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Alignment-dependent ionization of H+
2 : from multi-photon ionization to tunneling

ionization

Bin Zhang, Jianmin Yuan and Zengxiu Zhao†

Department of Physics, National University of Defense Technology, ChangSha, 410073, P. R. China

We investigate the strong-field ionization for the ground state of H+

2 by numerically solving the
three-dimensional (3D) time-dependent Schrödinger equation (TDSE), and comparisons have been
made among the TDSE, the different versions of molecular strong-field approximation (MO-SFA)
and the molecular Ammosov-Delone-Krainov (MO-ADK). The study shows that, for the TDSE
results, the ratio of ionization rates between perpendicular and parallel alignments displays a step-
like structure against the Keldysh parameter γ. For small internuclear distances, the transition
between the steps are found to be around γ ≈ 1, and is recognized as the competition between the
multi-photon ionization (MPI) and tunneling ionization (TI). The ionization is more isotropic in
MPI regime. For large internuclear distances, the transition position shifts to larger γ value due
to the charge-resonance enhanced ionization (CREI). Different versions of strong field ionization
theories are compared against the TDSE results.

PACS numbers: 32.80.Rm, 42.50.Hz, 42.65.Ky

I. INTRODUCTION

Strong field ionization is a fundamental atomic and
molecular process in strong laser fields that continue to
attract much attention in the recent past, both experi-
mentally and theoretically [1–3], especially when the re-
cent advances in laser technology have made possible ex-
perimental investigation molecular processes on an ul-
trashort time scale and ultra-strong laser intensity [4–
6]. Due to the extra degrees of freedom, the response of
molecules to strong fields is considerably more compli-
cated than that of atoms, which poses great theoretical
and computational challenge. Diatomic molecules are of
fundamental importance in this regard and provide an
important test-bed. For diatomic molecules, the extra
degrees of freedom are the internuclear separation R, and
the orientation of the molecular axis with respect to the
laser field polarization, which can be controlled by pulsed
lasers [7]. This paper is focused on the accurate treat-
ment of the dependance of strong field ionization on the
orientation effects.

Great difficulty still exists even for the theoretical in-
vestigations of multi-electron diatomic molecules. Ap-
proximate models are widely used, such as the molec-
ular Ammosov-Delone-Krainov (MO-ADK) [8, 9] and
the molecular Strong-Field-Approximation (MO-SFA)[or
referenced as the Keldysh-Faisal-Reiss (KFR)] [10–12].
However, problems may arise in the actual calculations.
The MO-ADK is a tunneling theory and is only valid in
the tunneling regime when the the optical period is much
less than the characteristic time of tunneling [10].

For the MO-SFA, two gauges are commonly used for
the description of strong-field ionization: the length
gauge (LG) and the velocity gauge (VG). Partly due
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to the perturbative nature of the SFA, the should-be
gauge invariance of physical observables obtained from
the LG and the VG differ and the two gauges turn out to
be two distinct approximations, giving qualitatively con-
flicting results in many studies [13–15]. On the other
hand, the simplest diatomic molecule H+

2 is a unique
one-electron molecular system which allows for almost
exact solution in the field-free case, as well as for accu-
rate treatment in the laser field, with the recently de-
veloped non-perturbative methods of solving the three-
dimensional (3D) time-dependent Schrödinger equation
(TDSE) [16–18]. It can be used to benchmark these basic
theoretical models. The electron orbitals with the same
symmetry exist in stable multielectron systems, which
are a subject of extensive experiment [19–21] and theo-
retical explorations recently. The finding of alignment-
dependence of ionization rates varies with laser inten-
sity in this work may provide useful insight for the un-
derstanding of multi-electron effects in more complex
molecules, such as strong-field ionization and high har-
monic generation (HHG) from multiple orbitals [22–24].

The organization of this paper is as follows. In Sec. II
we briefly describe the numerical method of solving the
3D TDSE and the theoretical models MO-ADK, MO-
SFA. Sec. III gives the calculation details. In Sec. IV,
we present our results regarding the strong-field ioniza-
tion from the ground state of H+

2 . The TDSE results
are compared with those from the MO-ADK and MO-
SFA models and detailed discussions are presented. We
conclude in Sec. V.

