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We analyze an optical parametric oscillator (OPO) in whigboaded down-conversion occurs inside a cavity
resonant for all modes but the initial pump. Due to the resboascade design, the OPO present tA0 level
oscillation thresholds that are therefore remarkably tawen for ay®> OPO. This is promising for reaching the
regime of an effective third-order nonlinearity well abdeth thresholds. Suchyd? cascaded device also has
potential applications in frequency conversion to faranafed regimes. But, most importantly, it can generate
novel multi-partite quantum correlations in the outputiatidn, which represent a step beyond squeezed or
entangled light. The output can be highly non-Gaussian,thecdkfore not describable by any semi-classical
model. In this paper we derive quantum stochastic equaiiotige positive-P representation, and undertake an
analysis of steady-state and dynamical propoerties oftfstem.

PACS numbers: 03.67.-a, 42.50.Lc, 03.65.Ta, 03.67.M52j

I. INTRODUCTION rather scarce [12] except in the case of the tripartite eorre
lations between the three fields [13]. An interesting appinoa

Continuous-variable (CV) quantum information is an inter-1S {0 Use an optical nonlinearity of, at least, third ordenisT
esting flavor of quantum information (QI) [1, 2]. While eas- Nas been theoretically investigated [14-17]. In practiog”

ily implemented by use of well established quantum opticd?@sed OPO would have the problems of requiring a very large
techniques, benefiting from large flow rates and broad spec@nd possibly prohibitive input power threshold for downcon
tral bandwidth, it has long been based on coherent states a¥§'Sion, together with an even higher threshold for the tofse
linear Bogoliubov transformations (quadratic Hamiltors nonclassical effects, such as the formation of star sta#s [
and therefore restricted to positive Wigner functions ofia In this paper, we show how the use afavity-resonant cas-
sian character. These states are not general enough for ugiade of second-order nonlinearities can yield a low-ttotesh
versal quantum information operations[3]. For instante, i OPO which possesses the effective behaviorpfaOPO in
has been shown that quantum computation based solely giertain regimes and is more accessible experimentallye Not
Gaussian CV states can be efficiently simulated by a cldssic#hat related systems have been studied before, in the purely
computer [4]. Also, CV entanglement purification requires aclassical case and for completely different purposes, asch
Kerr-nonlinearity-based QND measurement [5] or, in gelera producing new tunable optical sources in the infrared [18] o
a non-Gaussian state [6]. However, it has also been showachieving optical phase-locking in a 3:1 frequency ratio fo
that one-way quantum computing can be implemented usinffequency metrology [19, 20]. Parametric amplifiers and os-
Gaussian cluster-state entanglement combined with non-Cvillators have become a widely used, even standard pareof th
(e.g., photon counting) measurements [7]. repertoire of laser physics and quantum optics [21]. Above
Recently, successful “degaussification” experimentsigusi the classical threshold points, these devices are a useful t
homodyne detection conditioned on single-photon detectiofor frequency conversion. Below threshold, quantum effect
[8-11], have successfully generated negative Wigner funcdominate, leading to squeezing and entanglement. These de-
tions from initial squeezed states. Here, we investigdte di Vices that rely on non-resonant, nonlinear optics intévast
ferent type of sources, which can produce non-Gaussiah ligfave proved experimentally superior to other resonantair-ne
directly. Theoretical studies of optical parametric datirs ~ resonant alternatives, due to the fact that absorptionps su
(OPO), which are based on a single second-order optical nofressed.
linearity (x(?)) have shown non-Gaussian signatures to be There are other possible quantum effects available, as well



as direct down-conversion in the linear regime well below Il. ANALYTICAL TREATMENT
threshold. For example, exploration of non-equilibriunagu
tum criticality is possible near threshold. This resultsirge A. Cascaded parametric oscillator model

critical fluctuations and phase-transitions. The fluctuaiin
this case become non-Gaussian, but the dominant critical flu
tuations have a rather classical character. Here, we exator
other path to such non-Gaussian behavior, in which extrgmel
nonclassical correlations are generated through the prese
of a second down-conversion crystal placed inside thecavit
We show that this results in an intricate pattern of new phas
transitions at the classical level, in which there are tvabiact
threshold points. At the quantum level, below the first thres
old, there are very strong triple correlations betweenhihes
down-converted modes, which have no classical analog.

The model system for cascaded down-conversion consists
of two quadratically nonlinear elements with nonlineasty,
andy inside an optical cavity (c.f. Fig. 1). The cavity sup-
ports five resonant modes at frequencigqi = 0,1,...4).

The modev, is the pump mode, driven by an external coher-
Cent driving field at the same frequency. The cavity modes
w; are described by creation and annihilation operaﬁ)and

a; with commutation relation{aii,d;] = ;5. The first non-
linear element converts the pump madginto the signal and
idler modesv; andwsy by means of nondegenerate parametric

We emphasize here that in order to access non-Gaussi&@wn-conversion, whergy = w; +ws (w1 # w2). The sec-
fluctuations, it is necessary to utilize an exact mapping beond nonlinear crystal supports down-conversion of the mode
tween stochastic and quantum variables, provided by the into the second pair of signal and idler modes andws,
positive-P representation[25]. Other methods, including Wherews = ws + w4. We will call the fielda, atw, the “in-
earization and the truncated Wigner representation, dteclu termediate pump.” The modes may decay via cavity losses at
approximations that may be invalid in regimes where nonihe respective rateg, i € [0, 4].

Gaussian fluctuations are large. For this reason, the paper i In the absence of the optical cavity, this interaction censt
cludes a careful treatment of quantum stochastic methads, a tutes a cascade of quantum systems in the sense investigated

a comparison of the +P and Wigner phase-space equations.by several authors before [23], where the second stage does
not feed back to the first stage. Here, the situation is differ

This paper is structured as follows. In Section I, we ex-ent precisely because of the cavity feedback, hence our use
plain the basic model and the theoretical phase-space techf the termresonant cascade throughout the paper. Within
niques that are used here. In Section I, we present antanalythis frame, we will distinguish two situations: the first ase
ical study of the system’s stationary solutions. In Sectign  the nondegenerate resonant cascade, for which the fieltis
we turn to a treatment of stability properties and fluctustio a3, anday are distinguishable (i.e.w; # ws # w4, Or hav-
in one particular type of down-conversion scenario. Ini®ect ing different polarizations or wave-vector directions).this
V, we give numerical simulations of more general cases whicltase, the only physical observable affected by both staiges o
can also yield regimes of interest. These simulations demorthe cascade is the intermediate puéap This is the case that
strate the stability regions, in the same spirit as was aellie will be investigated analytically, with additional simfyling
for the x(2) OPO [22]. We give conclusions in Section VI. hypotheses, and numerically, without those hypotheses. Th
second case is thdegenerate resonant cascade, for which the
signal fields are indistinguishablé; = a3 = a4 (and hence
w1 = ws = wy). Inthat case the signal field and the interme-
diate pump interact in both nonlinear media and the dynamics
are richer. That case will be explored by numerical simula-
tions. Obviously, intermediate situations do also exigi,,e
w1 = w3 # wy, but we will not consider them here.

