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I. INTRODUCTION

Collisions of electrons, ions, and photons with molecules and atoms create energetic species
that drive chemical and physical changes in environments ranging from plasmas to living tissue;
predicting these changes requires an understanding of the fundamental underlying processes. This
article details the development of an effective time-evolution scheme and establishes its accuracy
through three dimensional (3D) benchmark studies of the one-electron species H, He+, and Li2+

in a two-cycle attosecond laser pulse, by presenting bound and continuum transition probabilities
along with photoelectron spectra. Single-electron dynamics has served to debut many established
methods [1–13]. We extend a highly-accurate method of computational chemistry [14–17] towards
a robust description of many-electron systems, beyond the single-electron approximation. As H+

2

is taken from 3D to 4D we add multiresolution analysis [18–20] to the rapidly growing body of
research in dynamic nuclear-electron coupling [21–28].

The standard ab initio, few-electron solutions to the Time Dependent Schrödinger Equa-
tion (TDSE) [29–42] for electron/photon scattering are time-dependent grid methods and time-
independent close-coupling-type approaches with a large number of physical/pseudo-states. While
great progress has been made in chemistry modeling complex molecules and clusters close to their
electronic ground state, the inclusion of the highly excited bound and continuum states has been
the crucial challenge in many-electron transition dynamics. The simplicity of our method comes
from a unified treatment of the bound and continuum states and a high level of programming
abstraction using operators and functions whose mesh automatically adapts to guarantee the re-
quested precision. It does not rely on special coordinates or symmetry to treat singularities or
reduce the dimensionality. Currently it can accommodate an elliptically polarized laser pulse and
is readily extendable to describe the dynamics of a multi-particle system using either the standard
multi-configuration wave function or a fully-correlated, many-dimension few particles wave function
electrons and/or nuclei.

We are numerically solving the TDSE of a finite laser pulse in the length gauge within the dipole
approximation (atomic units are used throughout the text, unless stated otherwise),

i
dΨ

dt
= ĤΨ Ĥ = −1

2
∇2 + V (r) + E(t) · r (1)

where E(t) is the electric field strength and V (r) is the atomic potential. The ncy cycle pulse of
duration T

E(t) = E0 sin2(ωt/2ncy) cos(ωt+ ϕ) ẑ (2)

0 ≤ t < 2π ncy
ω

= T

has a Carrier Envelope Phase of ϕ = −π/2. These parameters were chosen to match the isolated
attosecond pulse [43] crafted by Sansone et al. This linearly-polarized, two-cycle, ultraviolet laser
pulse has a central photon energy of ω = 1.32 (36 eV), peak intensity I = 1015W/cm2 i.e. E0 =
0.176, and duration 9.6 (230 as). The power spectrum of the two cycle pulse (see Fig. 1) spans
many bound and continuum states and can be thought of as a multimode laser with a continuum
of frequencies.

MADNESS (Multiresolution Adaptive Numerical Environment for Scientific Simulation) [15–
17, 44] provides a front end for scientists who wish to apply the multiresolution framework [14]
without focusing on the low level math or the computational implementation. It is an interface to
functions and operators that keeps track of the numerical precision, the hardware optimization, and
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FIG. 1. (Color online) The linearly-polarized, two-cycle laser pulse with a driving frequency of 36 eV,
intensity of 1× 1015W/cm2, and a carrier envelope phase of −π/2 was chosen to match that of Sansone et
al. [43].

the message passing interface of modern, distributed-memory computers. In MADNESS functions
are represented on an N-dimensions (ND) mesh where each subdomain contains a tensor product
of Legendre polynomials that adapts to meet the precision requirements. Our multiresolution
approach is based upon the principles outlined by Alpert et al. [14] while Fann et al. [17] give a
comprehensive introduction of MADNESS to the computational science community.

