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We consider a medium composed of three-level (cascade scheme) atoms prepared with coherence between
the upper and the ground state (Yoked superfluorescence system). We obtain analytical solution for seed pulses
propagation which are resonant with the upper and lower transitions for arbitrary level populations and pulse
shapes. We find that if the initial coherence is large enough and intermediate level is populated the system can
have gain without population inversion. Coherence can alsoyield gain suppression in the inverted medium. We
obtain conditions for the gain in terms of level populationsand coherence.

PACS numbers:

I. INTRODUCTION

Superradiance (speed up of spontaneous emission) of atomicensembles is a collective phenomenon which still offers inter-
esting directions of exploration [1]. It was first predictedby Dicke in 1954 [2]. Later on it was observed by Feld and co-workers
in HF gas [3] who also gave a theoretical explanation of how aninitially inverted two-level system evolves into a superradiant
state [4, 5]. Influence of virtual transitions on collectiveemission and non-local (retardation) effects are among intriguing sub-
jects of current theoretical [6–10] and experimental [11] investigation. Cooperative effects of spontaneous emission can be used
for optical quantum-state storage, quantum cryptography [12] and quantum information [13].

Superfluorescence is another collective process in which the superradiant state is developed in a system of initially uncorrelated
excited atoms [14]. This process starts with normal spontaneous emission but later develops correlations between the atoms [15].
In the past half century, both types of phenomena, superradiance and superfluorescence, were extensively studied theoretically
and experimentally.

Presence of quantum coherence yields interesting effects.In particular, it can lead to superfluorescence without inversion [16–
20]. In such systems coherence created by a driving field on one transition influences superfluorescence on another transition.
Quantum coherence can also yield lasing without inversion [21–23] which has been extensively studied during the last two
decades [24–27].

Yoked superfluorescence [28] is another example of manifestation of quantum coherence. It occurs in a three-level cascade
system initially prepared with coherence between the upperand the ground states. Such coherence can be produced by a
laser pump pulse propagating through the medium (the direction along the pump we call “forward”, and against the pump
“backward”). The laser pulse can excite the upper level fromthe ground state, e.g., by a two-photon process which creates some
initial population in the upper level. Since the intermediate level is initially empty there is population inversion between the
upper and the intermediate levels which triggers superfluorescence in this transition. Both experimental and theoretical studies
show suppression of the gain in the forward direction [29–31] at early times, when there is no population in the intermediate
level, i.e. there is population inversion between the upper two levels but no population inversion between the lower two. As soon
as the intermediate level becomes populated it decays into the ground state emitting photons mainly in the forward direction [28,
32, 33].

Recently, the generation of backward lasing in air has been demonstrated in the Princeton experiment [34]. In this experiment,
the oxygen molecule O2 is dissociated into two atoms by a strong226 nm picosecond laser pulse focused into1 cm long segment.
The pulse also excites the oxygen atom from the ground 2p3P state to the upper 3p3P state by two-photon absorption which
prepares1 cm long gain medium. The backward845 nm lasing action was observed between the upper state and theintermediate
3s3S state. Subsequently a Texas A&M experiment showed that when a strong nanosecond (instead of picosecond) laser pulse
is used emission becomes spiky which can be due to effects of coherence [35]. In the Texas A&M experiment the pulse duration
(∼ 10 ns) is much longer than the characteristic superfluorescence time scale for the upper transition (∼ 100 ps) and, thus, the
intermediate 3s3S level is being populated.

Having in mind the air laser experiment, we here consider a medium composed of three-level atoms (cascade scheme) which
is prepared with arbitrary uniform population distribution. There is also initial coherence between the upper and the ground state
levels which is assumed to be generated by a strong multi-photon resonant driving field propagating in the positive (forward)
z−direction. Such generated coherence contains the phase factorseikz , wherek = ω/c andω is the transition frequency. We are
interested in propagation of weak seed pulses through the system in forward and backward directions. The pulses have carrier
frequency which corresponds to the energy of the upper and lower transitions. We treat the problem semiclassically and use the
Maxwell-Bloch equations. In the linear approximation we obtain exact analytical solution for the evolution of an arbitrary initial
pulse propagating through the medium. The seed pulse (vacuum fluctuations) undergoes grows or decay depending on the level
populations and initial coherence.
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We show that for an inverted medium the presence of initial coherence can result in forward gain suppression. This resultis
known in the literature [29–31]. In addition, we find that coherence can yield gain in the forward direction even if there is no
population inversion on both transitions. We obtain conditions for the gain in a general form in terms of level populations and
coherences.

