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We present a theoretical model for describing the interaction of an electron, weakly bound in a
short-range potential, with an intense, few-cycle laser pulse. General definitions for the differential
probability of above threshold ionization and for the yield of high-order harmonic generation (HHG)
are presented. For HHG we then derive detailed analytic expressions for the spectral density of
generated radiation in terms of the key laser parameters, including the number, N , of optical cycles
in the pulse and the carrier-envelope phase (CEP). In particular, in the tunneling approximation,
we provide detailed derivations of the closed-form formulas presented briefly by M.V. Frolov et al.
[Phys. Rev. A 83, 021405(R) (2011)], which were used to describe key features of HHG by both H
and Xe atom targets in an intense, few-cycle laser pulse. We then provide a complete analysis of
the dependence of the HHG spectrum on both N and the CEP φ of an N-cycle laser pulse. Most
importantly, we show analytically that the structure of the HHG spectrum stems from interference
between electron wave packets originating from electron ionization from neighboring half-cycles near
the peak of the intensity envelope of the few-cycle laser pulse. Such interference is shown to be very
sensitive to the CEP. The usual HHG spectrum for a monochromatic driving laser field (comprising
harmonic peaks at odd multiples of the carrier frequency and spaced by twice the carrier frequency)
is shown analytically to occur only in the limit of very large N , and begins to form, as N increases,
in the energy region beyond the HHG plateau cutoff.

PACS numbers: 42.65.Ky, 32.80.Rm

I. INTRODUCTION

The high-order harmonic generation (HHG) process is
now the major means for producing ultrashort pulses in
the rapidly-developing field of attosecond physics (cf. re-
cent reviews [1–5]) as well as for producing coherent radi-
ation in the soft x-ray regime [6]. At present it is possible
experimentally to obtain HHG spectra using short (few
cycle) laser pulses [2, 7–9]. The short-pulse HHG spectra
are highly sensitive to the temporal behavior of the elec-
tric field of the laser pulse, i.e., to the shape of the pulse
envelope, f(t), and the carrier-envelope phase (CEP), φ.
For laser parameters in the tunneling regime, the three-
step scenario [10, 11] remains applicable for understand-
ing some basic features of HHG by atoms in a short laser
pulse. However, there are at least two important differ-
ences from the monochromatic field case. First, the HHG
emission becomes quasi-continuous, so that instead of an-
alyzing HHG rates it is more appropriate to analyze the
spectral density of radiation, ρ(EΩ), where EΩ = ~Ω is
the harmonic photon energy. Second, the shape of ρ(EΩ)
as a function of EΩ for a rapidly-varying laser pulse enve-
lope becomes sensitive to the CEP, requiring an analysis
of subcycle dynamics for a proper description.

From 1998 up to the present, the key differences be-
tween short-pulse and monochromatic field HHG spectra
have been delineated in numerous theoretical and exper-
imental investigations [12–23]. The most significant dif-
ferences were found in the shape and the plateau-cutoff
behavior of HHG spectra for “sine” (φ = π/2) and “co-
sine” (φ = 0) pulses. Nearly all of the theoretical analy-
ses of few-cycle pulse HHG spectra are based on numeri-
cal solutions of the time-dependent Schrödinger equation
(TDSE) [12, 14, 15, 19, 20] or on the use of the Lewen-
stein et al. model [24] and its modifications. Recently,
however, a closed-form formula for the spectral density
of radiation, ρ(EΩ), was presented [22], thus providing
an analytic description of the short-pulse HHG spectrum
similar to that for a monochromatic field [25].

A key feature of the closed-form analytic formula pre-
sented in Ref. [22] is that it confirms the validity for
the case of a few-cycle pulse of the phenomenological
parametrization [26–28] of the HHG yield in terms of the
photorecombination cross section (PRCS) σ(r) (which de-
scribes the final step of the three-step scenario) and the
“electron wave packet” (EWP) (which describes the ion-
ization of an atomic electron and its propagation in the
laser field). This parametrization is attractive since (i)
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it is valid for harmonics with energies in the region of
the HHG plateau cutoff, which are precisely the ones
used to produce attosecond pulses, and (ii) it involves
a field-free atomic parameter σ(r) that describes atomic
structure effects on HHG spectra [25–32]. Furthermore,
the explicit form of the EWP is now known not only for
monochromatic [25] and two-color [31] fields, but also for
the case of a few-cycle laser pulse [22]. Consequently, the
closed-form formula for the short-pulse case in Ref. [22]
makes possible the analytic exploration of many-electron
atomic features in the HHG spectrum and their modifi-
cation by CEP effects. As shown in Ref. [22], all that is
required is the PRCS σ(r) for the target atom and the so-
lutions of some classical equations for a given short laser
pulse. Results of the analytic formula for the HHG yield
in the few-cycle laser pulse case agree well with numeri-
cal TDSE results. Also, the dependence on the number
of cycles, N , in the laser pulse was shown in Ref. [22] to
reduce, for large N , to the analytic formula for the HHG
rate in the monochromatic field case [25].

The purpose of this paper is to present the theory upon
which the analytic predictions in Ref. [22] (for HHG by
H and Xe atom targets driven by a few-cycle laser pulse)
are based. By way of background, we note that our fo-
cus over much of the past decade has been on develop-
ing exact (and, when possible, closed-form analytic) re-
sults for a one-electron model atomic system subjected to
an intense laser field. The physical insights provided by
the closed-form analytic results obtained for our model
system have enabled us to generalize those results to
real, many-electron atomic systems and to predict many-
electron effects in strong-field processes for such real sys-
tems. Thus, for example, we predicted that a giant-
dipole resonance would be seen in the HHG spectrum
of Xe [25]. (This prediction was subsequently confirmed
by experiment [33].) Also, we were able to interpret [32]
experimentally-observed resonances in particular high-
order harmonics in singly-ionized plasmas of Cr+ and
Mn+ [34, 35] as due to potential barrier effects that lead
to a strong 3p→ 3d electric dipole transition, which dom-
inates the many-electron photoionization cross sections
of the outer subshells of those ions (as well as the corre-
sponding PRCSs to those subshells).

The theory we have developed for our model atomic
system is the time-dependent effective range (TDER)
theory [36, 37]. This theory combines effective range
theory (for describing a weakly bound electron in a
short-range potential of arbitrary shape) with the Flo-
quet or quasi-stationary, quasi-energy state (QQES) ap-
proach [for describing the electron’s interaction with a
monochromatic (or, more generally, periodic) laser field].
The TDER theory applies immediately to the case of in-
tense laser detachment of negative ions (see, e.g., its ap-
plication to laser detachment of the F− negative ion [38],
which demonstrated excellent agreement with experi-
mental results [39]). For the HHG process, we developed
a new theory applicable in general to any system interact-
ing with a monochromatic laser field for which a Floquet

or QQES approach is employed [40]. We then applied
this new formulation for HHG specifically to our TDER
model [41]. Based on this latter application of our new
HHG formulation within TDER theory, we were able to
obtain closed-form analytic formulas for HHG rates for
our model system [42]. As noted above, the physical in-
terpretation of our quantum-mechanically-derived, fac-
torized analytic formula confirmed the well-known semi-
classical three-step scenario for HHG [10, 11] and justified
(for our model system) the phenomenological factoriza-
tion of the HHG rate in terms of a PRCS and a EWP
function [26–28]. Most importantly, the clear physical
interpretation of each of the three factors in our factor-
ized formula allowed immediate generalization for appli-
cations to HHG spectra of real atoms [25].
In this paper we present an analytic description of

HHG by a short laser pulse based on two new theoretical
developments. First, in Sec. II we generalize the QQES
approach, which is one of the most powerful theoretical
methods for accurately describing atomic processes in a
strong monochromatic laser field, to describe the most
fundamental strong field processes [i.e., above-threshold
ionization (ATI) and HHG] in an intense, few-cycle laser

pulse. Second, in Sec. III we employ this generalized
QQES approach to extend our TDER theory for analytic
description of HHG by a monochromatic field to the case
of HHG by a periodic (non-monochromatic) pulse train
field. In Sec. IV we derive the quasi-classical limit of
the TDER results for the HHG amplitude in the case
of a periodic (non-monochromatic) pulse train field and,
as a limiting case, obtain closed-form analytic expres-
sions for the HHG yield for the case of a single short
pulse. In Sec. V we generalize our closed-form formulas
to the case of real atoms. In Sec. VI we present numerical
results of our analytic formulas, including comparisons
with numerical TDSE results, illustrations of sub-cycle
and inter-cycle interferences in short-pulse HHG spectra,
and illustrations of the dependence of HHG spectra on
the CEP and number of cycles in the laser pulse. In
Sec.VII we summarize our results and present some con-
clusions. Finally, in Appendices A and B we present some
of the lengthier analytic derivations of our TDER theory
of HHG driven by few-cycle laser pulses.

II. GENERALIZATION OF THE QQES
APPROACH TO THE CASE OF A SHORT

LASER PULSE

A. Description of a Periodic Laser Pulse Train

We use the length gauge to describe the dipole interac-
tion of an active atomic electron with a short laser pulse:

V (r, t) = −d ·F(t), d = er,

where F(t) is the electric vector of the pulse. Differ-
ent ways are used to describe a short pulse, using ei-
ther the electric vector of the pulse or its vector poten-
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FIG. 1. Sketch of the pulse train.

tial A(t) [43]. In this paper, we consider only linearly-
polarized pulses, so that

A(t) = ezA(t), (1)

F(t) = ezF (t) = −ez
1

c

∂A(t)

∂t
. (2)

Moreover, we do not specify the explicit form of A(t)
in our theoretical derivations, assuming only (i) that the
envelope of A(t) is different from zero in the interval (0, τ)
(where τ is the pulse duration) and (ii) that the shape of
A(t) is such that neither A(t) nor F(t) has any DC-field
component. [Explicit expressions for the fields A(t) and
F (t) used in our numerical examples are given in Sec. VI.]
To describe HHG and ATI in a short laser pulse of

duration τ , we consider first the interaction of an atomic
electron with an infinite train of short pulses separated in
time by a period T (cf. Fig. 1). Each pulse of this train
is the same as for an actual short laser pulse of duration
τ described by Eqs. (1) and (2), while T > τ . The dipole
interaction of such a pulse train (PT) with an atomic
electron is given by

Vτ (r, t) =
∞
∑

n=−∞

V (r, t+ nT ) = −d · Fτ (t), (3)

where

Fτ (t) = −1

c

∂Aτ (t)

∂t
=

∞
∑

n=−∞

F(t+ nT ),

Aτ (t) = ezAτ (t) =

∞
∑

n=−∞

A(t+ nT ). (4)

Owing to the periodicity of Vτ (r, t) (with period T ),
we can employ the QQES (or complex quasienergy) ap-
proach (cf., e.g., Ref. [44]) for an ab initio treatment of
nonlinear interactions of the PT with an atomic system.
From the QQES expressions for the HHG and ATI ampli-
tudes and rates for the PT, the results for a single short
pulse follow by taking the limit T → ∞ for fixed τ . Since
the QQES approach has mainly been used previously for
monochromatic or two-color fields F(t), in the next sub-
section we present the QQES results for ATI and HHG
amplitudes and rates for the general case of a periodic
field F(t), i.e., F(t) = Fτ (t), as in Eq. (3).