B. Hamiltonian and equations of motion

The model Heisenberg-picture Hamiltonian for the system,
in the rotating-wave approximation, is given by:

Figure 1. (Color online) Schematic of the resonant cascddeah- . 4 , )

conversion system. A driving field, that is pumped at a fregyev, H = Z hw;ala; + ih(Ege ™™ al — Eje™ag)

with amplitude Eo, enters a cavity that contains twd? nonlinear i=0

crystals. The f[rskgz) crystal down-converts the original mode + ihxi(agalal — dgdldg) + ihXQ(dgdgdl — abasay)
into two modesi; anda. with frequenciesv; andws, respectively.

Then the second mode: undergoes a further down-conversion, via
the ng) crystal, into the two modeés andas with frequenciesvs
andws, respectively.

4
+) (il +ally) (2.1)
=0
Here,F describes the complex amplitude of the driving field.
The coupling constantg; and x, are proportional to the



second-order susceptibilities of the two nonlinear elesien Here, « = (g, 1, 0,3, 004)  and o™ =
respectively. We assume that they are positive, withowt los(ad, af,af , a5 , o) represent the sets of coherent
of generality, since phase factors can always be absorbed instate amplitudes;; and " in the expansion of the density
the definitions of the mode functions and their operatorg Thoperator in terms of the positivé-representation, corre-
operatord’; andfj describe the coupling of each intracavity sponding to the annihilation and creation operafgrandd;f.
mode to the reservoir of external modes. These give rise tiVe recall that in the positivE-representation, the amplitudes
the losses of the cavity modes at ratesy;. «; and o are independent complexnumbers, and h.c.

in Eq. (2.4) represents the terms equivalent to Hermitian

conjugate operators, obtained from the previous terms by

1. Master Equation replacinga; — o and vice versa, whil&, is replaced by

Ej. The transformation requires an assumption of vanishing
Transforming to an interaction picture in which all opera- boundary terms which can be checked numerically. This is

tors are transformed to rotating frames, i.e., generally extremely well-satisfied[26] for these openeiyst
providedy; << ~;, which is typically the case in nonlinear
a;(t) = aje ", (2.2) optics experiments. If required, further stochastic gauge

transformations[27] can be used to eliminate boundarygerm
one can derive the following master equation for the system The Fokker-Planck equation (2.4) is equivalent to the fol-

density operatop [24]: lowing set of stochastic differential equations [28], i it
95 form:
9P _ 1ot prs s NS FS WP PYIPS
ot [Evay — Egao, p + x1laoaiay — agardz, pl &o = —000 + Eo — x1a102,
+ Xalagadal — afasa, pl &1 = —y01 + x10004 + /X100 (1),
4 . _ +
A st anta afa s G = =202 + X10007 — X230 + /X100C2(t),
+ Z vi(2aipal — pala; — alaqp). (2.3) . 4
= Q3 = —y303 + Xe2a] + /X2023(t),
duy = —ya0 + X20203 + /Y2024 (2). (2.5)

While in principle this master equation can be solved numer-

ically in a number-state representation, in practice thisat together with the corresponding equationsdgr. Here, the

possi_ble_. The complexity of t_he Hilbert space — especiallyyts imply a time derivative, and the terqét) and(;* () are
for this five mode problem — is enormous, given any mOder'lndependent complex Gaussian noise sources with zero means
ate number of photons present in the five interacting mode

. ) 3ind the following nonzero correlations:
Instead, we solve this problem using phase-space repeesent

tion methods, such as the positive-P representation[25]. (GG = <(j(t)(2+(t’)> =§(t—t"),
(Ca(B)Ca(t)) = (G5 (¢ (¢)) = a(t = 1). (2.6)

The above set of the stochastic equations of motion, Eq),(2.5
) N ) can be solved either numerically or else using approximmate a

Using the positive-P representation we can transform thgytic treatments such as perturbation expansions ardand s
master equation, Eq. (2.3), into a Fokker-Planck equaldh [  ple semi-classical steady states. Quantum mechanicatebse

C. Positive-P representation

expressed as: ables that are expressed in terms of normally ordered opera-
9 9 tor moments<(d;f.)"(di)m> correspond to stochastic averages
—P(a,at,t) = | = (y0a0 — Eo + x101062) + '
ot ’ ’ 6a0 <(Oéi)m(04j )n>

0
+ 8—(’}/1041 — Xlaoa;)
gl D. Thesemi-classical theory
+ 8—(72% — x1007 + x20304)
@2 We can also transcribe the master equation, Eq. (2.3), as

+ - (y30i3 — Y2020 a c-number phase space evolution equation using the Wigner

dag representation [29]
+ 2 (a4 - x2a207) 1

75— (7404 — X202 e ek

80(4 3 PW(a,a*) _ _2/ leZ XW(Z’Z*)e—zz ol iz

0? T J—oo
+ W(Xlao) o _ (2.7)
0‘52 2 wherexs(z, z*), the characteristic function for the Wigner

i (xaa2) + h.c.| P(a,a™ 1), representation , is given by

6a38a4

(2.4) xw(z,2*)=Tr (peiz*‘“”z'“) (2.8)
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This transcription is particularly useful for semi-clasdi depend on the nonlinear coupling constant, while thoseen th
treatments in which we include quantum noise terms from\Wigner representation, Eq. (2.9), do not.
the reservoirs, but neglect higher-order quantum noise fro  The truncated Wigner theory can be regarded as a kind of
the nonlinear couplings. This approximation is also called hidden-variable theory, since it behaves as though the non-
truncated Wigner approximation, as it is obtained from & ful commuting quadrature variables were simple classical ob-
Wigner-Moyal equations via truncation of third-order dari  jects. These equations imply tf’(@tiab = (f;) = 1/2 when
tives. there is no driving and no coupling, which is an expected
The equation for the Wigner function for the nondegenerateesult in a symmetrically-ordered representation. Howeve
parametric amplifier that corresponds to the master equatiothe truncation neglects third-order derivative terms \uhice

given by Eqg. (2.3) turns out to be [23] present in the full Wigner equation, and are not always neg-

&Py ) ligible. The full Wigner theory is equivalent to quantum

ot {87 (Yoo + x1001002 — E) mechanics, and has no such limitations but it is no longer
0

9 positive-definite, and therefore has no equivalent stdthas
+—— (Yoo, + x10fah — €) formulation. The advantage of the positive-P method isithat
dag is able to generate stochastic equations without requihiisg

0 . 0 « . guestionable truncation approximation.
+o— (o1 — xamgan) + 5 (0] — x10204)

6041 6@*{
-|—a% ('72(12 — XIOCTO‘O + X2a3a4) I1l. CLASSICAL STEADY STATES
2
+88* (7205 — x10005 + X20505) We first _analyze the classical_ stea_dy states of_ the system
a3 and then give the results of the linearized fluctuation asisly

for their stability in the next section. In the classical ilinall
guantum noise terms are neglected. The positive-P stochas-
9 P tic variablesa; anda;" are replaced by deterministic ampli-
+o5— (s — xea302) + 5 (vaa] — x20305)  tudesw; anda’, wherea! is the complex conjugate af;,
Oay (9044 H °
and Eq. (2.5) then becomes