II. EVOLUTION OF WEAK PULSES IN YOKED SUPERFLUORESCENCE SCH EME

Here we consider a medium composed of three-level atoms. Each atom is described by a cascade scheme shown in Fig.
1. The system is uniformly excited by a pump pulse multi-photon resonant with thea ↔ c forbidden transition propagating
along thez−axis (forward direction). This process generates coherenceρac between the upper and ground states, thus, there is
correlation between atoms. Population can decay through the allowed transitionsa → b andb → c. We study how weak seed
pulsesΩab andΩbc, having carrier frequency corresponding to thea ↔ b andb ↔ c transitions, propagate through the medium.
In our analytical calculations we assume that during the seed pulse propagation the level populationsρaa, ρbb andρcc, as well as
coherenceρac, remain constant. However initial seed pulse shapesΩab(0, z) andΩbc(0, z) are arbitrary.

ab 

bc 

ab!

bc!

a

b

c

pump

pump

FIG. 1: (Color online) Cascade scheme of atomic energy levels.

We treat the problem semiclassically in the framework of theMaxwell-Bloch equations assuming that electric field and atomic
density matrix depend only on coordinatez and timet. Equations of motion for the atomic density matrix read

ρ̇ab(t, z) = −Γabρab(t, z)− iΩab(t, z)nab − iΩ∗

bc(t, z)ρac, (1)

ρ̇bc(t, z) = −Γbcρbc(t, z)− iΩbc(t, z)nbc + iΩ∗

ab(t, z)ρac, (2)

wherenab = ρaa − ρbb, nbc = ρbb − ρcc andρac are constants,Γij = Γ + γij/2, Γ is the dephasing rate due to collisional
broadening andγij is the spontaneous decay rate of the corresponding transition. In a more realistic system there is also
Doppler broadening and dephasing due to time of atom fly across the active medium. However, in experiments the atomic
density is usually greater than1014 cm−3 and, thus, superradiant time scale is shorter than10 ps. Hence, line broadening due to
superradiant emission is much larger than Doppler broadening (∼ 1010s−1) and dephasing rate due to time of fly (∼ 108s−1).

Propagation equations for the electric field are

∂Ωab(t, z)

∂z
+

1

c

∂Ωab(t, z)

∂t
= iηabρab(t, z), (3)

∂Ωbc(t, z)

∂z
+

1

c

∂Ωbc(t, z)

∂t
= iηbcρbc(t, z), (4)

whereΩij is the Rabi frequency corresponding to the electric field envelope,ηij = 3Nλ2
ijγij/8π is the atom-field interaction

constant,N is the atomic density andλij is the transition wavelength. Eqs. (1) and (2) are written for the fieldsΩab andΩbc

propagating in the forward direction. For the backward propagating fields there is noρac term in Eqs. (1) and (2) because in this
case the phases ofρab andρbc can not match the phase of the coherenceρac. Indeed, for the backward propagation,ρab andρbc
have the same phases as the backward fieldsΩab andΩbc, that isikabz andikbcz. However, the phase of the initial coherence
ρac is produced by the forward pump field and has the value−i(kab + kbc)z. Therefore, for backward direction, the last term in
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Eq. (1) has the phase−i(kab + kbc)z − ikbcz, which differs from the phase ofρab by −2i(kab + kbc)z. The phase difference
leads to a fast oscillating term as a function ofz. In the rotating wave approximation such terms have to be omitted. As a result,
solution for the backward propagation can be obtained from the forward one by takingρac = 0.