B. Basic QQES results for a periodic field

In the QQES approach, after adiabatic turn on of the
interaction (3), the wave function of a bound electron
with energy E0 evolves to the wave function,

Ψǫ(r, t) = e−iǫt/~Φǫ(r, t), Φǫ(t) = Φǫ(t+ T ), (5)

with the complex quasienergy ǫ = Re ǫ− (i~/2)Γ, where
Γ is the total ionization rate of the initial bound state due
to the field Fτ (t), while Re ǫ → E0 as Fτ (t) → 0. Since
we are describing the ionization of a bound state, the
periodic in time QQES wave function Φǫ(r, t) satisfies the
following complex boundary condition in open n-photon
ionization channels for r → ∞:

Φǫ(r, t) ∼
∑

n≥n0

An(pn)
eiknR−inωτ t

R
, (6)

kn =
√

2m(ǫ+ n~ωτ − up)
/

~, (7)

up =
e2

2mc2T

T /2
∫

−T /2

A2
τ (t)dt =

e2

2mc2T

T /2
∫

−T /2

A2(t)dt,(8)

R ≡ R(r, t) = r− |e|
mc

∫ t

Aτ (t
′)dt′, (9)

where ωτ = 2π/T , and n0 = [(up − Re ǫ)/(~ωτ )], where
[x] denotes the integer part of x. An(pn) is the amplitude
for ATI with absorption of n photons of energy ~ωτ and
photoelectron momentum pn = pnr̂, where r̂ ≡ r/r and

pn =
√

2m(Re ǫ+ n~ωτ − up). (10)

The differential n-photon ATI rate, dΓ (pn)/dΩpn
≡

Γ (pn), is given by

Γ (pn) =
~

m

∣

∣

∣

√

knAn(pn)
∣

∣

∣

2

. (11)

Note that Eqs. (6)–(11) reduce in the case of a monochro-
matic field to the QQES results obtained in Refs. [45, 46].
Thus, as in the case of a monochromatic field, the ATI
amplitude for the PT field Fτ (t) requires for its definition
only the asymptotic form of the QQES wave function.
An atom interacting with a non-monochromatic PT

field Fτ (t) emits harmonics with frequencies Ω = Nωτ ,
where N is an integer that may be both odd and
even. Similarly to the QQES result for a monochromatic
field [40], the harmonic generation amplitude, AΩ, can
be expressed in terms of the complex quasienergy ε of
an atom in two fields, the strong field Fτ (t) and a weak
(infinitesimal) harmonic field Fh(t) = ezFh cos(Ωt+φh):

AΩ = −4
∂ε

∂F̃h

∣

∣

∣

∣

Fh=0

, F̃h = Fhe
iφh . (12)

¿From the definition (12) for the HHG amplitude, the
HHG rate for a harmonic with frequency Ω is [40]:

RΩ =
Ω3|AΩ|2
8π~c3

. (13)
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Note that, as shown in Ref. [40], the harmonic amplitude

AΩ in Eq. (12) equals the Fourier-component D̃Ω of the

dual dipole moment [47, 48], D̃(t) = ezD̃(t), where

D̃Ω =
2

T

∫ T /2

−T /2

D̃(t)eiΩtdt, (14)

C. General definitions of ATI and HHG
probabilities for the case of a short pulse

In the case of a short laser pulse, both the photoelec-
tron and the generated radiation spectra are continuous.
Thus the concept of a rate cannot be used to describe
ATI and HHG spectra. Instead some continuous func-
tions of electron energy Ep and frequency Ω (or photon
energy EΩ = ~Ω) should be introduced in this case.
We start with ATI, in which case the doubly differen-

tial probability to detect the photoelectron in the energy
interval (Ep, Ep + dEp) and in the solid angle dΩp,

P(p) ≡ d2P

dEpdΩp

, (15)

is the proper quantity for describing ATI by a single short
pulse. To find an expression for P(p), we consider first
the total ionization probability Γtot for a period T of the
PT field Fτ (t):

Γtot = T
∑

n≥n0

∫

dΩpn
Γ (pn), (16)

where we have approximated ǫ by E0 in Eq. (7), so that

n0 = [(up − E0)/(~ωτ )], pn =
√

2m(E0 + n~ωτ − up),
and kn = pn/~. In the limit ωτ → 0, the sum over n in
Eq. (16) can be replaced by an integral over the electron’s
momentum p [or energy Ep = p2/(2m)], substituting

pn =
√

2m(n~ωτ + E0 − up) → p, (17)

∑

n>n0

→ 1

m~ωτ

∫

p dp =
1

~ωτ

∫

dEp. (18)

The result is:

Γtot =
2π

~ω2
τ

∫ ∫

Γ (p)dEpdΩp, (19)

where

Γ (p) =
p

m
|A(p)|2, A(p) ≡ An(pn)

∣

∣

∣

∣

pn=p

. (20)

Thus the desired short pulse probability P(p) is given by

P(p) =
2πp

m~
lim

ωτ→0

|A(p)|2
ω2
τ

. (21)

To describe harmonic generation by an atom in a short
laser pulse, we use the spectral density of radiation,

ρ(EΩ). Consider first the total energy radiated during
a period T of the PT Fτ (t):

Etot = T
∑

N

~ΩRΩ. (22)

As for the case of ATI, in the limit T → ∞, the sum in
Eq. (22) can be replaced by the integral:

Etot = lim
ωτ→ 0

2π

ω2
τ

∫

dEΩΩRΩ ≡
∫

dEΩρ(EΩ),

where the spectral density ρ(EΩ) is:

ρ(EΩ) = 2πΩ lim
ωτ→0

RΩ

ω2
τ

. (23)

We emphasize that the limit in Eq. (23) is taken at fixed
Ω. Generalization of the concept of a dual dipole moment
to the case of a short laser pulse is obtained by substi-
tuting Eq. (13) for RΩ into Eq. (23) (using AΩ = D̃Ω):

ρ(EΩ) =
Ω4

4~c3
|D̃(Ω)|2. (24)

The Fourier-transform, D̃(Ω), of the dual dipole moment
for a single short pulse is defined by the formal limit:

D̃(Ω) = lim
ωτ→0

D̃Ω/ωτ , (25)

where D̃Ω [cf. Eq. (14)] is the Fourier-component of the
dual dipole moment for a periodic field.
The formal definitions in Eqs. (21) and (23) for P(p)

and ρ(EΩ) in terms of ATI and HHG rates for a peri-
odic field are quite general and are valid for any atomic
system. However, in practice appropriate expressions for
An(pn) and D̃Ω are necessary in order that the limits
in Eqs. (21) and (25) can be calculated. Such expres-
sions are most easily obtained only for model systems,
such as the one used in the TDER theory [36, 37] to an-
alyze strong field processes in a monochromatic field. In
Sec. III we describe briefly basic results of this model for
the case of a periodic field, which will then be used to
specify the spectral density (23) for a short pulse in the
framework of TDER theory. (The TDER results for ATI
by a short laser pulse will be published elsewhere.)

III. TDER RESULTS FOR THE COMPLEX
QUASIENERGY IN A PERIODIC FIELD

Within TDER theory [36, 37] calculations of the com-
plex quasienergy ε in Eq. (12) simplify so that most can
be carried out analytically. This theory treats the elec-
tron in a short-range potential U(r) (of radius rc) that
supports only a single bound state ψκlm(r) with energy
E0 = (~κ)2/(2m), angular momentum l, and the follow-
ing asymptotic behavior at large distances:

ψκlm(r)|κr≫1 = Cκl

√
κr−1e−κrYlm(r̂), (26)
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where Cκl is a (dimensionless) asymptotic coefficient. In
the TDER model the interaction of the active electron
with the potential U(r) is described by the l-wave scat-

tering phase shift δl(k) (k =
√

2mE/~2). This phase is
parameterized within effective range theory [49] in terms
of the scattering length (al) and the effective range (rl),
which are the parameters of the problem.
The solution of the QQES problem within the TDER

model simplifies significantly owing to the boundary con-
dition for the QQES wave function Φε(r, t) in this model
at small distances, r . rc (cf. Refs. [36, 37] for details):

∫

Φε(r, t)Y
∗
lm(r̂)dΩ ∼

[

1

rl+1
+ · · ·+Bl(ε)(r

l + · · · )
]

g(t)

+ i
2l+ 1

[(2l+ 1)!!]2
mrl
~

(rl + · · · ) d
dt
g(t), (27)

where ε is the complex quasienergy in the combined field
F(t), which is required for calculation of the HHG am-
plitude according to Eq. (12):

F(t) = ezF(t) = Fτ (t) + Fh(t). (28)

In Eq. (27), g(t) is a periodic function with period T ,
and the parametrization of the coefficient Bl(ε) is very
similar to that for the scattering phase δl(k) [49]:

(2l− 1)!!(2l + 1)!!Bl(ε) = k2l+1 cot δl(k)

= − 1

al
+

1

2
rlk

2, k =
√

2mε/~2.

Within the TDER theory, the four-dimensional (in r

and t) TDSE for ε and Φε(r, t) reduces to a homogeneous
one-dimensional integro-differential equation (a key ad-
vantage), representing an eigenvalue problem for ε and
g(t). For a bound s-state, this equation is (cf. the similar
results for a monochromatic field in [36, 37]):

g(t)− κr0
2|E0|

(

∆εg(t) + i~
dg(t)

dt

)

=
2π~2

κm

∫ ∞

0

dτ
[

G(t, t− τ)g(t− τ)eiετ−

−G(0)(t, t− τ)g(t)
]

. (29)

Here ∆ε = ε − E0, G
(0)(t, t − τ) ≡ G(0)(r = 0, t; r′ =

0, t − τ) is the ordinary retarded Green function for a
free electron, and G(t, t − τ) ≡ G(r = 0, t; r′ = 0, t− τ)
is that for an electron in the field F(t). Equation (29)
and the equivalent infinite system of homogeneous linear
equations for ε and the Fourier-coefficients of the func-
tion g(t) are convenient for numerical analyses. How-
ever, for analytical analyses it is more convenient to rep-
resent Eq. (29) in terms of the quasienergy representa-

tions, G(0)
ε (t, t − τ) and Gε(t, t − τ), of the Green func-

tions G(0)(t, t − τ) and G(t, t − τ). [An explicit form of
Gε(r, t; r

′, t′) for a monochromatic field can be found in
Ref. [50].] Using the relation between G(r, t; r′, t′) and

Gε(r, t; r
′, t′) [50] (cf. also Appendix B in Ref. [41]), the

integral term in Eq. (29) can be represented as:
∫ ∞

0

[

G(t, t− τ)g(t− τ)e
i
~
ετ −G0(t, t− τ)g(t)

]

dτ

=
1

T

∫ T /2

−T /2

G̃ε(t, t
′)g(t′)dt′, (30)

where

G̃ε(t, t
′) ≡ Gε(t, t

′)− G(0)
ε (t, t′)

= − m

2π~2
exp

(

− i

~

∫ t

t′

[

e2A2(t′′)

2mc2
− ũp

]

dt′′
)

×
∑

n

e−inωτ (t−t′)
(

eik̃n|R(t,t′)| − 1
)

|R(t, t′)| , (31)