In Section II, we explore the spatial and temporal discretizations as expressed in the multiresolu-
tion framework. Since the linearly polarized pulses impose azimuthal symmetry on the spherically
symmetric systems, we assume the azimuthal quantum number m = 0 throughout the paper. While
a 2D simulation would have described the system completely, the 3D representation allows exten-
sion to systems without cylindrical symmetry and will provide a useful reference point for future
work. Section III describes the projection onto the continuum, numerical convergence, comparison
with an established ab inito scheme, and other issues pertaining to the 3D implementation. We
discuss the highlights of this pulse acting on H(1s), He+(1s), and Li2+(2s) along with H+

2 in Section
IV.
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II. THEORY

A. Spatial Representation

Multiresolution analysis within a multiwavelet basis [14] is best explored with a 1D function f .
At the coarsest level (n=0), f is represented by a linear combination of scaling functions

φi(x) =

{√
2i+ 1 Pi(2x− 1) x ∈ [0, 1]

0 otherwise
(3)

where Pi(x) are the Legendre polynomials. These parent scaling functions (n=0) are shifted and
dilated as f is refined. The first level of refinement (n=1) splits the domain and represents each
side with an independent set of k scaling functions.

φni`(x) = 2n/2φi(2
nx− `) (4)

At level n of refinement there are 2n subdomains that are indexed by `.
In MADNESS, each subdomain of f is adaptively refined until it satisfies the requested numerical

tolerance ε. f is represented (see Fig. 2) by subdomains (boxes) that cover the original domain.

f (ε)(x) =

boxes∑
n`

k−1∑
i=0

sni` φ
n
i`(x) sni` =

∫
f(x)φni` dx. (5)

FIG. 2. (Color online) The function f(x) in (a) is approximated in (b) - (d) showing refinement (at k =
1) with successively smaller numerical thresholds ε. In (e) the first four scaling functions (from Eq. 5) are
shown above their corresponding wavelets (from Eq. 7). The absolute value of the refinement error in is
shown in (f) with k = 1 and ε = 10−1, 10−3, 10−5 and in (g) with ε = 10−5 and k = 1, 2, 3, 6.

Each scaling function φni`(x) (see Fig. 2(e) upper row) has a corresponding wavelet function ψni`(x)
(see Fig. 2(e) lower row).

ψni`(x) = φn+1
i 2` (x)− φn+1

i 2`+1(x) (6)
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This provides a second mathematically equivalent representation of f

f (ε)(x) =

k−1∑
i=0

s0
i` φ

0
i`(x) +

boxes∑
n`

k−1∑
i=0

dni` ψ
n
ij(x) dni` =

∫
f(x)ψni` dx. (7)

The wavelets provide a more efficient basis for certain operations (like the inner product) due to
the following orthogonality relations.

∫
φni`(x)φn

′

i′`′(x) dx = δnn′δ``′δii′∫
ψni`(x)ψn

′

i′`′(x) dx = δnn′δ``′δii′ (8)∫
φni`(x)ψn

′

i′`′(x) dx = 0 if n > n′

There exists a fast transform between the scaling function representation in Eq. 5 and wavelet
representation in Eq. 7. This dual representation is analogous to the real/momentum space repre-
sentation.

Function refinement, the recursive subdivision of the domain, continues until the difference coef-
ficients satisfy the refinement criteria.

||dn` ||2 =

√∑
i

|dni`|2 ≤ ε (9)

The refinement is deepest in regions where f is not smooth (see Fig. 2). The approximation error
for a locally smooth function scales as O(2−nk) while the error near a discontinuity as O(2−n). A
typical, low-accuracy run of the TDSE for the hydrogen atom (k = 12, ε = 1× 10−5, and ξ = 0.3)
(see Section II C) refines to a depth of n = 9 while a high-precision run (ξ = 0.05, k = 24 and
ε = 1× 10−7) refines to n = 11.

The Cartesian coordinate representation, while not necessary for simulation in MADNESS, carries
many benefits. It is easy to extend a function to an arbitrary number of spatial dimensions while
maintaining a consistent interface with the operators. Thus, the implementation of the 3D solution
to the TDSE is only marginally more complicated than that of a 1D solution, and the extension of
3D atomic hydrogen to fixed nuclear H+

2 was only a modification of the input file parameters. In
Section IV D, we provide preliminary results from a 4D representation of H+

2 where the internuclear
separation is treated dynamically, on the same footing as the 3D electronic components. A 6D
treatment of two-electron He, while more computationally intensive, only requires the addition of
an electron-electron repulsion term to the Hamiltonian.