We solve Eqs. (1)-(4) with the initial conditionρab(0, z) = ρbc(0, z) = 0 and initial pulse shapesΩab(0, z) andΩbc(0, z).
Eq. (1) gives

ρab(t, z) = −inab

∫ t

0

Ωab(t
′, z)e−Γab(t−t′)dt′ − iρac

∫ t

0

Ω∗

bc(t
′, z)e−Γab(t−t′)dt′. (5)

Then using Eq. (3) we obtain

∂Ωab(t, z)

∂z
+

1

c

∂Ωab(t, z)

∂t
= ηabnab

∫ t

0

Ωab(t
′, z)e−Γab(t−t′)dt′ + ηabρac

∫ t

0

Ω∗

bc(t
′, z)e−Γab(t−t′)dt′. (6)

Introducing the Laplace transform in time

Ω̂(s, z) = L{Ω(t, z)} =

∫

∞

0

e−stΩ(t, z)dt (7)

yields

∂Ω̂ab(s, z)

∂z
+

s

c
Ω̂ab(s, z)−

1

c
Ωab(0, z) = ηabnab

Ω̂ab(s, z)

s+ Γab
+ ηabρac

Ω̂∗

bc(s, z)

s+ Γab
. (8)

Similarly forΩbc we obtain the equation

∂Ω̂∗

bc(s, z)

∂z
+

s

c
Ω̂∗

bc(s, z)−
1

c
Ω∗

bc(0, z) = ηbcnbc
Ω̂∗

bc(s, z)

s+ Γbc
− ηbcρ

∗

ac

Ω̂ab(s, z)

s+ Γbc
. (9)

Solution of Eqs. (8) and (9) can be rewritten as

Ω̂ab(s, z) =
1

c

∫ z

−∞

dz′
F (z′)

λ1 − λ2

[

eλ1(z−z′) − eλ2(z−z′)
]

, (10)

where the source function is

F (z) =
ηabρac
s+ Γab

Ω∗

bc(0, z) +

(

s

c
− ηbcnbc

s+ Γbc

)

Ωab(0, z) +
∂Ωab(0, z)

∂z
(11)

and the constantsλ1,2 are

λ1,2 =
1

2





(

−2s

c
+

ηabnab

s+ Γab
+

ηbcnbc

s+ Γbc

)

±

√

(

ηabnab

s+ Γab
− ηbcnbc

s+ Γbc

)2

− 4
ηabρac
s+ Γab

ηbcρ∗ac
s+ Γbc



 . (12)

In the limit that collisional dephasingΓ is much larger than the spontaneous decay ratesγij we haveΓab ≈ Γbc ≈ Γ and
constantsλ1,2 reduce to

λ1,2 = −s

c
− ξ1,2

s+ Γ
, (13)

where

ξ1,2 = −1

2
[ηabnab + ηbcnbc ± ζ] , (14)

ζ =

√

(ηabnab − ηbcnbc)
2 − 4ηabηbc |ρac|2. (15)

In this limit the inverse Laplace transform of Eq. (10) yields the following final answer for pulse evolution in the forward
direction

Ωab(t, z) = Ωab(0, z − ct) +

∫ z

z−ct

dz′Ωab(0, z
′)e−

Γ

c (z
′+ct−z)
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×
{

ξ1 + ηbcnbc

ζ

√

ξ1(z − z′)/c

z′ + ct− z
J1

[

2

√

ξ1
c
(z − z′) (z′ + ct− z)

]

− ξ2 + ηbcnbc

ζ

√

ξ2(z − z′)/c

z′ + ct− z
J1

[

2

√

ξ2
c
(z − z′) (z′ + ct− z)

]}

−
∫ z

z−ct

dz′
ηabρac

ζ
Ω∗

bc(0, z
′)e−

Γ

c (z
′+ct−z)

{

√

ξ1(z − z′)/c

z′ + ct− z
J1

[

2

√

ξ1
c
(z − z′) (z′ + ct− z)

]

−
√

ξ2(z − z′)/c

z′ + ct− z
J1

[

2

√

ξ2
c
(z − z′) (z′ + ct− z)

]}

, (16)

whereξ1,2 andζ are defined in Eqs. (14) and (15),J1(z) is the Bessel function. Similarly, the solution for the fieldΩbc reads

Ω∗

bc(t, z) = Ω∗

bc(0, z − ct) +

∫ z

z−ct

dz′Ω∗

bc(0, z
′)e−

Γ

c (z
′+ct−z)