R(t, t′) =
|e|
mc

∫ t

t′
A(t′′)dt′′, (32)

A(t) = Aτ (t)−
cFh

Ω
sin(Ωt+ φh), (33)

ũp =
e2

2mc2T

∫ T /2

−T /2

A2(t)dt, (34)

~
2k̃2n
2m

= n~ωτ + ε− ũp, (35)

and A(t) = ezA(t) is the vector-potential of the field
F(t). The result is the following alternative form of the
basic TDER equation (29) for a periodic field:

g(t)− κr0
2|E0|

(

∆εg(t) + i~
dg(t)

dt

)

=
2π~2

mκT

∫ T /2

−T /2

G̃ε(t, t
′)g(t′)dt′. (36)

IV. QUASICLASSICAL RESULTS FOR THE
HHG AMPLITUDE AND SPECTRAL DENSITY

ρ(EΩ) IN TDER THEORY

We consider harmonic generation by a short pulse
whose vector potential, A(t), and electric field, F (t),
are slowly varying on the atomic time scale of order
T0 = ~/|E0|. For a short pulse with carrier frequency
ω, this is equivalent to

~ω ≪ |E0|. (37)

Moreover, we assume that

max{F (t)} ≪ F0, F0 =
√

8m|E0|3/(|e|~), (38)

where max{F (t)} is the maximum value of F (t) in the
interval (0, τ). When the conditions (37) and (38) are
fulfilled, the TDER result for ρ(EΩ) can be obtained in
analytic form in the quasiclassical approximation. In or-
der to carry out the limiting procedure in Eq. (25), we
obtain first the quasiclassical result for the HHG ampli-
tude D̃Ω for small, but finite ωτ , e.g., ωτ ≪ ω.
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A. Analytic results for a periodic field

Since for a slowly-varying short pulse the function g(t)
in Eq. (36) also varies slowly with t, we can set g(t) =
const and then average Eq. (36) in t over the period T .
(This procedure is similar to the adiabatic approximation
used for the case of a monochromatic field [51] and its
accuracy for describing HHG for this case is discussed in
Ref. [41]). Thus, Eq. (36) reduces to a transcendental
equation for the complex quasienergy ε:

1− κr0
2|E0|

(ε− E0) = I(ε, Fh), (39)

where

I(ε, Fh) =
2π~2

mκT 2

∫∫ T /2

−T /2

G̃ε(t, t
′)dtdt′. (40)

[Note that Eq. (39) at Fh = 0 gives the transcendental
equation for the quasienergy ǫ in the PT field Fτ (t).]
Approximating ε = ǫ + ∆ǫ (where ∆ǫ ∝ Fh) and ex-

panding the right side of Eq. (39) to first order in both
Fh and ∆ǫ, we obtain an expression for the linear (in
Fh) correction ∆ǫ to the complex quasienergy ǫ in the
PT field Fτ (t) induced by a weak harmonic field Fh(t):

∆ǫ = −Fh

I ′
Fh

(ǫ, 0)

κr0/(2|E0|) + I ′
ε(ǫ, 0)

, (41)

where I ′
x ≡ ∂I/∂x. In the quasiclassical approximation,

the quasienergy ǫ in Eq. (41) can be approximated by E0.
Moreover, the denominator in Eq. (41) is connected to
the normalization factor for the QQES wave function [36,
37] and may be approximated by its unperturbed value:

κr0/(2|E0|) + I ′
ǫ(ǫ, 0) ≈ −(|E0|C2

κ0)
−1,

where the asymptotic coefficient Cκ0 is defined by
Eq. (26). Thus the result (41) for ∆ǫ reduces to:

∆ǫ = FhC
2
κ0I ′

Fh
(E0, 0)|E0|. (42)

As shown in Appendix A, the derivative I ′
Fh

can be

parameterized in terms of Fourier-components D̃±Ω of
the dual dipole moment [cf. Eq. (14)]:

4C2
κ0|E0|I ′

Fh
(E0, 0) = D̃Ωe

iφh + D̃−Ωe
−iφh , (43)

where the HHG amplitude D̃Ω can be expressed as:

D̃Ω = i~3
√

2πκ|e|
m3

1

T 2

∞
∑

n>n0

∑

ν

∑

σ=±1

dσνn , (44)

dσνn =
C2

κ0
√

σF (tσν )

×
∫ T /2

−T /2

e−iS(t,tσν ;pn)/~+iΩtPσ(t; pn)

R(t, tσν )
[

[Pσ(t;pn)]2

2m − E0

]2 dt, (45)

where

Pσ(t; p) = p+ σ
|e|
c
A(t), (46)

pn =
√

2m(n~ωτ + E0 − up),

S(t, t1; p) =

t
∫

t1

(

[Pσ(t
′; p)]2

2m
− E0

)

dt′, (47)

R(t, t1) =
|e|
mc

∫ t

t1

A(t′)dt′. (48)

The labeled times tσν [= tσν (pn)] in Eq. (45) are roots of
the saddle point equation,

Pσ(t
σ
ν ; pn) = −i~κ, (49)

having positive imaginary part, Im tσν .
As in the monochromatic field case [52], Eqs. (44),

(45) for the HHG amplitude of a PT field Fτ (t) have
a clear physical interpretation. They express the HHG
amplitude as a coherent sum of partial amplitudes corre-
sponding to the generation of harmonics by an electron
created in the continuum by n-photon ATI. For a given
n, these amplitudes are determined by the saddle points
tσν of the classical action S(t, t1; pn) [cf. Eq. (49)], which
may be interpreted as complex “ionization times.” Fi-
nally, σ = ±1 distinguishes electrons escaping in opposite
directions along the polarization vector ez. The number
of saddle points tσν contributing to the sum over ν in
Eq. (44) depends on the shape of the vector potential
A(t). For a monochromatic field of frequency ωτ , only
two saddle points (with σ = ±1) contribute, in which
case our results (44), (45) coincide with those of Ref. [52]
as well as with those obtained within the quasiclassical
approximation for the TDER model [41].

B. Analytic results for a short pulse

To apply the quantum results (44), (45) for the HHG

amplitude D̃Ω, obtained for the case of a finite ωτ , to the
case of a single short pulse (i.e., in the limit ωτ → 0),

we use the definition of the Fourier-transform D̃(Ω) in
Eq. (25). Replacing the sum over n in Eq. (44) by an
integral over the electron’s momentum p according to
Eqs. (17) and (18), the right side of Eq. (44) becomes
proportional to 1/T [= ωτ/(2π)]. The limit ωτ → 0 in
Eq. (25) is thus finite, giving the result

D̃(Ω) =
1

π

∫ ∞

−∞

D̃(t)eiΩtdt, (50)

where

D̃(t) = i

√

|e|
2π(mκ)3

∑

σ=±1

∞
∫

0

dp
∑

ν

dσν (p, t),

dσν (p, t) =
|E0|C2

κ0e
−iS(t,tσν ;p)/~Pσ(t; p)p

√

σF (tσν )R(t, t
σ
ν )
[

[Pσ(t;p)]2

2m − E0

]2 . (51)
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Approximate evaluations of the integrals in Eqs. (50)
and (51) (derived in Appendix B) lead to further simpli-

fications of the HHG amplitude D̃(Ω) for a single short
pulse. For a short pulse with given carrier frequency, ω,
and carrier-envelope phase (CEP), φ, we parametrize the
vector potential A(t) in Eq. (1) as follows:

A(t) = f(t) sin(ωt+ φ), (52)

where the pulse envelope, f(t), has its maximum at t = 0.
The results in Appendix B, derived for a vector po-

tential A(t) of arbitrary form, show that when A(t) has
the form in Eq. (52), then the generation amplitude has
the form presented in Ref. [22], i.e., a coherent sum of
partial amplitudes Aj describing the generation of radia-
tion with frequency Ω by electrons ionized at each (jth)
optical half-cycle of the pulse described by (52):

D̃(Ω) =
√
−i |e|a0

ω

∑

j

(−1)jAje
iϕj , (53)

Aj = χ(j)
τ χ(j)

w χσ(E), (54)

~ϕj = EΩt
(j)
r −

∫ t(j)r

t
(j)
i

[

Ecl
max(t

(j)
i , t)− E0

]

dt, (55)

where EΩ = ~Ω, E = EΩ−|E0|, and the index j enumer-

ates the ionization (t
(j)
i ) and recombination (t

(j)
r ) times

for the jth half-cycle [where t
(j)
r lies in the (j + 1)th

half-cycle]. These times satisfy equations for the ex-
treme closed classical trajectory (starting and ending

at times t
(j)
i and t

(j)
r ) along which an electron having

zero initial velocity gains the maximum classical energy,

Ecl
max(t

(j)
i , t

(j)
r ):

A(t
(j)
i )− 1

t
(j)
r − t

(j)
i

∫ t(j)r

t
(j)
i

A(t)dt = 0, (56)

1

c

A(t
(j)
r )−A(t

(j)
i )

t
(j)
r − t

(j)
i

+ F (t(j)r ) = 0. (57)

Each dimensionless partial amplitude Aj in Eq. (54)
has three factors, in accord with the three-step scenario
for HHG: ionization of the active electron in an atom
by laser-induced tunneling, propagation along a closed
trajectory driven by the laser field, and, finally, recombi-
nation to the initial bound state of the parent atom ac-
companied by emission of a harmonic photon ~Ω [10, 11].
The tunneling factor (χτ ) in Eq. (54) has the form:

χ(j)
τ =

4Ck0γ̃j
(κa0)2

√

F̃j

F0
e−F0/(3F̃j), γ̃j =

√

2m|E0|ω
|e|F̃j

(58)

where F̃j ≡ F̃ (t
(j)
i ) [cf. Eq. (B17)], F0 = (κa0)

3Fat,
Fat = |e|/a20, a0 = ~

2/(me2) is the Bohr radius, and
γ̃j is an effective value of the Keldysh parameter γ [53]
for the jth half-cycle. We emphasize that the true physi-

cal meaning of the factor χ
(j)
τ is that it is the detachment

amplitude for low-energy [E = p2/(2m) → 0] electrons
ejected by a laser pulse along its polarization axis. In
the tunneling regime, the dominant term in an expan-
sion of the short-pulse detachment amplitude, A(p, F ),
in the Keldysh parameter has a form similar to that for a
monochromatic field with amplitude F [54] (cf. Ref. [55]):

A(p = 0, F ) =
Cκ0

√
κγ

2π

√

F

F0
e−F0/(3F ). (59)

Comparing Eqs. (58) and (59), χ
(j)
τ can be presented in

terms of the detachment amplitude:

χ(j)
τ = 8πA(p = 0, F̃j)/(κ

5/2a20). (60)

The factor χ
(j)
w in Eq. (54) describes propagation of an

electron (tunnel-ionized in the jth half-cycle) in the laser-
dressed continuum. It involves an Airy function Ai(ξj):

χ(j)
w =

Ai(ξj)

ζ
1/3
j (ωat∆tj)3/2

, (61)

where ∆tj = t
(j)
r − t

(j)
i ,

ζj = −I(t
(j)
r )

2Iat

(

1− F (t
(j)
r )

F (t
(j)
i )

+
Ḟ (t

(j)
r )