II. THEORY

A. TDSE

If the molecular axis of the diatomic molecular ion H+
2

is directed along the z axis and the nuclei are located on
this axis at the positions −a and a (so the internuclear
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separation R = 2a), then the prolate spheroidal coor-
dinates ξ, η, and ϕ which are related to the Cartesian
coordinates x, y, and z are as follows [25]

x = a
√

(ξ2 − 1)(1− η2) cosϕ,

y = a
√

(ξ2 − 1)(1− η2) sinϕ,

z = aξη.

(1)

We obtain the ground state wave function by solving
the unperturbed eigenvalue problem, which reads

[−1

2
∇2 + V (ξ, η)]Ψ(ξ, η, ϕ) = EΨ(ξ, η, ϕ). (2)

Here Laplacian operator in the prolate spheroidal coor-
dinates is,

∇2 =
1

a2(ξ2 − η2)

[ ∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η

+
ξ2 − η2

(ξ2 − 1)(1− η2)

∂2

∂ϕ2

]

,

(3)

and the Coulomb interaction with the nuclei is as follows
(the charge of each center is unity for H+

2 ):

V (ξ, η) = − 2ξ

a(ξ2 − η2)
. (4)

If the wavefunction Ψ(ξ, η, ϕ) is expanded in the
Fourier series with respect to the angular coordinate,

Ψ(ξ, η, ϕ) =
∑

m

ψm(ξ, η) exp(imϕ), (5)

we get the separated eigenvalue problems for |m|,

− 1

2a2(ξ2 − η2)

[ ∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η

− m2(ξ2 − η2)

(ξ2 − 1)(1− η2)
+ 4aξ

]

ψm = Eψm.

(6)

Eq. 6 is solved by expanding the wave-function
ψm(ξ, η) in a product basis of discrete-variable-
representation (DVR) functions,

ψm(ξ, η) =
∑

i,j

cmijχ
ξ
i (ξ)χ

η
j (η). (7)

Note that the exact eigenfunctions have factors (ξ2 −
1)|m|/2(1− η2)|m|/2 which are nonanalytical at nuclei for
odd m [26]. Measures have to be done to ensure accurate
numerical solutions of the differential equations for both
even and odd projections of angular momentum. For the
even m, the DVR functions are [18]

χξ
n(ξ) =

1
√

wξ
n

Nξ
∏

i6=n

ξ − ξi
ξn − ξi

,

χη
n(η) =

1√
wη

n

Nη
∏

i6=n

η − ηi
ηn − ηi

,

(8)

while for the odd m, the DVR functions are defined as

χξ
n(ξ) =

1
√

wξ
n

√

ξ2 − 1

ξ2n − 1

Nξ
∏

i6=n

ξ − ξi
ξn − ξi

,

χη
n(η) =

1√
wη

n

√

1− η2

1− η2n

Nη
∏

i6=n

η − ηi
ηn − ηi

,

(9)

where (ξi, w
ξ
i )/(ηi, w

η
i ) are the points and associated

weights corresponding to some specified N ξ/Nη-point
Gauss quadrature [25]. The variable ξ, which runs from
1 to some specified maximum value ξmax, is mapped
to the interval [-1,1], and then discretized using the
Gauss-Radau quadrature. On the other hand, the Gauss-
Legendre quadrature is used for the variable η.
The time-dependent Schrödinger equation in the laser

field is solved by means of the split-operator method.
We employ the following second-order propagation oper-
ator [27],

Ψ(t+∆t) = exp(−i∆t
2
H0) exp[−i∆tU(t+

∆t

2
)]

× exp(−i∆t
2
H0)Ψ(t) +O[(∆t)3],

(10)

Here ∆t is the time propagation step, H0 is the unper-
turbed electronic Hamiltonian which includes the kinetic
energy and the interaction with the nuclei, U(t) is the
term due to the coupling to the external field. In the
length gauge, for a linearly polarized (in the x-z plane)
laser field, the potential U reads

U(ξ, η, ϕ, t) = aF (t)[
√

(ξ2 − 1)(1− η2) cosϕ sin θ

+ ξη cos θ],
(11)

Here θ is the angle between the polarization vector of
the laser field and the molecular axis. F (t) is the electric
field.
The field-free propagator exp(−i 12∆tH0) need only be

constructed once before the propagation, using the en-
ergy values and eigen states of the unperturbed system.
The external field operator exp(−i∆tV ) is diagonal in
coordinate representation when using the length gauge.
For efficient matrix and vector operations we use the ba-
sic linear algebra subroutines (BLAS) [29] and the linear
algebra package (LAPACK) [30].