×
{

ξ1 + ηabnab

ζ

√

ξ1(z − z′)/c

z′ + ct− z
J1

[

2

√

ξ1
c
(z − z′) (z′ + ct− z)

]

− ξ− + ηabnab

ζ

√

ξ2(z − z′)/c

z′ + ct− z
J1

[

2

√

ξ2
c
(z − z′) (z′ + ct− z)

]}

+

∫ z

z−ct

dz′
ηbcρ

∗

ac

ζ
Ωab(0, z

′)e−
Γ

c (z
′+ct−z)

{

√

ξ1(z − z′)/c

z′ + ct− z
J1

[

2

√

ξ1
c
(z − z′) (z′ + ct− z)

]

−
√

ξ2(z − z′)/c

z′ + ct− z
J1

[

2

√

ξ2
c
(z − z′) (z′ + ct− z)

]}

. (17)

To obtain the evolution of the backward pulse we putρac = 0 in the above equations and find

Ωab(t, z) = Ωab(0, z − ct)+

√

ηabnab

c

∫ z

z−ct

dz′Ωab(0, z
′)e−

Γ

c (z
′+ct−z)

√

z − z′

z′ + ct− z
I1

[

2

√

ηabnab

c

√

(z − z′) (z′ + ct− z)

]

, (18)

Ωbc(t, z) = Ωbc(0, z − ct)+

√

ηbcnbc

c

∫ z

z−ct

dz′Ωbc(0, z
′)e−

Γ

c (z
′+ct−z)

√

z − z′

z′ + ct− z
I1

[

2

√

ηbcnbc

c

√

(z − z′) (z′ + ct− z)

]

, (19)

whereI1(z) is the modified Bessel function.
Eqs. (16)-(19) give the exact analytical answer on how initial weak pulsesΩab(0, z) andΩbc(0, z) propagate through the

medium. As an illustration, we consider a simple example ofδ-function initial pulseΩab(0, z) = Ω
(0)
ab δ(z) and no initial pulse

at theb ↔ c transitionΩbc(0, z) = 0. Then Eqs. (16) and (17) yield for forward direction

Ωab(t, z) = Ω
(0)
ab δ(z − ct) + Ω

(0)
ab e

−Γ(t−z/c)

{

ξ1 + ηbcnbc

ζ

√

ξ1z/c

ct− z
J1

[

2

√

ξ1
c
z (ct− z)

]
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− ξ2 + ηbcnbc

ζ

√

ξ−z/c

ct− z
J1

[

2

√

ξ2
c
z (ct− z)

]}

θ(ct− z), (20)

Ω∗

bc(t, z) =
ηbcρ

∗

ac

ζ
Ω

(0)
ab e

−Γ(t−z/c)

×
{

√

ξ1z/c

ct− z
J1

[

2

√

ξ1
c
z (ct− z)

]

−
√

ξ2z/c

ct− z
J1

[

2

√

ξ2
c
z (ct− z)

]}

θ(ct− z). (21)

For the backward direction we obtain

Ωab(t, z) = Ω
(0)
ab δ(z − ct) +

√

ηabnab

c
Ω

(0)
ab e

−
Γ

c
(ct−z)

√

z

ct− z
I1

[

2

√

ηabnab

c

√

z (ct− z)

]

θ(ct− z), (22)

Ωbc(t, z) = 0. (23)

The first term in Eqs. (20) and (22) corresponds to the initialseed pulse propagating in free space. The other terms are coming
from the interaction between atoms and electric field.

III. FORWARD GAIN SUPPRESSION AND FORWARD GAIN WITHOUT POPU LATION INVERSION

We assume that atomic sample isL = 1 cm long, so it takes0.033 ns for the photon to travel through the system. Density of
atoms is large enough so that the coupling constants areη = ηab = ηbc = 1000 cm−1ns−1. We take the dephasing rateΓ = 1
ns−1. Pulse evolution is mainly governed by collective (superradiant) effects and occurs on a time scale much faster than the
dephasing time. Thus assumption about constantρac is valid.