F (t
(j)
r )

∆tj

)

, (62)

ξj =
E − E

(j)
max

ζ
1/3
j Eat

, (63)

E(j)
max = Ecl

max(t
(j)
i , t(j)r )− F (t

(j)
r )

F (t
(j)
i )

|E0|, (64)

Ecl
max(t

(j)
i , t(j)r ) =

e2

2mc2

(

A(t(j)r )−A(t
(j)
i )
)2

, (65)

and ωat = 2.6 × 1017 s−1, Eat = 27.21 eV, Iat = 3.51 ×
1016 W/cm2.
The last factor, χσ(E), in Eq. (54) describes the re-

combination step of the three-step scenario:

χσ(E) = Cκ0
q

(q2 + 1)2
, (66)

where q =
√

E/|E0| = p/(~κ).
Substituting the amplitude (53) into Eq. (24), the spec-

tral density ρ(EΩ) acquires the factorized form [26–28]:

ρ(EΩ) = w(E,F )σ(r)(E). (67)

Here σ(r)(E) is the TDER result for the differential

PRCS of an electron with momentum p (p =
√
2mE)

parallel to the polarization direction ez of the harmonic
(recombination) photon of energy EΩ (cf. Ref. [42]):

σ(r)(E) = α3χ2
σ(E)

(q2 + 1)3

q
a20, α = e2/(~c). (68)

The term w(E,F ) in Eq. (67) is the EWP, which can be
presented as follows:

w(E,F ) =
∑

j,k

sjk
√
wjwk cos(ϕj − ϕk), (69)
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where sjk ≡ (−1)j−ksign(χ
(j)
w χ

(k)
w ). As for the case of

a monochromatic field [25], the partial EWP wj for the
jth half-cycle can be presented as a product of tunneling
(Ij) and propagation (Wj) factors:

wj =
πΩ

2ω2
IjWj , (70)

Ij =
1

16π
(χ(j)

τ )2(κa0)
5 =

4γ̃2jΓst(F̃j)

πκvat
, (71)

Wj =
p

ma30
(χ(j)

w )2 =
p

m

Ai2(ξj)

(vat∆tj)3ζ
2/3
j

, (72)

where Γst(F̃j) is the decay rate for a weakly-bound s-
state electron in a static electric field F [56]:

Γst(F ) = C2
κ0

F

2F0
e−2F0/(3F̃ ) |E0|

~
. (73)

As Eqs. (70) – (72) show, the magnitude of the j-th

EWP wj is governed by the DC ionization rate Γst(F̃j),

where F̃j is close to the maximum value of the field F (t)

during the jth half-cycle. Since the magnitude of Γst(F̃j)

decreases exponentially with decreasing F̃j , only a few
optical half-cycles near the peak intensity of a short pulse
contribute significantly to the sum in Eq. (69). For each
half-cycle, the propagation factor Wj describes plateau
structures in the spectrum of harmonics generated by
electrons created during this half-cycle. In particular,

the position of the jth plateau cutoff, E
(j)
cut, is given by

an equation similar to that for a monochromatic field [42]:

E
(j)
cut = |E0|+ Ecl

max(t
(j)
i , t(j)r )

−F (t
(j)
r )

F (t
(j)
i )

|E0| − 1.019ζ
1/3
j Eat. (74)

V. GENERALIZATION TO THE ATOMIC CASE

The TDER results for ρ(Ω) presented in Sec. IV are
valid for a weakly-bound electron in an s-state. How-
ever, we have confirmed that the derivations described in
Appendix B can be generalized for the case of a weakly-
bound state with nonzero angular momentum l in a way
similar to that used to obtain our TDER HHG results for
a bound p-state in a monochromatic field [41]. As in the
latter case, since the centrifugal barrier suppresses the
return of a continuum electron with l > 0 to the atomic
core, the harmonic yield for substates with nonzero an-
gular momentum projection m (in which case l ≥ |m|) is
suppressed by a factor (|E0|∆tj/~)2|m| ∼ (|E0|/~ω)2|m|

compared to the case m = 0. Nevertheless, our analysis
(not presented) shows that the spectral density ρ(Ω) for
m = 0 has the factorized form (67) with the same partial
propagation factors (72) as for l = 0. Thus Wj is essen-
tially independent of the spatial symmetry of the bound
state, while both Ij and σ(E) are sensitive to l. More-
over, we note that the TDER PRCS (68) coincides with

that in the Born approximation since, as a consequence
of dipole selection rules, it is determined by the p-wave
scattering phase, which is zero in the TDER model for
a single bound s-state. However, our recent analysis in
Ref. [57] for the TDER model with two (s and p) bound
states shows that, indeed, the TDER HHG results involve
the exact (non-Born) result for the PRCS σ(E).
The analytic results (67) – (72) describing HHG by a

short laser pulse thus involve only two constituents, Ij
and σ(E), that depend on the atomic model employed.
Since both of these constituents have a transparent phys-
ical meaning, it is reasonable to expect that the general-
ization of the TDER results for ρ(Ω) to the case of neu-
tral atoms (as well as their positive and negative ions)
requires only the replacement of Ij and σ(E) by their
corresponding atomic counterparts. The result (71) for
Ij should thus be replaced by:

Ij =
4γ̃2jΓst(F̃j)

(2l+ 1)πκvat
, (75)

Γst(F̃j) =
|E0|
~

(2l + 1)C2
κl

(

2Fat

F̃j

)2ν−1

e−2Fat/(3F̃j),

where Γst(F ) is the tunneling rate for a bound atomic
electron [in the state ψκlm(r) with energy E0, angular
momentum l, and projection m = 0] in a static electric

field eF̃j [56], and Cκl is determined by the asymptotic
form of ψκlm(r) [cf. Eq. (26)]:

ψκlm(r)|κr≫1 = Cκl

√
κr−1(κr)νe−κrYlm(r̂), (76)

where ν = Z/(κa0) and Z is the charge of the atomic
core. Also, the TDER PRCS (68) should be replaced by
the corresponding cross section σ(r)(E) for the specific
atom considered. For the ground state H atom, σ(r)(E)
is known analytically [58],

σ(r)(E) = 32πα3 e−4q−1arctan(q)

q2(1 + q2)2(1− e2π/q)
a20, q =

pa0
~
,

(77)
while for other atoms experimental or theoretical data
for σ(r)(E) should be used.
We present the resulting generalized expression for the

spectral density ρ(EΩ) in a way that separates terms with
j = k and j 6= k in the sum in Eq. (69):

ρ(EΩ) = w(E)σ(r)(E), (78)

where the EWP w(E) is given by:

w(E) = wdir + wint. (79)

The “direct” term, wdir, includes only terms with j = k
and is given by the sum of half-cycle EWPs wj(E):

wdir =
∑

j

wj(E), (80)

wj(E) =
πΩ

2ω2
IjWj , (81)
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where Ij and Wj are given by Eqs. (75) and (72). The
“interference” term, wint, originates from the interference
between the half-cycle amplitudes Aj andAk (j 6= k) and
thus involves their phase difference:

wint =
∑

j 6=k

skj

√

wj(E)wk(E) cos(ϕj − ϕk), (82)

where the phase ϕj is given by Eq. (55).

VI. NUMERICAL RESULTS

A. Comparison with TDSE results

In order to check the accuracy of our analytical re-
sults, we present comparisons with results of direct nu-
merical solutions of the three-dimensional (3D) TDSE.
The TDSE was solved by two different methods, both of
which used the dipole length gauge:
(i) In spherical coordinates using a spherical harmonic
expansion of the wave function (cf. Refs. [59, 60]);
(ii) In cylindrical coordinates using a split-step method
with a fast Fourier transform with respect to z and
a discrete Fourier-Bessel transform with respect to ρ
(cf. Refs. [31, 61, 62]).
In the first method, f(t) in Eq. (52) has a sin2-shape:

f(t) = −cF
ω

{

sin2( tπτ ), t ∈ [0, τ ]
0, otherwise

, (83)

where F is the peak value of the electric field F (t),
τ = 2πN/ω, and N is the number of optical cycles
in the laser pulse. In Fig. 2 we present numerical re-
sults for a peak intensity I = cF 2/(8π) = 1014W/cm2

and a wavelength λ = 3.1µm (~ω = 0.4 eV). For these
parameters, the convergence of the numerical results is
achieved by solving the TDSE within the sphere defined
by 0 ≤ r ≤ 5000 a0, with a uniform radial grid step
∆r = 0.042 a0, a uniform temporal step ∆t = 0.022 tat
(tat = ~/Eat ≈ 2.42 × 10−17 s), and including orbital
angular momenta L up to Lmax = 500.
In the second method, a Gaussian-like parametrization

of the laser pulse is used:

A(t) =
∂A(t)

∂t
, F(t) = −1

c

∂2A(t)

∂t2
, (84)

A(t) = ez
cF̃

ω2
f̃(t) cos(ωt+ φ),

F̃ = F

(

1 +
ln 2

(πN)2

)−1

,

f̃(t) = exp

[

−2 ln(2)
t2

τ2g

]

,

where τg = 2πN/ω, and N is the number of optical cy-
cles in the full width at half maximum (FWHM). (Note
that the FWHM for a sin2-shaped pulse is about three
times smaller than for a Gaussian pulse with the same

N .) Numerical results are presented for λ = 1.6µm
(~ω = 0.775 eV) and I = 2 × 1014W/cm2. Calculations
for this case (cf. Fig. 3) were performed within the cylin-
der bounded by −zmax ≤ z ≤ zmax, 0 ≤ ρ ≤ ρmax, with
zmax = 614 a0, ρmax = 59 a0. To avoid reflection from
the boundary of the cylinder, the imaginary potential
method [63] was used to absorb the wave function at the
boundary. A uniform grid was used for both the integra-
tions over time (with grid step size ∆t = 0.025 ta) and
over z (with ∆z = 0.3 a0), whereas the grid nodes in ρ
were placed nonuniformly: the grid was more dense near
ρ = 0, and the total number of nodes, Nρ, was 420.
As shown in Figs. 2 and 3, the results of the analytic

formula in Eq. (78) are in excellent agreement with the
numerical TDSE results, reproducing even the most mi-
nor details of the HHG spectra at the high-energy end
of the plateaus. Small deviations of the analytic results
from the TDSE results shown in Fig. 3 at the lower energy
end of the HHG spectrum originate from the depletion
(∼ 20%) of the ground state in an intense field, whereas
this depletion is negligible (< 2%) for the longer wave-
length results shown in Fig. 2. It is well established by
many theoretical and experimental groups that the shape
of ρ(EΩ) depends crucially on the CEP [12–16, 18–21]
(see also reviews [2, 7–9]); i.e., for φ = 0 [cf. Figs. 2(a)-
(c) and 3(a)], two-plateau structures in HHG spectra are
observed, while for φ = π/2 there is sometimes only a
single plateau in each HHG spectrum [cf. Figs. 3(d)-(f)].
We note that the shapes of the high-energy plateaus in
Figs. 2 and 3 are sensitive to the partial (jth half-cycle)
Keldysh parameters γ̃j [cf. Eq. (58) and Table I]. In
particular, for the low-frequency case: (i) two-plateau
structures are observed even for the sine-like (φ = π/2)
pulse [cf. Figs. 2(e)-(f)]; and (ii) additional bump-like
structures can appear beyond the second plateau cutoff
[cf. Figs. 2(d)-(e)]. Such crucial dependence of the shapes
of HHG spectra on the laser parameters (e.g., CEP, wave-
length, and pulse envelope) can be clearly explained in
the framework of the present analytic theory, as we show
in the following three sub-sections.