In summary, the multiresolution formalism provides the impression of a basis-free simulation by
automating the extension or contraction of the basis through adaptive refinement. Most ab initio
schemes compute matrix elements to machine precision within a fixed finite basis. MADNESS,
however, computes to finite precision in a dynamically changing basis. Finally, the Cartesian
framework of MADNESS is readily extendable to larger systems.
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B. Time Evolution

For the temporal propagation of the TDSE (Eq. 1), we employ the fourth-order, gradient-
corrected, symplectic propagator developed by Chin and Chen [45]. This time evolution operator

U(dt, t) = e−i
1
6V (t+dt)dte−i

1
2 T̂ dte−i

2
3V (t+ 1

2dt)dte−i
1
2 T̂ dte−i

1
6V (t)dt +O(dt5) (10)

reduces the error and total computational expense by allowing a much longer time steps than the
second-order accurate, Trotter splitting [46]. The application of the exponentiated potential, in
MADNESS, is simply function multiplication while the application of the exponentiated kinetic
energy operator

U0(t) = e−i
1
2 T̂ dt = ei∇

2dt/2 (11)

is an integral convolution. The potential-free Green’s function (free-particle propagator) of the
TDSE in D spatial dimensions

G0(x, t) = (2π i dt)−D/2e−
x2

2idt (12)

is applied to the wave function

ψ(x, dt) = U0(dt) ψ(x, 0) =

∫
dx′G0(x− x′, dt)ψ(x′, 0). (13)

advancing it forward in time.

position space
-1.0 -0.5 0.0 0.5 1.0

HaL

-1.0 -0.5 0.0 0.5 1.0

HbL

momentum space

-c c

FIG. 3. (color online) (a) The real component of the 1D free particle propagator and (b) its band lim-
ited counterpart. The band limit (inset) in momentum space is the black line and the excluded Fourier
components of the original function are dashed.

The unbounded spectrum of the kinetic energy operator U0 in Fig. 3(a) makes its complete
computational representation impossible. However, we are not interested in representing the full
operator, only the components necessary for the propagation of a band limited wave function. This
is directly analogous to the upper energy limit on a uniform grid. The band limit is applied by
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transforming the full G0 to momentum space (see inset in Fig. 3(b)), multiplying by a band limiting
filter, and transforming back to real space (Fig. 3(b)). The band limited G0 is bounded both in
real space and momentum space.

The discontinuous, spectral element basis is a computationally convenient alternative to the
finite element or finite difference methods. Continuity emerges (within finite precision) with the
application of an appropriately constructed integral or differential operator [14] as is the case with
the stencils used in finite difference methods. Nevertheless, the adaptive, discontinuous, polynomial
basis unavoidably includes numerical, high frequency components even when representing smooth
functions. The insensitivity of the band limited G0 to this numerical noise preserves the integrity
of the wave function.

Scattering off the Coulomb singularity also allows arbitrarily high frequencies into the wave
function. These legitimate, physical frequencies would introduce propagation error upon application
of the band limited G0. We prevent this error by band limiting the nuclear potential (see Sec. II C)
to allow exact propagation. This is accomplished by smoothing the singularity at a closest scattering
distance, which prevents high frequencies from entering the system. The cutoff parameter ξ controls
the depth of the potential, the band limit, and the complexity of the simulation (see Sec. III B 3).

In addition to increasing the size of the wave function, the fine spatial variations associated with
high frequencies require an impractically small time step. The TDSE is limited by a Courant-
Friedrichs-Lewy-like [47] condition (dt ∝ ∆x2) where the critical time step

dtcrit ' 2π/c2 ∝ (∆x)2 ∝ ξ2 (14)

where c is an empirically estimated band limit and ∆x is the smallest mesh spacing which is
controlled by ξ the potential smoothing parameter.