—9 ( - ) ) —9 ( 53— *)
(0% [6 )6 (6% (e %167
+3733 X20 Q2) + §733 X20i40iy

02 02 02
+0 dapdas tm Doy 0oy +%2 danda Go = —vo0 + Eo — xiaiag,
02 0? a1 = —y101 + X10005,
s Oasda T OJas0a G = —y202 + X100 — X2030u,
L ( o3 N 0? ) G3 = —y303 + X20207,
4 \ OoOaz0af  OajdalOg Gy = —ya04 + X200205. (3.1)
X2 (93 (93 . .
+ == ( i ) } Pw The steady state solution$ are obtained from Egs. (3.1) by
4 \dazdasda; ~ Jazdajdas putting all time derivatives equal to zero, i.&;,= 0. We only

It is common to drop the third order derivative terms, in anconsider the steady-state solutions in whio)™ = (a?)*,
approximation valid in the limit of large photon number. $hi as these correspond to classical fields. This corresponds to
allows one to equate the resulting truncated, positivendefi neglecting the effects of quantum fluctuations and consider
Fokker-Planck equation with a set of stochastic equationgng the equations for the mean field amplitudgs= (a;),

These are: assuming that higher-order correlations factorize.
. The stability of the classical steady states with respect to
o = =000 + Eo — x1a102 + /070 (1), small fluctuations can be checked by deriving the linearized
d1 = —y1oa + X105 + /11m (), equations of motion for the fluctuatiode;; (t) = a;(t) — a?
Gy = =203 + X100 — 203004 + /272 (1), andda; (t) = of (t) — (a?)*. The steady states are stable

s * " provided z_;\II the eigenvalues of the appropriate drift nxaofi
@3 = —Y303 + Xzt + Vs (t), the linearized equations have negative real parts. Here, we
Quy = —ya0u + Xoo203 + \/Yana(t). (29)  assume the following matrix form of the deterministic pdrt o

together with the corresponding equationsdgr. Here, the the linearized equations of motion:

conjugate equations have conjugate noises as in a norrsal cla
sical phase-space. The termgt) are complex Gaussian

! ) ) x=Ax, (3.2)
noise sources with zero means and the following nonzero cor-
relations: where A is the drift matrix, andx denotes a column vector
(i (Bms () = 6350(t — 1), for fluctuations{dc;, 6] }. If the linearized eigenvalue anal

ysis reveals eigenvalues with non-negative real parts i
If we compare the two sets ofdltstochastic equations, we plies that the steady states are unstable. In this casenthe |
see that the noise terms in the positive-P equations, E5), (2. earized treatment of fluctuations around the classicatigtea
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The last equation can be rewritten in terms of the steadg stat
intensityny = ]a8]2 (in photon number units) and phagg
(wherea§ = \/nd exp(ig?)):

ng = |Eo|* /4,

where o is the phase of the driving field, i.ef, =
|Eo| exp(igp). The linearized stability analysis of these
steady states (see Sec. IV) reveals that they are stablever d
ing field intensities below a certain critical (thresholdjue,

0
O,cr

n%n

05|

|Eol® < |Eunra |, (3.8)

0 1 2 3 where
€=IE JIE,, |° 5

| B = 2 (3.9)
X

Figure 2. (Color online) Steady state solutions for theextahten-
sities n /ng ., of different modes# = 0,1, ...,4) as a function
of the driving field intensity paramete? = |Eo|* / |Esnr1|?, for
Yo/y = 10. Here,ng .. = v*/x? is the critical value of:{ at the
first threshold) Eo|* = |Einr,1|? (€41 = 1). The second thresh- | Eo|

old here corresponds t,,., = (1 + v/0)* = 1.21. €= Eora]

is the first threshold. This allows us to introduce a dimemsio
less relative driving field parameter,

Thus, the first regime corresponds to conditions where both
states cannot be employed, and the equations of motion havgnlinear crystals operate in the below threshold regime of
to be treated exactly. parametric down-conversion. Here the steady state sohitio

To simplify our analysis and make analytic solutions avail-for the modesvg, w; andw, are the same as in the usual non-
able, we will assume that the damping rates for all modes exdegenerate parametric down-conversion with a single alryst

cept the pump mode are equal to each other, [30]. Figure 2 plots the steady state solutiof in the be-
low threshold regime where we have also introduced a new
N=N=1=1uU=", (3.3)  variable, namelys] .. = [Eur1/|?/7¢ = 7*/x* This is the

] ] critical value ofn{ at the first threshold.
while the pump mode is strongly damped,

2. First above-threshold regime

In the first above-threshold regime, the amplitudes of the
odesws andw, remain zero, while the amplitudes of the
pump, signal and idler modes, w; andws) are nonzero.
Accordingly, we again use the intensity and phase variables
nd ande?, af = /nf exp(i¢Y) fori = 0,1,2, and write the

to model an interferometer which is not resonant at the pump.
wavelength. For simplicity we suppose that the coupling con
stantsy; andy- are also equal:

= X2 = X- 35 .
X=X =X (3.5) steady state solutions as:
Analysis of the equations of motion for the classical steady 0_,0_0
states reveals three different types of solutions, comeding A= U=
to three regimes of operation. o7
TLO = —2,
X
0 o _ Bl 07
1. Below threshold regime ny =mns = X - 7’ (3.10)
Here, the amplitudes of all intracavity modes except the
pump modev, are zero, and we find that 5 = o,
af = @_ (3.6) We see that the steady state intensiti@sandn) correspond

Yo to physical solutions? > 0) if the driving field intensity



is above the first thresholdEZy|* > |Eyn,.1|>. On the other
hand, the linearized eigenvalue analysis for the sub-sysfe

intensity variable (see below) shows that the solutionstare

ble for | Ey|* below a second thresholdEo|® < |Einy.2|”,
where
% 7\ 7\
uhmF:£T<y+—)_u%mFQ+—).
X Yo Yo

(3.12)

This implies that the first above threshold regime is retgtdc
to:

|Eonrn|? < |Eol? < |Enral” (3.13)

This is shown in Fig. 2 along with the steady state solution
of Eq. (3.10).

This reflects the photon number conservation in the second

crystal and the correlation between the photensand w,,

including the possibility of conversion of photoas into a

pair of photonsus andw,. From the expressions fer] and

ng, we see that physical solutions are realized for drivingifiel

intensities above the second threshold,

2 2

|Eo|” > |Ethr2|” . (3.17)

In addition, we show in the next section that the linearized

eigenvalue analysis reveals that the sub-system of ifyensi

variables is stable in this region. Thus, the second above-

threshold regime corresponds to Eq. (3.17) and is pictured i

SFig. 2 with its corresponding steady state solutions.

In this regime, the first nonlinear crystal operates in the

above-threshold (stimulated) regime, while the operatibn
the second nonlinear crystal is in the below-thresholdr{spo
taneous) regime. The steady state solutions fowthe, and

wo Modes are the same as in nondegenerate parametric dOV\g?

conversion with a single crystal [30], except that the ditsbi
region has now an upper bound.