B. Sub-cycle and inter-cycle interferences in
short-pulse HHG spectra

To understand the interference features of the short-
pulse HHG spectra, it is necessary to examine the role of

TABLE I. Numerical values of Ij (75), E
(j)
cut (74), and γ̃j (58)

for three half-cycles in Figs. 2(b) and 2(e). |E0| = 13.605 eV.

φ = 0 φ = π/2

j Ij E
(j)
cut (eV) γ̃j j Ij E

(j)
cut (eV) γ̃j

2 5.76(-9) 228.8 0.50 2 6.35(-7) 272.8 0.38

3 5.40(-6) 284.8 0.32 3 1.25(-5) 260.2 0.30

4 1.18(-5) 207.5 0.30 4 4.47(-6) 143.6 0.33
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FIG. 2. (Color Online) HHG spectra of the H-atom for
a sin2-shaped pulse [cf. Eq. (83)] with peak intensity I =
1014 W/cm2 and λ = 3.1µm. Grey area: Spherical coordinate
TDSE results (see text); Solid (blue) lines: analytic results
using Eq. (78). Results are given for three values of N , the
number of cycles per pulse, and two values of the CEP, φ,

as shown in each panel. Arrows mark the positions of E
(j)
cut

[cf. Eq. (74)] given in Table I for three half cycles j.

the various contributions to the spectra. The contribu-
tion of a partial wave packet wj to the total HHG am-
plitude is governed by both the ionization [cf. Eq. (75)]
and the propagation [cf. Eq. (72)] factors. However, the
ionization factor determines only the magnitude of wj

and does not depend on the harmonic energy EΩ. Its
value depends only on the ionization potential |E0| and
the electric field F̃j at the moment of ionization [in fact,
this field is close to the maximum value of F (t) during
the jth half-cycle]. In the contrast, the propagation fac-
tor depends essentially on EΩ: this factor oscillates for

EΩ < E
(j)
cut and decreases exponentially in the region be-

yond the cutoff, EΩ > E
(j)
cut, where the cutoff energy for

the jth half-cycle is given by Eq. (74). If for a given laser
pulse there are only a few half-cycles with large values

of E
(ji)
cut , but for which E

(j1)
cut is considerably larger than
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FIG. 3. (Color Online) The same as in Fig. 2, but for a
Gaussian pulse [cf. Eq. (84] with I = 2 × 1014 W/cm2 and
λ = 1.6µm. Grey area: Cylindrical coordinate TDSE results
(see text).

E
(j2)
cut while F̃j1 < F̃j2 , and E

(j2)
cut > E

(j3)
cut but F̃j2 < F̃j3 ,

and so on, then a multi-plateau structure is formed in
the high-energy part of the HHG spectrum owing to the
absence of overlapping partial HHG amplitudes, Aj . In

Table I we present the three largest values of E
(j)
cut to-

gether with the ionization factors Ij and the effective
Keldysh parameters γ̃j for the laser parameters applica-
ble to the results in Figs. 2(b) and 2(e). For the cosine-
pulse (φ = 0) results in Fig. 2(b), the partial amplitude
for j = 2 is suppressed relative to the partial amplitudes
with j = 3 and j = 4 owing to the smallness of the ioniza-
tion factor I2, while for the sine-pulse (φ = π/2) results
in Fig. 2(e) the contributions from all three half-cycles
(with j = 2, 3, 4) are clearly visible.
The difference in HHG spectra for cosine-like (φ = 0)

and sine-like (φ = π/2) pulses is clearly seen in Figs. 2
and 3: for φ = 0, high energy plateaus exhibit large
scale oscillations [cf. Figs. 2(a), 3(a)], while for φ = π/2
these oscillations are modulated by fine-scale oscillations
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FIG. 4. (Color Online) Dependence of ionization factors
Ij (75) and cutoff energies Ej

cut (74) on the half-cycle number
j for laser parameters as in Fig. 3. Panels (a,b): φ = 0; panels
(c,d): φ = π/2. Red lines with circles: N = 1; Black lines
with squares: N = 2; Blue lines with triangles: N = 3.

[cf. Figs. 2(f) and 3(d)]. The origin of the large-scale os-
cillations is the same as for a monochromatic field [25],
i.e., these oscillations originate from the interference of
long and short electron trajectories for a given jth half-
cycle and are described by the Airy function in Eq. (72).
The fine-scale modulations originate from interference
between different amplitudes Aj ; they are described by
the term wint in Eq. (82) [22]. This term simplifies when
the interference of only two neighboring amplitudes in
wint is significant:

wint ≈ 2sj1,j2
√
wj1wj2 cos(ϕj1 − ϕj2). (85)

Equations (85) and (55) allow one to estimate the dis-
tance, ∆EΩ, between two adjacent fine-scale peaks as
the distance over which the phase difference in Eq. (85)
changes by 2π:

∆EΩ =
2π~

∆t
(j)
r

, (86)

where ∆t
(j)
r is the difference between recombination

times for two [(j +1)th and jth] neighboring half-cycles:

∆t
(j)
r = t

(j+1)
r − t

(j)
r . (Since t

(k)
r ∼ ω−1, ∆EΩ is of or-

der ~ω.) For a single-cycle (N = 1) cosine-like pulse,
the fine-scale interference pattern appears in the region
of the first plateau [cf. Fig. 3(a)] since it originates from
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FIG. 5. (Color Online) Spectral density ρ(EΩ, φ) for the H
atom and the same Gaussian pulse parameters (I , λ, N) as
for Fig. 3(c). Panels (a) and (b): Planar maps of ρ(EΩ, φ)
(normalized relative to its maximum value) in the (EΩ, φ)
plane, with numerical TDSE results in (a) and analytic results
of Eq. (78) in (b); dashed lines indicate the HHG “stripes”
discussed in the text. Panel (c): absolute analytic results for
ρ(EΩ, φ) vs. relative energy EΩ/Eω (where Eω = ~ω) plotted
along the two solid vertical lines in (b), marking two fixed
CEPs: φ = 1.51 (dot-dashed line) and φ = 1.92 (solid line).

the interference of amplitudes Aj with j = 2 and j = 3

[as is clear from Figs. 4(a),(b)]. For EΩ > E
(j=3)
cut ,

the interference term wint is negligible since the partial
EWP wj=3 decreases exponentially with increasing EΩ

and thus fine-scale oscillations disappear. The fine-scale
interferences are pronounced for the sine-like pulse for
N = 1 [cf. Fig. 3(d)] because there are two neighbor-

ing half-cycles with close values of both E
(j)
cut and Ij , as

shown in Figs. 4(c),(d) (i.e., for N = 1, half-cycles with
j = 2 and 3 contribute to wint). With increasing N , the
results for both cosine and sine-like pulses exhibit fine-
scale modulation patterns in the cutoff region.

C. Dependence of quasi-harmonic structures in
short-pulse HHG spectra on the CEP

The most prominent feature visible in Figs. 3(c) – 3(f)
is the formation of quasi-harmonic patterns in the depen-
dence of ρ(EΩ) on EΩ in the cutoff region and beyond.
In previous studies [12, 13, 16, 18, 21] (see also Ref. [64])
these structures have been attributed to the real (but
shifted) HHG peaks. However, our analytic results show
that these structures have no relation whatsoever to the
usual 2~ω-spaced HHG peaks typical of a monochromatic
driving laser field. Rather, these structures originate
from the interference of two neighboring half-cycle HHG
amplitudes, Aj . In Fig. 5 we show the variation of such



12

quasi-harmonic patterns in the cutoff and beyond-cutoff
region as a function of the CEP, φ, for a Gaussian pulse
with N = 3. Comparison of the planar maps of the spec-
tral density ρ(EΩ, φ) in Figs. 5(a) and (b) shows that pre-
dictions of our analytic formula, Eq. (78), are in perfect
agreement with numerical TDSE results over the entire
range of CEPs, φ. Remarkably, as shown in Fig. 5(c),
the positions of the “quasi-harmonics” can be tuned to
either even or odd integers of the carrier frequency ω by
varying the CEP [13, 15]. Moreover, in the plane (EΩ, φ),
intercycle interference causes the appearance of parallel
stripes in the planar maps of spectral density ρ(EΩ, φ) in
the high-energy part of the HHG spectra [cf. the dashed
lines in Figs. 5(a) and (b)] [65]. Along the direction of
these stripes, the value of ρ(EΩ, φ) varies slowly, while in
the perpendicular direction its value oscillates. In order
to understand this peculiar interference feature, we ana-
lyzed the dependence of various classical quantities (such
as the ionization and recombination times, the classical
action of an electron in a laser pulse, etc.) on the CEP us-
ing the numerical solutions of the classical equations (56)
and (57). This analysis shows that for any pulse shape
both ionization and recombination times depend linearly

on the CEP φ [ωt
(j)
i,r (φ) ≈ ωt

(j)
i,r (φ0)+φ0 −φ, where φ0 is

any phase from 0 to φ], in agreement with the same de-
pendence of ionization and recombination times for the
case of a monochromatic field [cf. Eq. (88) below].
Although the phases ϕj in Eq. (55) are nonlinear func-

tions of φ, nevertheless, their difference, ϕj − ϕi [which
enters Eq. (85)], can be well approximated by a linear
function of φ for energies near the cutoff, so that the
interference term (85) can be approximated with high
accuracy by:

wint ≈ 2
√
wj1wj2 cos(αEΩ + βφ+ γ), (87)

where α, β and γ are constants independent of EΩ and
φ. Considering ρ(EΩ, φ) along the line αEΩ + βφ + γ =
2nπ for a fixed integer n, we maximize the interference
term and, as a result, the spectral density has maximal
values along these lines. In the contrast, moving in the
direction perpendicular to the stripes, the argument of
the cosine in Eq. (87) changes continuously, so that the
interference term wint varies between its maximum and
minimum values, leading to corresponding maxima and
minima (i.e., quasi-harmonic patterns) in ρ(EΩ, φ).

D. Evolution of HHG spectra with increasing pulse
duration

With increasing pulse duration, the number of half-
cycles that contribute to the interference term wint (82)
for a given harmonic energy, EΩ, increases gradually and
leads to some unexpected interference patterns. For in-
stance, for a Gaussian pulse with N = 10 the interference
of many half-cycle amplitudes Aj leads to the appearance
of an ~ω-spaced HHG spectrum (cf. Fig. 6 for φ = 0.25).

EΩ/Eω

ρ(
E

Ω
)

×1
011
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N=10, φ=0.11N=10, φ=0.25

FIG. 6. (Color Online) Spectral density distribution ρ(EΩ, φ)
vs. EΩ/Eω (Eω = ~ω) in the plateau cutoff region for a
Gaussian pulse with peak intensity I = 2×1014 W/cm2, carrier
wavelength λ = 1.6µm, N optical cycles (FWHM), and CEP
φ. Green (light grey) curve: N = 10, φ = 0.25; orange (dark
grey) curve: N = 10, φ = 0.11; black curve: N = 50 (no
dependence on φ).