B. MO-ADK

The molecular ADK (MO-ADK) theory is a general-
ization of the atomic ADK theory [28]. The requirement
for the validity of the tunneling model for an oscillat-
ing field is that the width of the barrier does not change
during the time the electron spends traversing it, that is,
the electron adiabatically follows the change in the exter-
nal field. Whether this assumption is reasonable or not
depends on the value of the Keldysh parameter [10]

γ =
√

2Ip(ω/F ), (12)
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TABLE I: Energies of the ground state (1σg) of H
+

2 at different
internuclear separations. The reference data is taken from
Ref. [35].

R(a.u.) Energy (a.u.) Reference Energy (a.u.)

1 -1.451786313378435 -1.4517863133781

2 -1.102634214494976 -1.1026342144949

3 -0.9108961973823676 -0.9108961973823

4 -0.7960848837129860 -0.7960848837129

6 -0.6786357151333285 -0.6786357151334

8 -0.6275703885999898 -0.6275703886000

with γ ≪ 1 in the tunneling regime. Here Ip is the ion-
ization potential. F and ω are the field strength and
frequency of external field.
The cycle averaged ionization rate reads [9],

W =

√

3F0

πκ3
W+

stat +W−
stat

2
, (13)

where the static rates for the positive and negative field
directions are,

W±
stat(F,R) =

∑

m′

|B±(m′)|2e−2k3

3F

2m′ |m′|!k 2Zc
k

−1

(2k3

F

)

2Zc
k

−|m′|−1

,

(14)
with

B±(m′) =
∑

l,m

(−1)
|m′|+m′

2

√

(2l+ 1)(l + |m′|)!
2(l− |m′|)!

× C±
lmD

l
m′m(R),

(15)

and C+
lm = Clm, C

−
lm = (−1)lClm. In fact, for

parity eigen states, corresponding to inversion sym-
metric molecules, W+

stat(F,R) = W−
stat(F,R) [31].

Dl
m′m(φ, θ, χ) is the Wigner rotation function [32], where

R = (φ, θ, χ) is the Euler angle between the molecule-
fixed frame and the space-fixed frame. Zc is the charge
of the residual ion and k =

√

2Ip. The asymptotic co-
efficients Clm can be determined by matching the radial
partial wave function Flm(r)

[

=
∫

dΩY ∗
lm(θ, φ)Φ0(r)

]

to

the form Clmr
(Zc/k)−1e−kr in the asymptotic region.

C. MO-SFA

For a linearly polarized electric field F(t) = F0 sin (ωt)
with associated vector potentialA(t) = A0 cos (ωt)(A0 =
F0/ω), the total ionization rate W =

∫

dΩpdW/dΩp,
where the angular differential ionization rate, dW/dΩp,
can be written as the sum over n-photon processes [33]

dW

dΩp

= 2πNe

∞
∑

n=n0

|An|2pn, (16)

where the momentum pn =
√

2(nw − Ip − Up), with Ip
the binding energy of the initially bound electron and
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FIG. 1: (Color online) Radial partial wave Flm(r) for the
1σg state of H+

2 , using the wavefunction calculated by:
TDSE(solid lines) and GAMESS(dashed lines). The angular
momentum number L are: 0(©-©), 2(�-�), 4(♦-♦), 6(△-△)
and 8(∇-∇), respectively.

TABLE II: Asymptotic coefficients (Clm) for the 1σg state of
H+

2 at different internuclear separations, as obtained from the
present calculations and from the literature.

R(a.u.) C00 C20 C40 C60 C80

1 6.480 0.398 0.024

2 4.464 0.589 0.023

2a 4.37 0.05

3 4.092 1.045 0.076

4 3.957 1.608 0.183 0.012

6 4.438 3.314 0.708 0.086

8 6.178 6.504 2.118 0.401 0.054

aRef. [8]

Up = F 2
0 /4w

2 the ponderomotive potential. Energy con-
servation determines the minimum number of photons
needed to reach the continuum, n0 = ⌈(Ip+Up)/w⌉. The
transition amplitudes An is

Ac
n =

1

T

∫ T

0

dteiS(t)Dc
n(t), (17)

where

Dc
n(t) =

{

〈q(t)|F(t) · r|0〉 (c = LG),

〈pn|[A(t) · pn +A2(t)/2]|0〉 (c = V G),

(18)
with the time-dependent momentum q(t) = pn + A(t)

and S(t) =
∫ t
dt0[q

2(t0)/2 + Ip]. |0〉 is the ground state

wave function. |pn〉 = (2π)−3/2 exp (ipn · r). Eq. 17 con-
tains a fast oscillating term exp [iS(t)] and is integrated
using the Saddle-point approximation, yielding [34]