3. Second above-threshold regime

IV. STABILITY PROPERTIES

Here we give the details of the linearized eigenvalue analy-
S to determine stability of the classical steady-stagemes.

In order to explain this approach, we proceed with a dimen-
sionless analysis, in terms of a small parameter

g==. (4.2)

gl

In the second above-threshold regime, both nonlinear crysae now wish to derive the leading order behavior of the
tals operate with stimulated emission, and the amplitudes ostochastic fluctuations in each mode, as an expansion irsterm

all intracavity modes are nonzero. The madgeacts as the

of g. Itis simplest to first transform to dimensionless parame-

pump mode with respect to the second nonlinear crystal angrs, defining dimensionless time as:

its intensity is above the respective threshold for stinada
down-conversiow, — ws + w4. Note that|Ey,, o] is very

T ="t (4.2)

close to|Ey,,1| in the case of a strongly damped or nonres-

onant primary pump, that we consider here. This makes

This scaled time variable will be used for all derivatives de

this second above-threshold regime quite accessible Expefine in this section. Furthermore we will also use the dimen-

mentally and, in the limit, — 0, could bring about effective
x® behavior (see next section).

Again using the intensity and phase variables, the steady

state solutions can be written as follows:

B2
n) = nf = Bl
(0 +7)
2
0 Y
ng = —,
2 XQ
0 0 |E0|2 ’72
ng=mny=———5 — —, (3.14)
(vo+7)" X
¢8 = o,
# + ¢35 = ¢ = o,
¢35+ ¢ — ¢5 = 0. (3.15)

The intensitiesn?, n3, andn? (nI
simple relationship

ng) are related by a

(3.16)

0_ 0 0
ny = ny + ng.

sionless parameter

(4.3)

We note here that a linearized analysis is only the first stage
in a stochastic diagram perturbation expansion[31], which
in general needs to be taken to higher order to reveal non-
Gaussian behavior[13]. The details of this will be treated-e
where.

A. Positive-P method

We start by using the full positive-P method to treat this sys
tem, together with an appropriate scaling for the belowghye
old fields, by introducing:

Bo = (Oéo —048) /9
Bs = az/\/g
Ba=au/\/g



Using the semi-classical steady state solutions, Eq.,(@®)  well defined and is equal to the phase of the driving field,

dropping higher-order terms of ordgfg or higher, we get: the individual values o§9 and$J remain unknown. In other
. words, there is no unique solution for the individual phases
Bo = —vrbo — araz #?Y and ¢9 and any attempt to perform linearization around
= —aq +eag + e (1) any chosen value af or 3 will generate a zero eigenvalue,

_ + implying that the steady states are unstable. This proldem i
Of2 a2 + oy +Vep(r) known as phase diffusion [30, 32].

B3 = —f3 + /azns(7) In order to correctly analyze the set of coupled equations of
By =—PBs+ Vaana(r) motion in this regime, it is helpful to factorize them intoubs

set that can be linearized and is stable, while the equasion a
together with the Hermitian conjugate equations. The nanze sociated with the zero eigenvalue must be isolated (deedipl
steady-state correlations of the noise terms are: and treated exactly without the use of linearization. This ¢

, be achieved by means of transforming to a new set of stochas-
(m(T)n2(7")) tic variables. In doing so, we note that the stochastic égost
(n3(T)na(7")) T—17), (4.4)  of motion for this system, Egs. (2.5), are equivalent ineith
It6 or Stratonovich formulation of the stochastic calculus. We
The linearized equations fgf andj; 4 are all decoupled and  employ the Stratonovich formulation which has the advamtag
have negative eigenvaluesy, and—-, respectively. Accord-  that the variable changes are achieved using the usualesicu
ingly, the corresponding steady states are stable. The-detgyles, without any extra variable-change terms. Accorging

ministic part of linearized equations for the remainingivar we first transform to new intensity and phase variables fer th
ables,; anda; (together witha anday), can be written  modes.y, w;, andws:
in the matrix form as follows:

(S
—~
3

n, =« »oﬁ,
=A%, (45) o
6=~ (9 (=012 (4.8)
wherea = (al,ag,af,arj)T and the drift matrixA° is iy af )’ J =554 '
given by
which we note are complex. The stochastic variablesand
-1 0 0 ¢ aif ,, on the other hand, are transformed to:
0 O -1 € O ’
AY = (4.6)
0 e —1 0 & . e*i¢2/2
€ 0 0 —1 3,4 — (3.4 )
g, = af e /2 (4.9)
The eigenvalues of the matri& can be calculated explicitly,
with the result that their real parts are all negative if In these new variables, the stochastic differential equati
become:
e < 1. 4.7)
his def h bil . ; h d ’fLo = —270n0 + 2 |E0| COS (QDQ — (]50) \/ o
This defines t e stability region, Eq. (3.8), for the steades — 9x/onima cos (do — b4) (4.10)
(3.6) and the first threshold, Eqg. (3.9). .
N1 = —2yn1 + 2x/noninz cos (¢o — ¢+)
+ Fi (), (4.12)
B. Above-threshold stability fig = —2yna + 2x/noninz cos (¢o — ¢
B el I
In this section we analyze the stability of the above- xv/nz (@30 + 85 0F) + Fa(t), (4.12)
threshold regimes. For reasons of length, we do not give a
complete analysis of the fluctuations, but rather we simply
determine which are the stable regimes. This allows us to . |Eol .
build a complete large-signal phase-diagram, which isligigh b0 = NG sin (o — ¢o)
useful for determining the down-conversion propertieshef t
cascaded device. Detailed spectral properties will beyaedl —x mn2 oo (do — d4), (4.13)
elsewhere. o
. nona .
1= x\/ = sin(do — 1) + f1(t), (4.14)
1. First above-threshold regime
. noni .
b2 = x|/ = sin(¢o — é+)

Inspecting the semi-classical steady state solutions, Eqs
(3.10) and (3.11), we immediately notice that while the siim o — .X (a3a4 _ agaj) + fa(t), (4.15)
the steady state phasgs+ ¢9 of the signal and idler modes is 2iy/ny




- ~ ~ 7 noni ~
Q3 = —yas + X\/TLQCMI — EX - agsin (¢g — ¢4)
V' no

- 4\;‘71_ (sdis — @f a7 @3 + Fa(t), (4.16)
~ ~ - ) neN1 ~
Qy = —Y04 + X\/N2dg — ?X, / 70121044 sin (¢ — d4)

- 4\;‘71_ (sdis — @f a7 @ + Falt). (4.17)

together with the equations faer; anda;. Here, we have
defined the sum and difference of the phase variapjesnd

o Via

O+ = ¢1 = @2,

and we note that the equations @ anda, contain terms

(4.18)

that come from the time derivative ¢ which have been sub-

stituted with the right-hand side of Eq. (4.15).