As discussed above, the energy positions of such quasi-
harmonics may be tuned by varying φ: for example, in
Fig. 6 the green (light grey) curves with φ = 0.25 have
peaks at integer values of EΩ/Eω while the orange (dark
grey) curves with φ = 0.11 have peaks at half-integer val-
ues. The customary HHG peaks (i.e., 2~ω-spaced peaks
located at odd integer values of ~ω, independent of φ)
begin to form in the beyond-cutoff region for large N , as
shown by the black curve for N = 50 in Fig. 6.
The case of a monochromatic laser field (whose entire

HHG spectrum is comprised of a sequence of 2~ω-spaced,
CEP-independent peaks located at odd integer values of
~ω) is obtained by taking the limit τ → ∞ (or N → ∞)
in our analytic results. In this limit, the vector potential
A(t) can be approximated by that of a monochromatic
field and Eqs. (56) and (57) have the solution:

ωt
(j)
i = τi − φ+ jπ,

ωt(j)r = τr − φ+ jπ, (88)

where τi ≈ −2.83 and τr ≈ 1.26. Since each half cy-
cle is the same [except for the sign of A(t) and F (t)],

χ
(j)
τ = χ

(k)
τ , χ

(j)
w = χ

(k)
w , and ϕj −ϕk = π(j− k)EΩ/(~ω)

[cf. Eq. (55)]. Substituting these results in Eqs. (53), (54)
and (24), we obtain:

ρ(EΩ) =
πΩ

2ω2
W (E)σ(r)(E)D(n,Ω), (89)

where W (E) is the EWP for a monochromatic field [25],
n is the number of half-cycles (n = 2N), and

D(n,Ω) =

∣

∣

∣

∣

n
∑

j=1

(−1)jeiπj
Ω
ω

∣

∣

∣

∣

2

=

(

sin 1
2nx

sin 1
2x

)2

, (90)

where

x = π

(

Ω

ω
− 1

)

.



13

For N → ∞, D(n,Ω) becomes a sum of δ-functions [66]:

D(n,Ω)
∣

∣

∣

n≫1
→ 2ω2

π
TN
∑

k

δ[Ω− (2k + 1)ω], (91)

where TN is the pulse duration: TN = 2πN/ω. For a
long pulse, it is useful to introduce the power of emitted
radiation, Wtot, i.e., the ratio of total energy radiated
during the pulse, Etot, to pulse duration:

Wtot = lim
N→∞

Etot/TN . (92)

Substituting Eq. (91) into Eq. (89) and integrating the
latter over EΩ, we obtain the total power, Wtot, as:

Wtot =
∑

k

W2k+1, W2k+1 = (2k + 1)~ωR2k+1, (93)

where the partial power of the (2k + 1)th harmonic
(W2k+1) is expressed in terms of the HHG rate R2k+1

for the (2k + 1)th harmonic [25, 42].
The above analysis shows that our analytical results for

short pulses uniformly approach those for a monochro-
matic laser field in the limit that the pulse duration be-
comes infinitely long. We emphasize that it is the inter-
ference term, wint, that is responsible for the formation of
2~ω-spaced HHG peaks (located at odd-integer multiples
of the carrier frequency) as the number of optical cycles,
N , in the pulse becomes large. For a given pulse shape,
the monochromatic field limit is reached when: (i) The
magnitudes of the half-cycle amplitudes, Aj , are close
in value to each other; and (ii) The phase differences
between the half-cycle amplitudes are essentially inde-
pendent of the peak intensity. These two conditions can
only be satisfied simultaneously for quasi-monochromatic
pulses. However, the critical number of optical cycles,
Ncr, at which a stable shape (i.e., independent of the
CEP, φ) of the HHG spectrum begins to form in the cut-
off energy region, depends crucially on both the shape of
the laser pulse and its peak intensity, I. For instance,
for a trapezoidal pulse, Ncr ∼ 3 and the shape of the
HHG spectrum is only slightly sensitive to the intensity,
I. For this reason, a trapezoidal pulse shape is the most
appropriate one for analyzing the monochromatic field
limit. In contrast, for Gaussian pulses, Ncr depends sig-
nificantly on the intensity: e.g., Ncr ∼ 40 for I = 4×1014

W/cm2, ∼ 15 for I = 2 × 1014 W/cm2 (cf. Fig. 7), and
∼ 10 for I = 1014 W/cm2.
Finally, we remark that our analytical description pro-

vides a remarkably clear illustration of how the regu-
lar (2~ω-spaced) feature of HHG spectra begins to form
(with increasing number N of optical cycles) from the
often complicated spectral structure of short-pulse HHG
radiation. Since for small N the inter-cycle interferences
are highly sensitive to the CEP, as shown in Fig. 6, the
evolution of these interferences with increasing N can
best be seen by considering spectra that are averaged
over the CEP. In Fig. 7 we present such CEP-averaged
spectral densities ρ(EΩ) for the same Gaussian pulse as

EΩ (eV)

Harmonic number

ρ(
E

Ω
)

155 160 165 170 175 180
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FIG. 7. (Color Online) CEP-averaged spectral density dis-
tribution ρ(EΩ) (not normalized, for better visualization) in
the plateau cutoff region and beyond for different numbers N
of optical cycles (FWHM) in the same Gaussian pulse as in
Fig. 6. The numbers N of cycles for the four filled areas [from
bottom (red) to top (orange)] are: N = 10, 15, 20, and 40.

in Fig. 6 for four values of N , from 10 to 40. Such aver-
aging smooths out the fine scale-oscillations for N = 10
(seen in Fig. 6 for two values of the CEP). Such aver-
aging, however, is less significant for N = 15 or 20, and
beginning from N = 40, the results do not depend on φ.
As shown in Fig. 7, a stable harmonic structure gradu-
ally appears with increasing N beginning for energies EΩ

well beyond the plateau-cutoff energy, with the first sig-
nature of this structure appearing for N = 10 as horizon-
tal steps centered close to the positions of odd harmonics,
EΩ = (2k+1)~ω. For larger N , the regular structure be-
comes more distinct and extends toward the plateau cut-
off position (corresponding to the 213th harmonic) with
gradually increasing peak heights and narrowing peak
widths centered at the odd-harmonic energies. Such evo-
lution of the short-pulse HHG spectrum is not surpris-
ing. Indeed, with increasing N , the half-cycle ionization
factors Ij (which do not depend on the harmonic en-
ergy EΩ and which determine the absolute values of both
the partial EWPs wj and the amplitudes Aj) become in-
dependent of the half-cycle number j. However, condi-
tion (ii) (cf. prior paragraph) for the phase difference,
∆jk = φj −φk, between half-cycle amplitudes Aj and Ak

is fulfilled for energies EΩ primarily beyond the plateau-
cutoff. This is because in this region the first (linear in
EΩ) term in Eq. (55) for φj exceeds the second (intensity
and CEP-dependent) term, allowing the realization of the

condition ∆jk = (t
(j)
r −t(k)r )EΩ/~ ≈ π(j−k)EΩ/(~ω) that

is necessary for “constructive” interference of half-cycle
HHG amplitudes at odd integers of the ratio EΩ/(~ω)
[cf. Eq. (90)]. The results in Fig. 7, which employ a Gaus-
sian approximation for the pulse envelope, are useful for
understanding qualitatively the evolution of short-pulse
HHG spectra with increasingN . However, asN increases
this approximation becomes inappropriate because a flat-
top envelope is more relevant for long pulses. In this case,
the regular HHG spectrum is formed for a much smaller
N than for a Gaussian pulse. Indeed, our analysis for a



14

trapezoidal pulse shape finds that the formation of a 2~ω-
spaced HHG spectrum over a wide interval of harmonic
energy EΩ occurs already for N = 5.

VII. SUMMARY AND CONCLUSIONS

In this work we have derived quantum-mechanically
closed-form analytical formulas for the spectral density
ρ(EΩ, φ) of coherent radiation emitted by an atomic sys-
tem subjected to an intense, short laser pulse with CEP
φ. Our main results consist, first, in generalizing our
TDER theory [36, 37] (for describing a weakly bound
electron in a short-range potential subjected to an in-
tense, monochromatic laser field) to the case of an in-
tense, few-cycle laser pulse. The key idea is to treat the
case of an infinitely long pulse train of short laser pulses
and then to take the limit that the time between pulses
becomes infinite. We then derive closed-form analytic ex-
pressions for the spectral density ρ(EΩ, φ) of generated
radiation by a few-cycle laser pulse that include the de-
pendence on the number of cycles N in the pulse and on
the CEP φ of the pulse. The resulting formulas factor-
ize into factors corresponding to the three steps of the
well-known three-step scenario [10, 11]. These formulas
also confirm the phenomenological parametrization [26–
28] of the HHG yield in terms of the PRCS σ(r) (which
describes the final step of the three-step scenario) and
the EWP (which describes the ionization of an atomic
electron and its propagation in the laser field). Most
importantly, we provide a closed-form expression for the
EWP factor for the case of a few-cycle laser pulse. More-
over, we generalize the analytic formulas derived for our
TDER model system to treat HHG by real atoms in a
few-cycle laser pulse.
Our analytic formulas show that the spectral density

ρ(EΩ, φ) is highly sensitive to both the CEP, φ, and the
number of optical cycles, N , in the pulse. The fine-scale
oscillation pattern of the HHG plateau near the high en-
ergy cutoff is shown to originate from interference be-
tween EWPs ionized from a few neighboring half-cycles
in the vicinity of the peak of the laser pulse intensity
envelope. Moreover, the CEP, φ, can be used to tune
the energy locations of peaks in the plateau spectrum of
ρ(EΩ, φ). Only in the limit that N → ∞ does the inter-
ference pattern become the one expected for a monochro-
matic laser field: harmonics separated in energy by 2~ω
and located at odd integer values of the carrier frequency,
ω. The closed form analytic formula derived for our
TDER model system was easily generalized to describe
HHG by real atoms owing to the transparent physical
meaning of each of the three factors of which it is com-
prised. This formula is thus applicable for describing
HHG by atoms in a few-cycle laser pulse provided only
that the intensity and carrier frequency of the pulse lie
in the tunneling regime.
We conclude by emphasizing the valuable insight into

strong field processes provided by closed-form analytic

formulas. Although such formulas can be derived only
for model systems and/or within limited ranges of the
laser parameters, they allow one to obtain a detailed un-
derstanding of the underlying physics applicable to real
systems. We note, finally, that ours is not the only the-
ory capable of providing closed-form analytic formulas
for strong field processes. Recently, O.I. Tolstikhin, T.
Morishita, and S. Watanabe presented a general adia-
batic theory of ATI and applied this theory to the case of
a one-dimensional zero-range-potential model [67]. This
work obtained a factorized analytic formula describing
ATI for that model that is consistent with the suggested
factorization proposed in Ref. [26] and is applicable in
the limit that the driving laser period is long compared
to electronic time scales in atoms. Various details of the
simple model system treated in Ref. [67] differ from those
of our three-dimensional TDER model system that was
applied in Ref. [55] for analytic description of ATI in a
monochromatic laser field. However, the advantage of
such analytical approaches is that (in addition to the
physical insight they provide) the closed form formulas
provide experimentalists with the means both to plan ex-
periments and to probe any differences between results
of different theoretical models.
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Appendix A: Derivation of Eqs. (43) and (44)