Ac
n =

1

T

∑

s

√

2πi

F(ts) · q(ts)
eiS(ts)Dc

n(ts), (19)

where the summation is over the two saddle points t = ts
with 0 <Rets < T and Imts > 0 that are solutions of the
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equation

∂S(t)/∂t = Ip + [p+A(t)]2/2 = 0. (20)

Let A = êAA = êA(Ar + iAi), where êA is the unit
vector in the direction of A, Ar and Ai denote the real
and imaginary parts of A, respectively. The real and
imaginary parts of the saddle-point equation are

Ai(Ar + p‖) = 0,

p2⊥ −A2
i + 2Ip = 0,

(21)

where p⊥ and p‖ are the component of p parallel and
perpendicular to the vector potential A. The solutions
are A(ts) = êA(−p‖ ± i

√

2Ip + p2⊥).

III. CALCULATION

The numerical parameters of the present calculations
are as follows. The ξ grid runs from 1 to the max-
imum value ξmax at which the grid is truncated. In
this paper, we set ξmax = Rmax/a, so that the size
of the simulating box can be kept fixed at max(R) =

max(a
√

ξ2 + η2 − 1) = Rmax. We use 120 DVR func-
tions in ξ and 18 DVR functions in η. The angular mo-
mentum projections is kept from m = −8 to m = 8.
Convergence is achieved with the above settings. Tab. I
gives the energies of the ground state (1σg) of H

+
2 at dif-

ferent internuclear separations. All digits are accurate
and the results are obtained with machine accuracy.
For the time propagation, we use 4096 time steps per

optical cycle and an absorbing layer between Rb=40 and
Rmax=80 is used to smoothly brings down the wave
function and prevents the un-physical reflection from
the boundary. In this paper, electric field F (t) is cho-
sen as a 20-optical sine-squared-shape pulse, F (t) =
F0 sin

2(πt/T ) sin(ωt), where F0 is the peak field ampli-
tude, ω is the laser frequency, and T is the pulse du-
ration. After the time propagation, the ionization rate
W is then obtained by fitting the norm to the formula
|Ψ(t)|2 = exp [−W (t− t0)]|Ψ(t0)|2. Ionization satura-
tion is avoided in all calculations.
The field-free eigen state wave function is used as

the input to calculate the MO-ADK asymptotic coeffi-
cients Clm. In fig. 1 we show the radial partial wave
Flm(r) for the 1σg state of H+

2 (R=2 a.u.), using the
wavefunction calculated by TDSE and GAMESS [36].
For the GAMESS calculation, we have used the aug-
mented correlation-consistent polarized triple-zeta (aug-
cc-pVTZ) basis set [37]. Due to the symmetries of the 1σg
state, only the partial waves with L = even and m = 0
exit. It is obvious that the GAMESS wave function fails
to correctly describe the asymptotic behavior in the long-
range Coulomb potential, which leads to numerical un-
certainties and even erroneous results in the calculation
of asymptotic coefficients. On the other hand, the Flm’s
extracted from the TDSE wave function display correct
asymptotic behavior, even with large quantum number L.
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FIG. 2: (Color online) Normalized (to the maximum) ioniza-
tion rates versus the alignment angle θ, when the internuclear
distance R=2 a.u., for the 1σg state of H+

2 . The laser intensi-
ties are: 1.0I0(©-©,×100), 2.0I0(�-�,×20) and 3.0I0(△-△),
respectively. The laser carrier wavelength is 800nm.
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FIG. 3: (Color online) Ratios of ionization rate
[W(90o)/W(0o)] versus the Keldysh parameter for the
1σg state of H+

2 . The internuclear separations are: 1 a.u.
(©-©), 2 a.u. (�-�), 3 a.u. (♦-♦), 4 a.u. (△-△), 6 a.u.
(⊳-⊳) and 8 a.u. (∇-∇), respectively. The laser carrier
wavelength λ =800nm.

Tab. II gives the asymptotic coefficients for the 1σg state
of H+

2 at different internuclear separations. As expected,
the ratio C20/C00, which reflects the non-spherical sym-
metry of the electronic density distribution, increases as
the internuclear distance. For the LG-SFA and VG-SFA,
the ground state wave functions are directly inserted into
Eq. 18 to calculate the ionization rates.