The new noise terms in the above set of equations of motion

are defined according to:

Fi o = of 5v/xaoC12 + o120/ xog (s, (4.19)
VX% \/
12 = 9 Cl, Cl 2 (4.20)
a2
—i ias,
F3.4 = \/X0e ¢2/2C3,4 - %fz- (4.21)

where the noise terms are

J+=fi £ fo

We now immediately see, that the equations of motion for
the variablesqg, n1, ng, &34, a§j4, ¢o and ¢ are decou-
pled from the equation of motion for the phase-difference va
ablep_. All these variables except_ have a unique semi-
classical steady state solution given by Egs. (3.10)-(3.11
with ¢5 = ¢ + ¢ = ¢o andaj, = 0 (along with
(a8 ,)% = (a8,)* = 0). As we will show below, the lin-
earized equatlons for this subsystem of variables areestabl
and therefore these variables can be treated by means of lin-
earization around their semi-classical steady stateseelahd
by introducing small fluctuations around the steady states

(4.27)

n0,1,2(t) = 10,1,2(t) = ng 1 o, (4.28)
das a(t) = asa(t) — a3 4 (4.29)
8 4(t) = a4 (t) — (a3.4)", (4.30)
50,4+ (t) = do,4(t) — &0 1 » (4.31)

we obtain the following set of linearized equations:

These must be rewritten in terms of the intensity and phase

variablesn; and¢;, for self-consistency:

Fia = /xn1a(no)/* [€_i¢1’2+i¢°/2C1,z

+ei¢1,2—i¢0/2<ff2} : (4.22)
1/4
Ji2= 7\/2(710) [87i¢1’2+i¢°/2C1 2
) 21, /11,2 ’
—eltr2mido/ QCiQ} : (4.23)
_ 1/4 103 4
Fsa=+/X(n2) " (34 — sz- (4.24)

We next convert the equations of motion f6r and ¢, into
phase sum and difference variables:

+=xvMo <\/Z:j+ \/?> sin (¢o — ¢+ )

22\/_ (a3a4 — a3 a4) + f+(t) (4.25)
(B
n N9
(OégOé4 — &;&4 ) + f , (426)

0ng = —yodng — yon, (4.32)
0

Sy = 2XV”1 5o + F2 (1), (4.33)

on_ = —2vén_ + F°(t), (4.34)

Sdo = (4.35)
Sy = —2x04 + 2600 + £ (1), (4.36)
dai3 = —ydais 4+ x\/ndéa; + FI(t), (4.37)
daig = —y0dy + x\/ndday + FL(b), (4.38)

together with the equations fdﬁ§f4. Here, we have intro-
duced number sum and difference variables:

ne =nq £ ng (4.39)
used the explicit expression for the steady state solutfpn
from Eq. (3.10) and the fact that! = nJ. The nonzero
steady-state correlations of the noise terms, in the snuédle
approximation, are given by:

(FLOFL () = = (FA(F2(t))

= 4ynd(t —t'), (4.40)
(SOt = —nl?a@ — ), (4.42)
(FEOTFL)) = xy/nlo(t —t'), (4.42)
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By substituting the steady state intensiy/from Egs. (3.10), comes from the phase diffusion in the secondary signat-idle

the linearized equations and hence their solutions can be exmodesws andw,. To simplify our analysis, we assume here

pressed in terms of the driving field intensj%f. that the damping constant of the pump megdés much larger
The eigenvalue analysis of the deterministic drift termsthan the damping constants of all the other modes,

of the linearized equations reveals that the equations for

dno.+, on_, anddep, . are stable everywhere (the eigenval- Yo > 7- (4.46)

ues have negative real parts), while the subsystem of Vasiab

(5a3,5a4,5a3+,5a1) is stable only if Under this condition, one can adiabatically eliminate the

pump mode from the equations of motion, Eq. (2.5), and re-
9 9 2 strict ourselves to the dynamics of the remaining madgs
|Eo|? < % <1 + l) _ (4.43) w2, w3, andw,. Thus, we assume thaty = 0 during the
X 70 evolution of the amplitudes; 5 3 4, and we use the resulting

This defines the second threshold, Eq. (3.12), and hence grgPression fon,

upper bound on the driving field intensiLE0|2 for the first 1

above-threshold region, Eq. (3.13). W= (Eo — xenaz), (4.47)
The remaining equation for the phase difference variable

¢, Eq. (4.26), can not be linearized since the steady state s¢together with the expression fer}) in the equations for

lution is not well defined and linearization around any cimose «; - 3 4. Transforming then to the intensity and phase vari-

valueg? will reveal a zero eigenvalue, implying that the equa-ables, as in Eq. (4.8), we obtain the following set of stotibas

tion is not stable. The right hand side of Eq. (4.26) can, howequations for the intensities:

ever, be simplified since all variables here can be linedrize

around their stable steady states. Thus, expanding these in . 2x |Eo| —— 2x*
! . = —2 _ 3 9 _—_
terms of the stable steady states plus small fluctuations and " yma Yo 2 oS Yo fne
keeping only the linear terms, we see that the deterministic + F(t), (4.48)
terms all cancel each other. The resulting equation is 5
Ny = —2yny + 2x | Eo| /ninsg cos b — 2Lnlng
o_ = (1), (4.44) Y0 Yo
i . A A — 2)(\/712713714 COS 92 + F2 (t), (449)
with the following nonzero correlation of the noise term:
(OO FOt)) = 56t —t'). (4.45) fig = —=2yn3 + 2xv/nangna cosby + F(t),  (4.50)
ny

Thus, we have isolated the instability associated with a zer 74 = —2yn4 + 2x/n2ngng cos O + Fy(t), (4.51)
eigenvalue into a single phase variable, which is the phase i

differences_ between the signal and idler phases. Unlike theHere, we have defined

other variables, the phase differente is not a small fluctu- By = b1 + by — (4.52)
ation around a stable steady state. Instead it undergoes con L= ¢1r ¢2 7= 9o, '
tinuous phase diffusion, governed by the noise tgfrtt) in 02 = ¢3 + ¢4 — P2. (4.53)
Eq. (4.44).

Despite the fact that the noise termi$, and f; » (and
henceFy _ and f, _) depend explicitly on the individual
phases of the signal and idler modes, (which are not well
defined), nevertheless, upon calculating the steady stége n
correlations, Eqgs. (4.40) - (4.42), these phases combioe in

) . -xIEol(\/nT \/772)
the phase sum = ¢1+ ¢2 which has a well defined steady 0 = ——— — + 4/ — | sin6;
state value and is stable. As a result, calculation of observ o 2 m

which can serve as a new pair of phase variables, traded in
favor of the the signal and idler phasgsandg,.

_ The stochastic equations of motion for the phase variables,
which we write at once in terms @f, 65, ¢3 andg,, are:

ables via the solutions of the linearized equations of nmptio B n3N e 4.54
Egs. (4.32) - (4.38) which ultimately depend on the noise cor X na sin bz + fo, (1), (4.54)
rela.t|0rlls.— is a well defined procedure, and is independent on . TaT3 g nana\
the individual phases; ande, . Oy = —x + - sin 6y
nq ns n2
L XIBl g4 ) (4.55)
C. Second above-threshold regime Yo no e
; nang .