To evaluate I ′
Fh

(E0, 0) in Eq. (42), we express the inte-
gral (40) in an alternative form. Using the definition (31)

for G̃ε(t, t
′) and proceeding as in Ref. [68], the integrand

of Eq. (40) can be written as a sum of two terms,

eik̃n|R(t,t′)| − 1

|R(t, t′)| =
cos k̃n|R(t, t′)| − 1

|R(t, t′)| + i
sin[k̃nR(t, t′)]

R(t, t′)
,

(A1)
where the first term on the right is an even function of
k̃n, while the second term is odd. Expanding the even
term in a series in k̃n [cf. Eq. (35)] and substituting this
expansion into the integral (40), the contribution of the

k̃n-even term becomes:

Ie =
T /2
∫∫

−T /2

∑

n

∞
∑

ν=1

(−1)ν k̃2νn gν(t, t
′)e−inωτ (t−t′)

(2ν)!!
dtdt′,

gν(t, t
′) = |R(t, t′)|2ν−1 exp

{

− i

~

∫ t

t′

[

e2A2(τ)

2mc2
− ũp

]

dτ

}

,
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where gν(t, t
′) ∼ |t−t′|2ν−1 at t→ t′. Using the definition

of k̃n in Eq. (35), the integral Ie becomes:

Ie = T
∞
∑

ν=1

ν
∑

s=0

T /2
∫∫

−T /2

(−1)ν+sCs
2ν(ε− ũp)

ν−s

(2ν)!!

×(i~)sδ(s)(t− t′)gν(t, t
′)dtdt′, (A2)

where Cs
2ν is a binomial coefficient and δ(s)(t− t′) is the

s-fold derivative of the δ-function in the space of periodic
functions:

δ(s)(t− t′) =
∑

n

(−inωτ)
se−inωτ (t−t′). (A3)

Using Eq. (A3), the integrations in Eq. (A2) can be per-
formed straightforwardly and show that Ie = 0.
The integral (40) thus simplifies upon substituting,

eik̃n|R(t,t′)| − 1

|R(t, t′)| → eik̃nR(t,t′) − e−ik̃nR(t,t′)

2R(t, t′)
, (A4)

and representing the integral I(ε, Fh) as a summation
over simpler integrals In:

I(ε, Fh) =
1

2κT 2

∞
∑

n=−∞

In, (A5)

In =

T /2
∫∫

−T /2

e−iS−
n (t,t′)/~ − e−iS+

n (t,t′)/~

R(t, t′)
dtdt′, (A6)

where S±
n (t, t′) is the classical action:

S±
n (t, t′) =

∫ t

t′

[

[P±
n (t′′)]2

2m
− ε

]

dt′′, (A7)

P±
n (t) = p̃n ± |e|

c
A(t), p̃n = ~k̃n. (A8)

To extract explicitly the linear in Fh result in the ex-
pansion of I(ε, Fh) in the limit Fh → 0, we transform first
the expression (A6) for In (presenting it as In = I−

n −I+
n )

as follows:

I±
n ≡

∫∫ T /2

−T /2

e−iS±
n (t,t′)/~

R(t, t′)
dtdt′ =

∫∫ T /2

−T /2

e−iS±
n (t,t′)/~

(

α
∂S±

n

∂t + β
∂S±

n

∂t′

)

R(t, t′)
(

α∂S±
n

∂t + β ∂S±
n

∂t′

) dtdt′ =

i~α

∫∫ T /2

−T /2

d[e−iS±
n (t,t′)/~]dt′

R(t, t′)
(

α∂S±
n

∂t + β ∂S±
n

∂t′

)

+i~β

∫∫ T /2

−T /2

dtd[e−iS±
n (t,t′)/~]

R(t, t′)
(

α∂S±
n

∂t + β ∂S±
n

∂t′

) , (A9)

where α and β are free parameters. [Note that the deriva-
tives, ∂S±

n /∂t or ∂S±
n /∂t

′, of the function S±
n (t, t′) de-

pend only on the single variable, t or t′, respectively.]

Next, we integrate by parts in Eq. (A9), keeping only
terms of the lowest order in 1/R, to obtain

I±
n ≈ i~α2

∫∫ T /2

−T /2

e−iS±
n (t,t′)/~ ∂2S±

n

∂t2 dtdt′

R(t, t′)
(

α∂S±
n

∂t + β ∂S±
n

∂t′

)2

+i~β2

∫∫ T /2

−T /2

e−iS±
n (t,t′)/~ ∂2S±

n

∂t′2 dtdt
′

R(t, t′)
(

α∂S±
n

∂t + β ∂S±
n

∂t′

)2 . (A10)

Finally, we use the saddle point method to estimate
the integral over t′ in the first term in Eq. (A10) and
that over t in the second term. The derivative ∂S±

n /∂t
′

(∂S±
n /∂t) in the denominator of the first (second) inte-

gral in Eq. (A10) becomes zero since it determines the
corresponding saddle point equation. Thus the free pa-
rameters α and β do not enter the final result for In:

In ≈ i~
∑

ν

√

2πi~

S−
n

′′
(t−ν )

∫ T /2

−T /2

e−iS−
n (t,t−ν )/~S−

n
′′
(t)

R(t, t−ν )[S−
n

′
(t)]2

dt

−i~
∑

ν

√

2πi~

S+
n

′′
(t+ν )

∫ T /2

−T /2

e−iS+
n (t,t+ν )/~S+

n
′′
(t)

R(t, t+ν )[S+
n

′
(t)]2

dt

−i~
∑

ν

√

2π~

iS−
n

′′
(t−∗

ν )

∫ T /2

−T /2

e−iS−
n (t−∗

ν ,t′)/~S−
n

′′
(t′)

R(t−∗
ν , t′)[S−

n
′
(t′)]2

dt′

+i~
∑

ν

√

2π~

iS+
n

′′
(t+∗

ν )

∫ T /2

−T /2

e−iS+
n (t+∗

ν ,t′)/~S+
n

′′
(t′)

R(t+∗
ν , t′)[S+

n
′
(t′)]2

dt′,

(A11)

where

S±
n

′
(t) =

[P±
n (t)]2

2m
− ǫ, (A12)

S±
n

′′
(t) = ∓|e|

m
P±
n (t)F(t). (A13)

The saddle point equations for t±ν are:

[P±
n (t±ν )]

2

2m
= E0, (A14)

where ε is approximated by E0, and t
±
ν are the roots of

Eq. (A14) for which the imaginary parts of S±
n

′′
(t±ν ) are

positive.
Consider first the imaginary part of I for real ǫ < 0

[to which only open n-photon ATI channels contribute,
as follows from (A6)]. Its expression in terms of In is:

Ĩ ≡ iImI(ε, Fh) =
I − I∗

2
=

1

2κT 2

∑

n>n0

In, (A15)

where n0 = [(ũp − ǫ)/(~ω)] (where [x] is the integer
part of x) and ũp is defined by Eq. (34). Assuming
~Ω ≫ |E0|, we can neglect in Eq. (A11) for In any de-

pendence of P±
n , S±

n , S±
n

′
, R, and the saddle points t±ν

on Fh in the limit Fh → 0, other than that stemming
from the terms F(t) and F(t′) in the derivatives S±

n
′′
(t)
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and S±
n

′′
(t′) [cf. Eq. (A13)] in the numerators of the in-

tegrals in Eq. (A11). Thus the linear in Fh term in the
expansion of In in Fh follows only from the linear de-
pendence of F(t) on Fh [cf. Eq. (28)] in Eq. (A13) for

these derivatives. Hence, the derivative (in Fh) of Ĩ is
obtained as:

Ĩ ′
Fh

≡ ∂Ĩ
∂Fh

∣

∣

∣

Fh=0
= eiφhΦΩ + e−iφhΦ−Ω, (A16)

where

Φ±Ω =
i~|e|

4mκT 2

∞
∑

n>n0

∑

ν
√

2πi~

S−
n

′′
(t−ν )

∫ T /2

−T /2

e−iS−
n (t,t−ν )/~±iΩtP−

n (t)

R(t, t−ν )
[

[P−
n (t)]2

2m − E0

]2 dt

+

√

2πi~

S+
n

′′
(t+ν )

∫ T /2

−T /2

e−iS+
n (t,t+ν )/~±iΩtP+

n (t)

R(t, t+ν )
[

[P+
n (t)]2

2m − E0

]2 dt

−
√

2π~

iS−
n

′′
(t−∗

ν )

∫ T /2

−T /2

e−iS−
n (t−∗

ν ,t)/~±iΩtP−
n (t)

R(t−∗
ν , t)

[

[P−
n (t)]2

2m − E0

]2 dt

−
√

2π~

iS+
n

′′
(t+∗

ν )

∫ T /2

−T /2

e−iS+
n (t+∗

ν ,t)/~±iΩtP+
n (t)

R(t+∗
ν , t)

[

[P+
n (t)]2

2m − E0

]2 dt,

(A17)

and definitions of S±
n (t, t′), P±

n (t), and R(t, t′) are given
by Eqs. (A7) (with ε = E0), (A8), and (32) with Fh = 0,
while t±ν are given by Eq. (A14) with P±

n → P±
n . More-

over, since Eq. (A17) involves only integrals over the pe-
riod T , the vector potential Aτ (t) can be replaced by
A(t) in these integrals [cf. Eq. (4)].