In Fig. 2 we plot the output fieldsΩab(t, z) andΩbc(t, z) given by Eqs. (20)-(22) at the edge of the samplez = L as a function
of time. We assume the following population distributionρaa = 0.2, ρbb = 0.05, ρcc = 0.75 and coherenceρac =

√
0.15i.

Both forward and backward fields at thea → b transition are shown. Please note that in the plot we do not show theδ−function
term in Eqs. (20) and (22).
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Backward 2×

Forward Wbc

10-5 Wab 
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FIG. 2: (Color online) Output fields at the edge of the sample as a function of time given by Eqs. (20)-(22) with population distribution
ρaa = 0.2, ρbb = 0.05, ρcc = 0.75 and coherenceρac =

√
0.15i. Solid line shows output forward field at thea → b transition, dashed line

is the output backward field at thea → b transition divided by5× 10
4, while dash-dot line is the forward field at theb → c transition.

Emission in the backward direction grows exponentially with time as expected for the inverted medium (in the present example
there is population inversion between levelsa andb). According to Eq. (22) it follows asymptotic of the modifiedBessel function.
However, forward emission is affected by the coherenceρac. The presence of such coherence makes the forward field oscillate
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FIG. 3: (Color online) Output fields at the edge of the sample as a function of time given by Eqs. (20)-(22) with population distribution
ρaa = 0.1, ρbb = 0.3, ρcc = 0.6 and coherenceρac =

√
0.06i. Solid line shows output forward field at thea → b transition, dashed line is

the output backward field at thea → b transition multiplied by100, while dash-dot line is the forward field at theb → c transition.

and decay at large time. This behavior indicates a forward gain suppression which was previously reported in the literature
[28, 29]. The forward field on theb → c transition shows similar features. In the present example we do not include the
backward field on theb → c transition [36].

Next we take the population distributionρaa = 0.1, ρbb = 0.3, ρcc = 0.6 and coherenceρac =
√
0.06i. Now there is no

population inversion in both transitions. The output fieldsΩab(t, z) andΩbc(t, z) at the edge of the sample are shown in Fig. 3.
In the present example the backward field in thea → b transition decays because there is no population inversion. Namely, for
nab < 0 Eq. (22) yields

Ωab(t, z) = Ω
(0)
ab δ(z − ct)−

√

ηab|nab|
c

Ω
(0)
ab e

−
Γ

c
(ct−z)

√

z

ct− z
J1

[

2

√

ηab|nab|
c

√

z (ct− z)

]

θ(ct− z), (24)

that is pulse decays according to the asymptotic of the Bessel functionJ1. However, coherenceρac yields enhancement of both
forward fieldsΩab(t, z) andΩbc(t, z). Thus, there is forward gain without population inversion in our system.

SampleWab
+ (0,z) Wab

- (0,z)

0.0 0.5 1.0 1.5 2.0
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

z�L

ÈW
È�
G

FIG. 4: (Color online) Gaussian-shape initial seed pulses for the forward and backward fields used in numerical simulations

In addition to our analytical results we solve the full Maxwell-Bloch equations numerically including population dynamics
and pulse propagation both in forward and backward directions. In numerical simulations, instead of delta function, Gaussian-
shape pulses are used for the initial seed for forward and backward fields at thea → b transition (see Fig. 4). The FWHM of the
seed pulse is taken as∆z = 0.167L. The results of simulations are shown in Fig. 5. Numerical solution exhibits similar features
as the analytical result with delta function seed. When there is population inversion between levelsa and b, the numerical
simulations show the forward gain suppression in thea → b transition (see Fig. 5a), while with no population inversion there is
forward gain (see Fig. 5b).
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FIG. 5: (Color online) Output fields at the edge of the sample as a function of time obtained by numerical solution of the Maxwell-Bloch
equations with Gaussian seed pulses and initial conditionsρaa = 0.2, ρbb = 0.05, ρcc = 0.75, ρac =

√
0.15i (a) andρaa = 0.1, ρbb = 0.3,

ρcc = 0.6, ρac =
√
0.06i (b).

To show that lasing would also occur starting from atomic fluctuations we calculated numerically forward and backward
emission using quantum noise as a seed instead of sending seed pulses. We found that if there is gain in the medium then
simulations with the seed pulses and noise give very similarresults. Thus, our analysis based on the seed pulse propagation
adequately describes system’s evolution.