In the second above threshold regime, both parametric ~ #3 = =X s sin 0 + f3(t), (4.56)
down-converters operate in the above-threshold regime. In
addition to the phase diffusion in the signal and idler modes by = -X nans sin B + fa(t). (4.57)

wy andws, we now have a second source of instability which N4
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In the above equations, the noise terms are given by where we have additionally transformed to the intensity sum
oo = f1+ fo, (4.58) and difference variables
fo, = f3+ fa— fo, (4.59) dng = 6nz + dny,
and on_ = dng — dny, (4.70)
1
fi2= = i(Eo — xa102)C1 2 to further simplify the eigenvalue analysis. We have also de
2Ziar 2\ Yo :
' fined
1 X (px oyt
" 2ia) \/%(EO — XAy 03)G s, (4.60) F=F)+ F. (4.71)
VXaz \/ xad N As we see, the equation for the inf[ensity differer_iae fluc- _
f34= S50 (3,4 — e C34- (4.61) tuation is decoupled and immediately results in a negative
3.4 13,4 eigenvalue in the drift term, implying stability. The coagl
In addition, the noise termB; 5 5 4 in Egs. (4.48 )-(4.51) are equations for fluctuations idn, dng, andén . result in a
given by cubic equation for the eigenvalues of the respective drét m
trix. While this cannot be solved explicitly, however, thega
Fiz(t) = an\/l(Eo — xa102)C12 ative real parts of the eigenvalues required for stabifitgs-
7o certained here using the Routh-Hurwitz criterion [33].

+ 041,2\/%(]56 —xof a3 )(y, (4.62) areT:he linearized equations for the phase fluctuatitts; ()
F34(t) = a§4\/ XQ5(3,4 + Q3.4 XQ;C;{;;- (4.63) 50 X | Eo| ng n n9 50
In all these noise terms the amplitude variables have to be ' "o ng n} '
expressed in terms of the intensity and phase variablesifer s n9
consistency. - X—30592 + 19, (4.72)
By inspecting Eqgs. (4.48)-(4.51) and Egs. (4.54)-(4.58),w \/”_2
see that the equations for the intensitigs; 5 4+ and phases ) n0
61,2 are decoupled from the equations for the phase variables, 06y = —x <2 ng — \/3—0> 662
¢34. The variablesi; 234 andf, » all have well defined 2
semi-classical steady states, c.f., Eqs. (3.14) and (3wif}) x|Eo| [nf o
69, = 0, and as we will show below, the linearized eigen- + - n—g591 + fo,: (4.73)

value analysis indicates their stability. Thus, this ssiam

of variables can be treated within the linearized treatnoént
fluctuations. The phase variablgsande,, on the other hand,
do not have stable semi-classical steady states and cam not
treated by means of linearization. To demonstrate thelgiabi
of the intensities:; 5 3 4 and phaseg, 2, we introduce fluctu-
ations around the semi-classical steady states,

The eigenvalues of the corresponding drift matrix can be
ound explicitly, with the result that they all have negativ

al parts and therefore the equations are stable. The ronze
steady state correlations of the noise terms in the linedriz
Egs. (4.66)-(4.69) and Eqs. (4.72)-(4.73) are:

nj(t) = n;(t) —nf, (j =1,2,3,4), (4.64) (FY(WF3 (")) = 2ynia(t — 1), (4.74)
3612(t) = O12(1) — 67 5, (4.65) (FLOFL()) = = (FL(OF2(t))
and derive the following linearized equations for the isign = —2(F(t)F{ ("))
fluctuations: = 4yn3s(t —t'), (4.75)
I (1 n l) 51 (F9.(08,()) = =2 (£, ()18, (t))
o = 2(F2()5(t))
L (1 - l) Sna + FO(t) (4.66) 2
¥ Y0 e ' =X 1), (4.76)
. 2 ’7
di = = (14 2 Yo, SO0 =2(AORW)
~ . =5t —1). (4.77)
+ Yy 1-— ’Y— §n1 — ’7(57’L+ + FQ (t), (467) g
0
) 2y?ng The remaining phase variablegs and ¢4, cannot be
ong = 26n2 + Fﬂ(t), (4.68)  treated within the linearized fluctuation treatment, hogvev

. 0 the right hand sides of the corresponding equations of mptio
on— = —2y0n_ + FZ(t), (4.69) Eqgs. (4.56) and (4.57 ), can be simplified since all variables
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here have stable steady states and can be linearized. ¥éss gi in the regime where losses for the intermediate pudmpre
. negligible, i.e.,y2 < v1 = 713 = 74 < 7o (note that this
¢3 = 7802 + f3 (1), (4.78) s different to the condition given in Eq. (3.4)). Indeedesb
by = —760, + Fot). (4.79)  hypotheses should yield close-to-ideal down-conversite r
from field a- to signal fieldsa; and a4, comparable to the
where the nonzero steady state correlation of the noisesternemission rate inté,, and therefore be consistent with the ex-
is given in Eq. (4.77). To further simplify the analysis we pectation of threefold quantum correlations betwéenas,

introduce the sum and difference phase variables a4, which should be non-Gaussian (another favorable situa-
0. — 80 tion for this effect would be the casg > x1). The goal of
+ = 03 % 4, (4.80) the following numerical simulations is therefore to asaiert
for which the equations of motions are the stability of the resonant casca(je in such cases, whéch ar
. not covered by the previous analytical treatment.
0, = —2v00s + f& (t), (4.81) The numerical treatment is limited to the classical equmstio
: 0 of motion, given by Eq. (2.5) witlj; = 0,7 € [0,4], which
0_ = f2 (t), (4.82)

are integrated numerically using a fourth order Runge-&utt
The source of instability for the phase variaBleis obvious, ~routine similar to the method given in [22]. The first and sec-
while for the phase variable, the presence of a zero eigen- 0nd nonlinearities were taken to be equal, ihg.,= x2. All
value is revealed when the corresponding linearized enuati down-converted fields were given minute initial amplitudes
is combined with Eqgs. (4.72)-(4.73). Thus the varialtles and random initial phases, of which the subsequent dynami-
andé_ can not be linearized, and have to be treated exactlycal phases were independent.