IV. RESULTS AND DISCUSSION

A. Numerical results

In this paper, we will use I0 = 1 × 1014W/cm2 as
the unit of laser intensity since we are interested in the
laser intensity in the order of I0. In Fig. 2, we present
the ionization rates as functions of the alignment angle
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between the laser polarization direction and the molec-
ular axis, for the following peak intensities of the laser
field: 1.0 I0, 2.0 I0 and 3.0 I0, for the 1σg state. The
internuclear distance R=2 a.u. The carrier frequency
ω=0.05695 a.u., corresponding to the wavelength 800nm.
For the intensity 3.0 I0, the ionization rate decreases
monotonously with θ increasing from 0o to 90o. The ratio
W(90o)/W(0o) is 0.55, in good agreement with the result
of Ref. [17](≈ 0.59). For the intensity 2.0 I0, the ioniza-
tion rate has a similar behavior, except that the ratio
W(90o)/W(0o) changes to 0.81. For these two intensi-
ties, the parallel aligned molecules are easier to ionize as
compared to the perpendicular case. However, the situa-
tion changes for the lower intensity 1.0 I0. The ionization
rate increases monotonously with θ increasing from 0o to
90o, resulting in a ratio of 1.2. At this intensity, the per-
pendicular aligned molecules become easier to ionize, in
qualitative disagreement with the higher intensities (2.0
I0 and 3.0 I0) cases. On the other hand, as far as the ratio
W(90o)/W(0o) is considered, it is in inverse proportion
to the laser peak intensity. The same can be observed in
the calculations of Ref. [16, 17]. The ratio W(90o)/W(0o)
depends critically on the laser peak intensity.

Strong field ionization can be qualitatively classified
by the so-called Keldysh parameter γ(see Eq. 12) [10].
When γ > 1, corresponding to the low laser intensity
case, the ionization is dominated by multi-photon ioniza-
tion channel. However, as the laser intensity increases,
tunneling ionization channel starts to play a role or even
dominates the total ionization (γ < 1). For the parame-
ters used in Fig. 2(Ip = 1.1026a.u., ω = 0.05695a.u.), the
γ values for the intensities 1.0 I0, 2.0 I0 and 3.0 I0 are 1.2,
0.8 and 0.5, respectively. The intensity 1.0 I0 corresponds
to the multi-photon ionization region, while the intensity
3.0 I0 lies in the tunneling ionization region. The ratio
W(90o)/W(0o) varies as the competition between MPI
and TI.

The above argument is further investigated in Fig. 3.
In Fig. 3, the ratios of ionization rate [W(90o)/W(0o)]are
presented as functions of the Keldysh parameter for the
1σg state, where the laser wavelength is fixed at 800nm
and the internuclear distance takes the following value:
1 a.u., 2 a.u., 3 a.u., 4 a.u., 6 a.u. and 8 a.u., respec-
tively. For all these internuclear distances, the ratios dis-
play an obvious two-step-like behavior: one step at each
of the two γ-axis limits with a transition at some crit-
ical values. For the small distances (R=1 a.u., 2 a.u.,
3 a.u.), the transitions take place approximately at a
critical value of γ ≈ 1. The ratio of the lower steps
are 0.8, 0.6 and 0.4, respectively, reflecting the asym-
metry of electronic density distribution with increasing
the internuclear distance as expected. Exceptions oc-
cur with larger distances (R=4 a.u., 6 a.u. and 8 a.u.),
where the transition points deviate from γ = 1 (≈ 4) and
the lower step ratios suddenly drop to nearly 0. We at-
tribute this to the charge-resonance enhanced ionization
(CREI) [38]. Molecular ions such as H+

2 have pairs of
electronic states [for H+

2 , the (1σg, 1σu) states] known as
the charge-resonance (CR) state. The CR states will be
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FIG. 4: (Color online) Ionization rate versus the internuclear
distance for the 1σg state of H+

2 , when the laser field polariza-
tion direction lies parallels to the molecular axis (θ = 0o). The
laser field peak intensity and carrier wavelength are 0.5 I0 and
800nm for the present calculation (�-�,×2), while compara-
ble parameters of 0.6 I0 and 790nm are used for the reference
data [39](©-©).
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FIG. 5: (Color online) The same as Fig. 3 but for differ-
ent laser carrier wavelengths: 600nm (©-©), 800nm (�-�),
1000nm (♦-♦), 1200nm (△-△). The internuclear separation
R=2 a.u..

