, the N -dependence de-
pends more strongly on n. For n = 1, there is noticeable
N -dependence of the tunneling corrections, while there
is little for n = N/2.
We finally have considered the effect of tunneling on

the adiabatic loading, and find that it increases the fi-
nal temperature. This may be understood from Fig. 1:
tunneling reduces the total entropy as a consequence of
a small increase in MI entropy and a relatively larger de-
crease in metal entropy. The effects are small when t/T
is small, as seen in Fig. 2. We note that the corrections to
LDA, important mainly in the initial weakly interacting
gas, are on the order of a few percent. Therefore, these
give a small correction to the cooling, comparable to the
tunneling corrections for a V0 = 10ER lattice.
Magnetic physics near the superexchange tempera-

ture.—The high temperature expansion results presented
above give a fairly comprehensive picture for tempera-
tures T ∼> t, an interesting and, for the near future, the
most experimentally relevant regime. However, a long
term experimental goal is to reach interesting, possibly

exotic, low-temperature magnetic phases. These occur
at a much lower temperature scale T ∼< J ∼ t2/U .

To study these lower temperatures, we use arguments
distinct from the high-temperature expansion. We note
that the SU(N) Heisenberg model associated with the
density n MI for t ≪ U has, at high temperatures,
s = logCN

n . Any entropy below this results from su-
perexchange. Hence, the entropy at which superexchange
begins to play a role is the same as the entropy in the
T ≪ U regime found in the zero’th order high tempera-
ture expansion. Based on this simple argument we expect
that the decrease of final temperatures with increasing N
after lattice loading applies down to the scale where su-
perexchange first becomes relevant. Consequently, the Ti

required to reach temperatures where magnetic physics
becomes relevant is roughly expected to increase with N .

Conclusions and discussion.—We studied the metal-
Mott insulator crossover using a high-temperature series
expansion technique, up to second order in t/T . We cal-
culated the density and entropy in the atomic limit and
quantified how tunneling reduces the size of the Mott
insulating region, its flavor number (N) and filling (n)
dependence, and how it increases the Mott entropy while
decreasing the metal entropy.

Additionally, we studied the standard experimental
protocol used to realize Mott insulators and showed that
the final temperatures significantly decrease with increas-
ing N . We present arguments suggesting this persists
down to temperatures where superexchange and inter-
esting magnetic physics manifests.

Three body losses might limit the observability of the
shell structure with n > 2. Nevertheless, based on
Ref. [23]’s theory we find, at least for 87Sr, that even
fillings n ∼< 5 may live sufficiently long to explore their
many-body physics.
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