The nonzero correlations of the noise terfifs = /9 + f7

andf§ = f9— f{are

(18, 018.w)) == (F5_015_(1))
= 2(HOF))
- —nlga(t —t). 4.83) o

From Eq. (4.81) we see that the dynamics of the phase vari-
abled, depends on phase fluctuationsdify,, and therefore
the equation fof ;. has to be integrated after solving -,

Eqgs. (4.72)-(4.73). The solution fér.(¢t) can be written as

0 100 200

t Yot
04(0) = 0:(t0) + [ [2000a(0) + 15, )] ', (489
fo Figure 3. OPO intracavity intensity (in units of photon nwenbfor

while the solution fol_ (t) is 72 = 0.0857", y1,3.0 = 014571, 70 = 2,07, | Eol /| Etnresn,2| =
3.5, for zero detunings.

t
0_(t)=0_(to)+ [ f9 (t')dt'. (4.85)
to

Sincedb(t) as a solution to the set of linearized Egs. (4.72)-
(4.73) depends on the noise teriffs and f;_, the calculation
of correlations involving the phase sum variaBle(t) will
also depend on the following nonzero noise correlation: As mentioned above, we restrict our analysis to a set of
parameters such thgt < v1 = 73 = 74 < 7. That
<f§+ ) f, (t’)> =2(fO ) = —L§(t—t), (4.86) s, the primary pump mode is not resonant, the intermediate

A. Steady-state solutions

ng pump is highly resonant (most of its losses occur in down-
) 0 0\ conversion), and the signal fields are sufficiently resotant
while <f9+ ()5, () ) = 0. acquire a threshold as low as a typical single-stage, doubly
This completes the analysis of the system in the secongesonant OPO (DRO). In this case the OPO fields show de-
above-threshold regime. caying oscillations to a steady state after reaching therskc

threshold. Higher losses fog, result in over-damping. Fig-
ure 3illustrates the steady-state solutions. Both thidstare
V. NUMERICAL SIMULATIONS clearly visible. At long times# > 100 in Fig. 3) the field
amplitudes match the stationary solutions of the previeas s
A qualitative reasoning identifies the far-above-secondtion. Increasingz, or~, causes the oscillations to decay more
threshold situation as interesting for mimickingc&) OPO,  quickly.
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Figure 4. Individual field phases, going through the secondrigure 6. OPO intracavity intensity (in units of photon num-
_ -1 _ —1 _  ber) for 2 = 0001 s' 34 = 014 s =
threshold, forv. = 0.08 s™,7y134 = 014 s7 ",y = B 2 V1.3, - )
1057, |Eo|/| Ethresh.2| = 3.5, for zero detunings. 1.0s™ ", [Eo|/|Etnresn,2| = 5.8, for zero detunings. Note that,

' is omitted since its plot follows exactlys. The spiking frequency
increases WithEq | /| Ethresh,2| When other parameters are held con-
stant.

2 T
1.5 [ 0 -
. 1k 2 4 in both cases, as displayed in Fig. 6 for the nondegenerate
é 05 L | | case. One may overcome this self-pulsing and induce a tran-
= ‘ \ sition to a stable steady state by increasing the pump parame
N 0 i 7 ter above threshold. The lowes the highel Ey|/| Einresh. 2]
% 0.5 . needs to be to achieve steady state in the nondegenerate case
ﬁ‘ -1 _ \\\ .
15 E |
5 | 2. Degenerate cascade
0 25 50
Yot In the degenerate case, a remarkable result is that the spik-

ing behavior is always transient and relaxes into a statjona
state. However, more insight into the behavior of the degene

Figure 5. The phase differencés and 6> between the fields in-
ate cascade is obtained, once again, by scrutinizing tHa-evo

volved in the first and second stages of the nondegeneratadtion,
going through the second threshold, far = 0.08 sfl,v1,3,4_ = tion of the phase8; = ¢y — ¢ — @1 andfy = ¢ —2¢;. This
0.14 571,50 = 1.0, |Eo|/|Etnresn,2| = 3.5, for zero detunings.  pears particular physical significance for the degenerade ¢
tThr;et 33321%%%?;2?‘ (ijslﬁtzrljrr:g%slai%oi\;]ebtgtehSs?;gg(sj thesshitate e because the first stage can stimulate emission in the sec
' ond stage, which cannot happen in the nondegenerate cascade
due to the distinguishability of the signal fields [34]. Basa
. S f this effect, the degenerate cascade will exhibit gresear
e e ey ( he eVolin o, and Whose swings ransiate
: ; into the appearance of competing sum-frequency generation
b1 = o — ¢1 — d2 ANdfa = g2 — 3 — ¢ for the first and SFG) processes in both stages
second stages of the OPO. It is clear from these phase diF- a  Firs abovethreshold:  Fi .ure 7 (top) displays the
ferences that Fhe system is in a state of cascaded paramet(rjgrﬁping of the lows spikin.g .”?e phase bghavioe isyplotted
down-conversion. in Fig. 7 (bottom) and shows that significantly rich transien
evolution eventually yields a true cascade of two parametri
, down-conversions (PDCs).
B.  Second above-thresnold regime for low 2 b. Second above-threshold: In Fig. 8 (top), PDC is not
the only process occurring in both stages: the solutiondean
seen to have a PDC component and a competing SFG com-
ponent. This is consistent with the entering of the stinedat

One interesting question is that of obtaining a stable effecemission regime in the second stage as one crosses the second
tive x(3) OPO by loweringy, and operating well above sec- threshold. The system is able to find a steady state solution
ond threshold. In that case, the nondegenerate and detgeneraonetheless. However, the quantum statistics might be ex-
cascades do not exhibit the same behavior. As the intermedpected to be nontrivially affected. It is possible that witle
ate pump loss rate is lowered, a spiking instability is ol#di same set of parameters, the phase evolution can also yield a

1. Nondegenerate cascade
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Figure 7. Top: OPQ intracavity intensity (in units of photwmber)  Figure 8. Phase differencas and 6., for zero detunings and

for (70,72,71) = (10,0,0.02) s, |Eo|/| Ethresn,2| = 0.7. BOt- | Eo|/|Etnresn.a| = 2.0. Top:y2 = 0.08 s, y1 = 0.14s~*. Bot-

tom: Phase differences ando:, for the same conditions (phases tom: Phase differences under the same conditions, whenehtise

are numerically wrapped inside-r, 7). differences have now converged to the proper ones for PD@as@s
are numerically wrapped inside 7, 7]).

stable PDC cascade (Fig. 8 (bottom)). This condition is also

reached if one increases to t_he Ie\_/el of the si_gnal Ioss_ rate, (top), the OPO becomes unstable above the second thresh-
as was demonstrated analytically in the previous section. g4, ‘where the pump, and intermediate pumf@, compete
In conclusion, the degenerate cascade, because of the agrongly. The above-threshold phase leads to a return to the

ditional signal feedback between the two stages, is clegrly fist-above threshold regime, before recurring. In the case
much richer system than the nondegenerate cascade. This %ﬁere% < 79, c.f., Fig. 9 (bottom), the amplitude of the

ditional feedback leads to stabilization of the PDC castade gscillations above the second threshold keep increasidg an
the low~, regime in the first above-threshold regime. In thehe system never reverts to the first-above threshold regime
second above-threshold regime, however the degenerate cas
cade displays two stable regimes, one of which does not have
pure PDC character. Previous studies of similar degenerate N ] ] .
cascade systems have been done to show bistable behavior is D.  Stability analysis of stationary solutions
to be expected [19]. The stability of the two competing so-
lutions will be discussed in the next section. This also apen We simulate the effect of a perturbation by causing an in-
interesting horizons for the quantum simulations of degene stantaneous change in the intracavity fields and obserkimg t
ate resonant cascades. numerical response of the system. Of particular interetbieis
phase evolution of the stationary solutions under two chffiée
types of perturbations, for this will give insight into coatp
C. Second above-threshold regime for low 2,0 ing interaction (SFG/PDC) behaviors in the degenerate. case
We distinguish several types of perturbatioifg: amplitude
It is interesting to briefly investigate the behaviour foundchanges of the fields, leaving the phase unperturgghase
for low vo. This regime involves a low-loss, resonant pumpchange of the fields(iii) change in both. We display typical
mode. It has different stability properties to the situasio results obtained for a variety of magnitudes of change.
treated elsewhere in this paper, and more dramatic behav- For small perturbations on the order of a couple percent of
ior is observed. By settingy ~ 2 < 71,34, C.f. Fig. 9 the steady state amplitudes (perturbations to phase iedjud
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Figure 10. Evolution of intracavity intensity (in units ohg-
ton number) fory = 1.0 s 92 = 008 s ' yi34 =
0.14 571, |Eo|/|Ethresn.2| = 3.5, perturbationd,; = o, for zero
detunings. The perturbation has been applied simultahetushe
real and imaginary parts of the fields, leaving no net pedtioh to