strongly coupled to the external electromagnetic field at
large R, resulting in anomalously high ionization rates.
The enhanced ionization rates exceed the atom limit by
orders of magnitude, leading to sudden drops of the ra-
tios W(90o)/W(0o). Fig. 4 shows the ionization rate of
the 1σg state, as functions of the internuclear distance,
when the alignment angle θ = 0o. The laser field peak
intensity and carrier wavelength are 0.5 I0 and 800nm
for the present calculation. For the reference data [39],
comparable parameters of 0.6 I0 and 790nm, and a dif-
ferent pulse shape are used. Our calculations reproduce
the classic two-resonance-peak structure of CREI. Since
CREI occurs at large internuclear distance, we fix R at
2 a.u. to investigate the laser carrier frequency depen-
dence of the transition. In Fig. 5, the ratios of ioniza-
tion rate [W(90o)/W(0o)]are calculated as functions of
the Keldysh parameter, where the laser wavelength takes
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FIG. 6: (Color online) Ionization rate versus the laser in-
tensity when θ = 0o for the 1σg state of H+

2 (R=2 a.u.). The
rates are calculated from TDSE(©-©), MO-ADK(�-�), LG-
SFA(△-△) and VG-SFA(♦-♦), respectively. The correspond-
ing γ value is shown on the upper scale. The laser wavelength
is 800nm.

the values: 600nm, 800nm, 1000nm and 1200nm, respec-
tively. The transitions take place near the vicinity of
γ ≈ 1, although display a small shift. For λ=1200nm,
the ionization enters the tunneling ionization region when
γ ≤ 0.6. while for λ=600nm, the TI starts to dominate
the ionization when γ ≤ 1.5. We see that the Keldysh
parameter γ works better in the long wave length case, in
agreement with the tunneling ionization picture. Com-
bining Fig. 3 and Fig. 5, the transitions of the ioniza-
tion ratios can be qualitatively described by the keldysh
parameter γ. The γ-dependent ratio, serves as an indi-
cator that can be used to differentiate these ionization
channels. In experiment, the internuclear distance can
be determined by measuring the ionization ratio in the
tunneling region.

B. Comparisons with theoretical models

Next, the TDSE results are compared with those pre-
dicted by the strong field ionization models. In Fig 6,
the ionization rates for the 1σg state are presented as
functions of the laser peak intensity, using the TDSE,
MO-ADK, LG-SFA and VG-SFA, respectively. Here the
molecule lies parallel to the laser polarization direction.
The laser carrier wavelength is 800nm and the internu-
clear distance is 2 a.u. In the MPI region (I < 1.0I0), all
these models underestimate the TDSE ionization rates.
This is no wonder for the MO-ADK which is a tunnel-
ing model. While for the LG-SFA and VG-SFA, this
can be explained by noticing that their single-channel na-
ture, which neglects the intermedial excited states that
exist in the full TDSE calculations. In the TI region
(I > 3.0I0), the MO-ADK is able to yield agreement re-
sults with TDSE, while the LG-SFA overestimate and
the VG-SFA underestimate the TDSE results by orders
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FIG. 7: (Color online) The same as Fig. 6 but for the ratio of
ionization rate [W(90o)/W(0o)].

of magnitudes. The strong-field approximation treat the
continuum as Volkov states, neglecting the effect of the
long-range Coulomb potential with the nuclei , which is
incorporated in the MO-ADK. In the VG, a correction
factor CCoul = (κ3/F )2Zc/κ was proposed [40] to take
into account the Coulomb effects on the final state. SFA
models beyond the first order are needed to improve the
results [41].