IV. CONDITIONS FOR GAIN IN FORWARD DIRECTION

Analytical results we obtained allow us to find condition forpositive gain in the forward direction. If we disregard dephasing
Γ the gain is positive ifζ in Eq. (15) is imaginary which yields condition

4ηabηbc |ρac|2 > (ηabnab − ηbcnbc)
2
. (25)

Also gain is positive ifξ1 or ξ2 have negative real part, that is

ηabnab + ηbcnbc +

√

(ηabnab − ηbcnbc)
2 − 4ηabηbc |ρac|2 > 0. (26)

If ηab = ηbc then conditions (25) and (26) reduce to

2 |ρac| > |nab − nbc| = |1− 3ρbb|, (27)

ρaa − ρcc +

√

(1− 3ρbb)
2 − 4 |ρac|2 > 0. (28)

If one of the inequalities (27) and (28) is satisfied then there is positive gain in the forward direction. Ifρac = 0 then Eq. (
28) yields the requirement thatρaa > ρbb. If we increase|ρac| then condition (28) may no longer be satisfied even if there is
population inversion between levelsa andb. This yields forward gain suppression due to coherence. However, if |ρac| is large
enough and levelb is populated (ρbb 6= 0) then one can fulfil inequality (27) even if there is no population inversion on the
a → b andb → c transitions. In this range of parameters the system has forward gain without inversion. Please note that the
requirementρbb 6= 0 is crucial and, thus, to observe such a regime one should waituntil levelb becomes populated.

Physics behind our results can be understood by noting an analogy between Eqs. (1)-(4) and equations of motion of the
coupled damped harmonic oscillators. Let us consider spatially uniform case assuming that medium, as well as pulses, is
infinitely long. Then, introducing notationsΩab = x andΩbc = y Eqs. (1)-(4) can be written as

ẍ+ Γabẋ− cηabnabx− cηabρacy = 0, (29)

ÿ + Γbcẏ − cηbcnbcy + cηbcρacx = 0. (30)
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These equations show that coherenceρac provides coupling between the two oscillators. Equilibrium point x = y = 0 is
unstable (positive gain) if the oscillator matrix

(

cηabnab cηabρac
−cηbcρac cηbcnbc

)

(31)

has eigenvalues which are complex or have positive real part. Taking into account that matrix eigenvalues are

λ1,2 =
c

2

(

ηabnab + ηbcnbc ±
√

(ηabnab − ηbcnbc)2 − 4ηabηbc|ρac|2
)

(32)

we obtain conditions for the gain which coincide with Eqs. (25) and ( 26). So, physics behind forward gain without inversion
and forward gain suppression with inversion is the same as physics of stability of the coupled harmonic oscillators.

V. CONCLUSION

In this paper, we consider pulse propagation through a medium composed of three-level (cascade scheme) atoms with initial
coherence between the upper and ground states. We obtain analytical solutions for pulse evolution for arbitrary initial populations
and pulse shapes. Emission in the forward direction is similar to Yoked superfluorescence, that is there is simultaneousemission
on the upper and lower transitions. We find that initial coherence can result in gain in the forward direction without inversion if
the intermediate level is populated. On the other hand, coherence can suppress forward gain even in inverted medium.

In the air laser experiment [35] it is likely that the system undergoes both regimes. In this experiment, the pump pulse first
excites partially the upper levela which produces population inversion between the upper two levels. This yields backward
lasing at early time, which transfers the population from the upper level to the middle levelb. During this process, the forward
gain is suppressed. After some time, the upper state population is depleted. This promotes the system into the state with
ρaa < ρbb < ρcc while the long pump pulse continues to generate coherenceρac. For these conditions the forward gain can be
achieved as we show here. These processes are repeated as long as the pump field is on.

Our work combines lasing and superradiance together. In thecase of a laser (with or without inversion) a weak seed pulse
exponentially grows in the linear regime. In the case of superradiance in extended medium the emitted pulse decays under-
going oscillations with the collective frequency. The present problem combines these two effects which yields a possibility of
exponential grow and oscillations of the pulse at the same time.
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