the phases.
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Figure 9. OPO intracavity intensity (in units of photon nwenbfor e
Yo =0.085"",v134 = 0.1457" | Eo|/|Ethresh,2| = 2.8, for zero 8 0517 ]
detunings. Topyz = 0.09 s~1. Bottom: 2 = 0.14 s 1. = -1 H -
-1.5 B i
2 ] ] ] ]
the system returns to steady state after a few oscillataomcs, 4000 4010 4020 4030 4040 4050
the field phases also return to their steady state valuese Som Yot

perturbations may change the individual steady-stategshas

however these changes are inconsequential if the compourdgure 11. Evolution of the phase differengésandd. for o =

phase difference$; andé, remain at the PDC values. Fig- 1.05™',72 = 0.0857", 1,34 = 0.14 57", | Eo| /| Ethresn.2| = 3.5,

ure 10 shows a typical response of the intracavity powers t@ertgrbatlorﬁm = ai, for zero detynlngs. The perturbation has been

a perturbation on the field amplitudes only. The OPO return&PPlied to the amplitudes of the fields.

to the original steady state solutions even under quiteslarg

disturbances. Figure 11 shows an important part of the phase

evolution. Upon disturbing the system, the phase of the secign changes before returning to steady state. This eféect ¢

ondary pump shifts byr and then back by-7. Thisis only  be seen when the applied perturbation is very large. These

true for a large change in the real or imaginary components dfesults indicate that nondegenerate cascade is essemisall

the field (greater thab0% in this case). The phases of all the stable as a single-stage doubly-resonant oscillator.

other fields remain comparatively unaffected. Thus, thespha  The interesting cases to consider for the degenerate @ascad

differences); andf, shift by = quickly and then by-7 (see  are the two shown in Fig. 8. Figure 14 shows the resulting

Fig. 11). When the disturbance is smallLl0%, the phase dif- change in phase differences as the system is perturbed. Inte

ferences recover so quickly that a change in phase diffesenc estingly, if the initial phase differences were beth /2, the

is not observed. phase flips sign, and the system returns to a PDC-PDC cas-
Figure 12 shows a more complicated amplitude responseade (fig. 14, bottom) asin the nondegenerate case. When the

when a perturbation is applied to both the phase and amplphase differences are netr/2, as in fig. 8, top, the phase

tude simultaneously. The OPO recovers the stationary ampldifferences are essentially shifted by each (the wrapping

tudes, but each field, except the primary pump, also undsrgoén the figure forces them to return to their steady-stateaslu

a permanent phase change, c.f. Fig. 13 (top), even théugh Operationally a change @fr should not affect the evolution

and 6, return to unaltered values after opposite fluctuationspf the system. The fact that both cases return to steady state

c.f. Fig. 13 (bottom). With increasing pump parameter, theindicates that the solutions are stable. Thus, we have two po

phase changes in Fig. 13 and Fig. 11, can undergo seversible stable solutions for the same set of parameters.
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Figure 12. Evolution of intracavity intensity (in units ohg- . . . .

ton number) fory = 1.0 s 92 = 008 s ', y134 = L 0, 1
0.14 5%, |Eo|/|Ethresn2| = 3.5, perturbationd,; = «, for zero N 0,

detunings. The perturbation has been applied to the retbpéne
field amplitudes.

VI. CONCLUSION

phase (radians)
?
| |

In conclusion, we have given a preliminary analysis of the
novel properties of a doubly cascaded nondegenerate intra- -4 ' ' ' '
cavity parametric oscillator. This has the property that it 4000 4010 4020 4030 4040 4050
is able to mimic ay(® down-conversion system, while still Tt
relying on the properties of widely available phase-matche _. . _
@ down-conversion crystals. Our analysis focuses on cont'9U"€ 13- Evolution of the OPO phases far = 1.0 s 1’32 =
structing phase-space equations for the cascaded system, 00857, maa = 0145, | Bol/| Bthresn 2| = 3.5, perturbation

. . . «i = «j, for zero detunings. The perturbation has been applied to
demonstrating the existence of multiple thresholds artllesta. yhe req) part of the fields. Top: individual phases. Bottémand:

regions. (phases are numerically wrapped insjder, ).
In the case of five non-degenerate modes, we have de-

rived phase-space equations in the full double-dimensiona

positive-P representation, as well as approximate equtio analysis in this case, although based on classical eqsation
using the semi-classical or truncated Wigner approach. Wg able to treat a larger variety of parameters and detunings
show the presence of three distinct classically stableegj as well as allowing an investigation of stability in the cae
corresponding to below-threshold operation, an interatedi much larger perturbations. The general conclusion is thit b
threshold where only some of the modes are classically exhe cascaded DPO and NDPO have a rich variety of stable op-
cited, and a fully above threshold regime similagtd’ down-  erating regimes and thresholds, including the possitulitgn
conversion. above thresholg®) domain.

A detailed analysis of stability of these regimes is carried CW, BP, KVK, and PDD acknowledge an Australian Re-
out to show whether the relevant driving fields will result search Council Centre of Excellence grant for the support of
in stable operation. This analysis is restricted to the nonthis work. RCP and OP acknowledge support by NSF grants
degenerate case, for parameter values in which all losses aNo PHY-0240532, No PHY-0555522, and No CCF-0622100,
equal except for the pump, which is assumed to be strongland by the NSF IGERT SELIM program at the University of
damped. The nonlinear coefficients are also assumed to Bérginia.
equal. We find that for these parameter values each of the
three regimes mentioned is stable, that is, small signals ar
damped back to the classical steady-state values.

We also give dynamical simulations of the mean field
equations, which clearly demonstrate the existence of sta-
ble regimes, as well as unusual phase-evolution and distinc
dynamical behaviour in the degenerate and non-degenerate
cases. Remarkable coincidences of two [35] and even three
[36] nonlinear interactions in a single-grating periodlica
poled crystal have been observed, which illustrates the ex-
perimental possibilities of such a technique. The dynammica
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Figure 14. Top: the response to a perturbation (of order ¥6%ihe
solutions shown in Fig. 8, top. Bottom: the response to aipeation
for the solutions shown in Fig. 8, bottom. In both cases, {fstesn
returns to its original steady state value.
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