We have computed the ratios of ionization rate
[W(90o)/W(0o)] for the 1σg state using the TDSE, MO-
ADK, LG-SFA and VG-SFA, respectively, as presented
in Fig. 7. Here the laser wavelength is fixed at 800nm.
To avoid the effect of CREI, the internuclear distances 2
a.u. is used. Unlike the TDSE results, the results pre-
dicted by these models display no obvious laser intensity
dependence. In other words, these models fail to predict
the transitions between MPI and TI, with varying the
laser intensity around the critical position γ ≈ 1. For
the MO-ADK model, this is an obvious result for that
it is a tunneling theory and the approximation is only
valid when γ < 1. The ratios predicted by MO-ADK are
0.43, in qualitatively agreement with ratios predicted by
TDSE in the tunneling (lower) step(≈0.58). However,
the LG-SFA and VG-SFA predict qualitatively different
ratios. Fig. 7 shows that the LG-SFA is applicable in
the tunneling region, yielding a ratio of 0.48, which are
closer to the TDSE results as compared to MO-ADK. In
the multi-photon (higher) step, the VG-SFA yields bet-
ter results than MO-ADK and LG-SFA. At this region,
the VG-SFA predicts the ratio to be ≈ 1.0, in agreement
with the corresponding results of TDSE (1.2).

The ratios presented in Fig. 3 all have two steps. For
lager internuclear distances (R≥4 a.u.), although the ra-
tios of the lower steps do not reach their tunneling values
due to the affect of CREI, their upper steps are still ref-
erencable. For the sake of clearance, in Fig. 8 we present
the ratios on the two steps of the TDSE curves separately,
for a wide range of internuclear distances. Note that for
the MO-ADK, LG-SFA and VG-SFA, the laser intensity
is 1.0 I0, since these ratios are insensitive to the inten-
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FIG. 8: (Color online) Ratios of ionization rate
[W(90o)/W(0o)] versus the internuclear distance, for
the 1σg state of H+

2 . The ratios are calculated from
TDSE(with lower-step △-△, upper-step �-�), VG-SFA(♦-
♦), LG-SFA(©-©) and MO-ADK(∇-∇), respectively. For
the MO-ADK, LG-SFA and VG-SFA calculations, the laser
intensity I=1.0 I0. The laser wavelength λ = 800nm.

sity. LG-SFA agrees well with MO-ADK. In fact, LG-
SFA recovers the ADK formula in the static-field limit
(ω → 0) [33]. LG-SFA and MO-ADK yield qualitatively
agreement results with TDSE in the tunneling region,
while agreement is found between VG-SFA and TDSE in
the multi-photon region. A similar disagreement between
LG-SFA and VG-SFA was also found in the calculation
of strong-field ionization for the HOMO (3σg state, ion-
ization potential=15.58eV) of N2 in [13]. For the laser
intensity of 1.5 I0 and carrier wavelength of 800nm, the
ratios W(90o)/W(0o) predicted by the VG-SFA, LG-SFA
and experiment [19] are: 1.25, 0.05 and 0.25, respectively.
The keldysh parameter at this case is approximate 0.9,
corresponding to the near tunneling region. We expect
an experiment with a lower laser intensity (larger γ) to
verify this.

V. CONCLUSION

In this paper, we have performed ab initio calculations
of the strong-field ionization from the ground state of
H+

2 , by numerically solving the 3D-TDSE. We used the

prolate spheroidal coordinates and discrete-variable rep-
resentation in these coordinates. The ground state wave
function were obtained accurately by diagonalizing the
field-free Hamiltonian. The wave functions were demon-
strated to have correct asymptotic behaviors as compared
to the GAMESS wave functions, and were used to cal-
culate the asymptotic coefficients for MO-ADK and as
input wave functions for the calculations of LG-SFA and
VG-SFA.
We have found that the ratios of ionization rates com-

puted by TDSE depend critically on the Keldysh param-
eter γ. As γ varying, the ratios display a two-step struc-
ture. For small internuclear distances, the transitions
take places around the keldysh parameter γ ≈ 1 and
were considered to be the competition between the multi-
photon ionization and tunneling ionization. For large
distances the transition positions shift to higher γ values
due to charge-resonance enhanced ionization. γ works
better in the long wave length case. Calculations showed
that the ratios predicted by MO-ADK, LG-SFA and VG-
SFA displayed no obvious laser intensity dependence and
no such step-like structure. However, LG-SFA and MO-
ADK were able to yield qualitatively agreement results
with TDSE in the tunneling region, while agreement was
found between VG-SFA and TDSE in the multi-photon
region. For multi-electron systems, the binding energy
of the lower orbital may differ from that of the valence
electron orbital by several eVs, therefore the ionization
of electron from the lower orbital can be hardly consid-
ered as tunnel ionization and the total ionization rates
might show different alignment dependence based on the
observation of the present work. We expect further inves-
tigation helps to clarify the discrepancy of experiments
and the ADK-like theory on the ionization of more com-
plex molecules.
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