Since Ĩ determines only the imaginary part of I
[cf. Eq. (A15)], to find an explicit form for I ′

Fh
(E0, 0)

in Eq. (42), it is necessary to express Eq. (A16) for Ĩ ′
Fh

as a difference of two terms similar to that of I − I∗

in Eq. (A15). For this purpose, we separate the saddle
points t±ν in the integrals for ΦΩ in Eq. (A17) into two
groups:
(i) Saddle points from the first group satisfy the equation:

pn ±A(t±1,ν) = −i~κ, (A18)

where we label those as t±1,ν ; and

(ii) Saddle points from the second group (labeled as t±−1,ν)
satisfy the equation:

pn ±A(t±−1,ν) = +i~κ. (A19)

The solutions of (A18) and (A19) are related as follows:

t±1,ν = [t±−1,ν ]
∗. (A20)

To separate the contributions of these two groups of sad-
dle points to ΦΩ in Eq. (A17), we re-write ΦΩ as

ΦΩ = Φ
(1)
Ω +Φ

(−1)
Ω , (A21)

where Φ
(j)
Ω corresponds to the j = ±1 saddle point group:

Φ
(j)
Ω =

i~|e|
4mκT 2

∑

σ=±1

∞
∑

n>n0

∑

ν

√

2πmσj

µσ
j,ν |e|F (tσj,ν)κ

×
∫ T /2

−T /2

e−iµσ
j,νS

σ
n(t,tσj,ν)/~+iΩtP σ

n (t)

R(t, tσj,ν)
[

[Pσ
n (t)]2

2m − E0

]2 dt, (A22)

where µσ
j,ν = ±1 is the sign of the imaginary part of the

saddle point tσj,ν . [Eq. (A22) follows from Eq. (A17), tak-
ing into account Eqs. (A13), (A18), (A19), and (A20).]
Though saddle points with both positive and negative
parts contribute to Eq. (A22), the contributions of those
with Im tσj,ν < 0 are negligible for Ω > |E0|. Indeed, the
saddle points of the integrand in Eq. (A22) satisfy:

µσ
j,ν

(

[P σ
n (t)]

2

2m
− E0

)

= ~Ω. (A23)

For µσ
j,ν = −1 and Ω > |E0|, the saddle points are

complex, so that the corresponding integrals are small,
whereas for µσ

j,ν = 1 the saddle points are real and the in-
tegrals are not small. Thus we substitute µσ

j,ν = +1 and
neglect contributions of saddle points with Im tσj,ν < 0.
¿From the symmetry relation (A20) and the explicit

form (A22) for Φ
(j)
Ω , it follows that

Φ
(1)
Ω = −Φ

(−1)∗
−Ω . (A24)

This symmetry relation allows us to write Ĩ ′
Fh

as:

Ĩ ′
Fh

=
I ′
Fh

− I ′ ∗
Fh

2
, (A25)

where

I ′
Fh

= 2
(

Φ
(1)
Ω eiφh +Φ

(1)
−Ωe

−iφh

)

. (A26)

Finally, from Eqs. (A25), (A26), and (A15), we obtain:

4C2
κ 0|E0|I ′

Fh
(E0, 0) = D̃Ωe

iφh + D̃−Ωe
−iφh , (A27)

where the HHG amplitude, D̃Ω = 8C2
κ 0|E0|Φ(1)

Ω , is given
by Eqs. (44) – (48).

Appendix B: Analytic estimates of the HHG
amplitude for a short laser pulse

To simplify the result (51) for the HHG amplitude in
the low-frequency limit (~ω ≪ |E0|), we estimate the
integral over p by the saddle point method. The saddle
point p = p̃ and the second derivative of the classical
action S(t, tσν ; p) in Eq. (47) at p = p̃ are given by:

p̃ = σq, q = −|e|
c

∫ t

tσν
A(τ)dτ

t− tσν
, (B1)

∂2S

∂p2

∣

∣

∣

∣

∣

p=p̃

=
t− tσν
m

+ i
~κ

m

∂tσν (p)

∂p

∣

∣

∣

∣

∣

p=p̃

≈ t− tσν
m

,
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so that the saddle-point result for D̃(t) is:

D̃(t) = |e|κ−1
∑

σ=±1

d̃σ(t), (B2)

d̃σ(t) =
∑

ν

fν,σ(t)
e−iS̃(t,tσν )/~P̃ (t)
[

P̃ (t)2

2m − E0

]2 , (B3)

where

fσ,ν(t) = C2
κ0|E0|σ

√

~

iκ|e|σF (tσν )(t− tσν )
3
,

P̃ (t) =
|e|
c

[

A(t)− 1

t− tσν

∫ t

tσν

A(τ)dτ

]

,

S̃(t, tν) =

∫ t

tσν

[

[q + |e|
c A(τ)]

2

2m
− E0

]

dτ, (B4)

and the equation for the saddle points tσν [= tσν (t)] follows
from Eq. (49) upon substituting there pn → p̃:

|e|
c

[

A(tσν )−
1

t− tσν

∫ t

tσν

A(τ)dτ

]

= −iσ~κ. (B5)

To estimate the integral over t in Eq. (50) for D̃(Ω),
we use the techniques suggested in Ref. [69] for evaluat-
ing integrals involving functions with two close (nearly
equal) saddle points, as used recently in Refs.[31, 42]
(cf. also Ref. [70]). Briefly, for the integral in Eq.(50), one

expands S̃(t, tσν ) in (B3) in powers of t (up to the cubic
term) about the point t

σ
ν at which the second derivative

of S̃ is zero, and then evaluates the integral in terms of
Airy functions, Ai(x).

Double differentiation of S̃(t, tσν ) in Eq. (B4) yields the
equation for t

σ
ν :

F (tσν )P̃ (t)

|e|F (tσν )(t− tσν )− iσ~κ
− F (t) = 0, (B6)

where t = t
σ
ν . To evaluate D̃(Ω), we substitute (B2)

and (B3) in (50) and, taking into account the equation for

the saddle points of the function exp{−i[S̃(t, tσν )/~−Ωt]},

P̃ (t) =
√
2mE, E = ~Ω + E0, (B7)

remove the pre-exponent from the integrand in the in-
tegral over t upon substituting there P̃ (t) →

√
2mE,

(t−tσν ) → (t
σ
ν −tσν ). Then, after approximating S̃ in (B3)

by the cubic polynomial in t, we obtain for D̃(Ω):

D̃(Ω) ≈ eκ−1

π

√
2mE

(E − E0)2

∑

σ,ν

fσ,ν

∫ ∞

−∞

e−iS̃(t,tσν )/~+iΩtdt

≈ eκ−1

π

√
2mE

(E − E0)2

∑

σ,ν

fσ,νe
−iS̃σ

ν /~+iΩt
σ
ν

×
∫ ∞

−∞

ei(E−Eσ,ν)(t−tσν )/~+ζσ,ν(t−tσν )
3/(3~3)dt

= 2eκ−1

√
2mE~

(E − E0)2

∑

σ,ν

fσ,νe
−iS̃σ

ν /~+iΩtσν

ζ
1/3
σ,ν

Ai (ξσ,ν) ,

(B8)

where we have introduced the notations: S̃σ
ν ≡ S̃(t

σ
ν , t

σ
ν ),

fσ,ν ≡ fσ,ν(t
σ
ν ), and

ξσ,ν =
E − Eσ,ν
ζ
1/3
σ,ν

, (B9)

Eσ,ν =
e2

2mc2



A(t
σ
ν )−

∫ tσν
tσν
A(τ)dτ

t
σ
ν − tσν





2

, (B10)

ζσ,ν =
e~2P̃ (t

σ
ν )

2m

{

−Ḟ (tσν )
[

F (t
σ
ν )

F (tσν )

]2
(

1− L−1
)

+
F (t

σ
ν )
[

1
c
A(tσν )−A(tσν )

t
σ
ν−tσν

+ F (tσν )
]

F (tσν )(t
σ
ν − tσν )L2

+ Ḟ (t
σ
ν )







, (B11)

L = 1 +
iσ~κ

|e|F (tσν )(t
σ
ν − tσν )

. (B12)

Further simplification of the complicated general re-
sult (B8) that allows for a better physical interpretation
follows by using an approximate solution of the basic
Eqs. (B5) and (B6) for the times tσν and t

σ
ν . Both tσν

and t
σ
ν are complex owing to the terms ∼ ~κ, which have

a quantum origin (cf. Ref. [42]). As for the case of a
monochromatic field [42], for an intense, low-frequency
pulse field F (t) with vector potential (52), the quantum
term iσ~κ in (B5) and (B6) can be treated iteratively. In
our case, this means that the “effective Keldysh parame-
ter”, γ̃ = ~ω/(|e|F̃κ−1) [where F̃ is a characteristic value
of the field F (t)], is small: γ̃ ≪ 1. In the tunnel limit
(γ̃ → 0), (B5) and (B6) reduce to the classical equations,

A(t
(ν)
i )− 1

t
(ν)
r − t

(ν)
i

∫ t(ν)
r

t
(ν)
i

A(τ)dτ = 0, (B13)

1

c

A(t
(ν)
r )−A(t

(ν)
i )

t
(ν)
r − t

(ν)
i

+ F (t(ν)r ) = 0, (B14)

for closed classical trajectories of an electron in the field
F(t), along which an electron with zero velocity at the

initial (ionization) time ti ≡ t
(ν)
i gains the maximum ki-

netic energy from the field F(t) at the final (recombina-

tion) time tr ≡ t
(ν)
r . We consider only classically-allowed
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closed trajectories, for which ti and tr are real and the re-
turn time is smaller than the optical period of the pulse,
i.e., (tr − ti) < 2π/ω. For a short pulse (52) involving N
optical cycles of frequency ω, the index ν enumerates the

ionization (t
(ν)
i ) and recombination (t

(ν)
r ) times for the

νth half-cycle [where t
(ν)
r lies in the (ν +1)th half-cycle].

The solution of Eqs. (B5) and (B6), taking account of
the quantum terms ∼ ~κ perturbatively, has the form:

tσν ≈ ti − i
~κ

|e|F̃ (ti)
+ δti, (B15)

t
σ
ν ≈ tr + δtr, (B16)

where

F̃ (ti) = σF (ti) > 0, (B17)

δti =
~
2κ2

2e2F (ti)2∆t

[

1 +
Ḟ (ti)

F (ti)
∆t+

F (tr)

F (ti)
α

]

,(B18)

δtr =
~
2κ2α

2e2F (ti)2∆t
, (B19)

α =
1− F (ti)

F (tr)
− Ḟ (ti)

F (ti)
∆t

1− F (tr)
F (ti)

+ Ḟ (tr)
F (tr)

∆t
, (B20)

∆t = tr − ti. (B21)

With the use of expansions (B15) and (B16), all param-

eters in the expression (B8) for D̃(Ω) can be presented in
terms of the classical times ti and tr. Numerically, the
quantum corrections in Eq. (B11) for ζσ,ν are found to
be negligible, so that we can make the approximations

ζσ,ν ≈ −E3
atζν ,

ζν = −I(tr)
2Iat

[

1− F (tr)

F (ti)
+
Ḟ (tr)

F (tr)
∆t

]

, (B22)

where I(tr) = cF (tr)
2/(8π), Iat = 3.51 × 1016 W/cm2,

and Eat = 27.21 eV. In the expansion for the energy Eσ,ν

[cf. Eq. (B10)], we take into account the first quantum
correction (which is of order ~2κ2 ∼ |E0|), to obtain

Eσ,ν ≈ Emax = Ecl
max(ti, tr)−

F (tr)

F (ti)
|E0|, (B23)

where

Ecl
max(ti, tr) =

e2

2mc2
[A(tr)−A(ti)]

2
. (B24)

Taking into account the results (B22) and (B23), we ob-
tain for the argument ξσ,ν of the Airy function in (B8):

ξσ,ν ≈ ξ =
E − Emax

ζ
1/3
ν Eat

. (B25)

The expansion of the classical action S̃σ
ν in (B8) involves

an imaginary term stemming from Im tσν [cf. Eq. (B15)]:

S̃σ
ν ≈ S0 =

∫ tr

ti

[

Ecl
max(ti, t)− E0

]

dt

+ Ecl
max(ti, tr)∆t− i

2

3

~κ|E0|
|e|F̃ (ti)

. (B26)

Since the last term in (B26) involves ~κ|E0| ∼ (~κ)3, it
would seem that the term involving ∆t should also be
expanded up to terms of order (~κ)3. However, we find
that these latter corrections give such a small contribu-
tion that they may be neglected.

Substituting Eqs. (B8), (B22), (B25), and (B26) into
Eq. (50), we obtain the HHG amplitude in the form (53),
in which we use the summation index j (instead of ν)

for enumerating the solutions (t
(j)
i , t

(j)
r ) of the classical

equations (B13) and (B14).
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