The application of the G0 (see Fig. 3) is the most computationally intensive step of time evo-
lution and efficiency hinges on its separability. While computer memory limits the size of the
solution domain in fixed grid schemes, in MADNESS, memory limits the total complexity of the
wave function. Massively-parallel, distributed-memory computers replace the memory constraint
by a communication bandwidth limit. For a sufficiently large number of computational nodes, the
convolution of G0 is bottlenecked by interprocessor communication. The application cost of a gen-
eral D dimensional convolution of a wave function with N coefficients scales as O(N2D). A 3D
convolution G0(x, y, z, x′, y′, z′) ∗ψ(x, y, z) requires six spatial indices. MADNESS takes advantage
of the separable nature of the Gaussian form of G0 (see Eq. 12) to accomplish the time evolution
of a higher dimension system by repeated application of the 1D propagator∏

i

G0(xi, x
′
i) ∗ ψ(x, y, z) xi ∈ (x, y, z) (15)

which scales as O(ND+1). The reduced data transfer enables the time evolution of higher dimension
systems. Details concerning the choice of the frequency windowing function, parametrization of the
effective band limit, and accurate application of this oscillatory operator are found in the MADNESS
implementation notes [44].

In summary, successful time evolution of a multiresolution wave function hinges on the band
limit. First, it allows a multiresolution representation of G0 by bounding its size. It allows a
reasonable time step by quenching the high frequency noise endemic in the multiresolution wavelet
representation. The band limit is controlled by the cut parameter ξ which confines the Coulomb
singularity removing high momentum components and their associated propagation error. Finally,
the separated nature of G0 allows robust scaling on distributed memory computers.
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C. Model Potential

Since our eventual objective is the treatment of a general polyatomic systems without symmetry,
we cannot rely on the Jacobian of special coordinates to exactly represent the Coulomb singular-
ity in an integrable fashion. Thus, we use a smoothed approximation successfully employed in
Hartree-Fock and density functional computations [16] to model a nuclear potential of charge Z
(see Fig. 2(a)).

Vmodel(r) =
erf(r)

r
+
e−r

2

√
π

(16)

The coefficient of the Gaussian term is chosen so that the mean error is zero.∫ ∞
0

r2

(
Vmodel(r)−

1

r

)
dr = 0 (17)

The depth of the model potential

Vξ(r) =
Z

ξ
Vmodel(

r

ξ
) (18)

controls the maximum momentum component allowed in the wave function and is controlled by
the cut parameter ξ. The band limit c = 5/ξ (shown in the inset of Fig. 2(b)) has been empirically
determined. The coarsest potential (ξ = 0.3) agrees with the Coulomb function to machine precision
when r > 2. Smaller ξ produce an arbitrarily accurate agreement.

lim
ξ→0

Vξ(r) = −Z
r

(19)

Since rescattering is understood to be sensitive to the finest length scales [48], we emphasize the
importance of the ξ convergence study in Section III B 3.

It is desirable to begin the simulation with a stationary state of Vξ. The initial Coulomb eigenstate
is relaxed into an eigenstate of the model potential through the following self-consistent solution.

ψ(r) =
(
− 1

2
∇2 − E

)−1
Vξ(r) ψ(r) (20)

III. OBSERVABLES AND CONVERGENCE

As a necessary prelude to applications in higher dimensional systems, we benchmark this method
with 3D hydrogenic ions and establish its convergence.

A. Projection

The spatial representation and time propagation are directly generalized to 3D. Projection onto
the bound and scattering states, however, is unique to the geometry of each system. Analytic
eigenfunctions make the hydrogenic systems a natural test case.
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1. Transition Amplitudes

The ionization spectrum is calculated by projecting the wave function onto the incoming spherical
wave eigenstates [49] of the field-free Coulomb potential

φ
(−)
k (r) = (2π)−3/2eπη/2 (21)

×Γ
(
1 + iη

)
eik·r

×1F1

(
− iη, 1,−ikr − ik · r

)
for nuclear charge Z, momentum of magnitude k, and η = Z/k. These Coulomb scattering states

are momentum normalized 〈 φ(−)
k′ | φ(−)

k 〉 = δ3(k′ − k).
The softening of the Coulomb singularity in Eq. 20 implies the Coulomb eigenstates are not

eigenfunctions of the new model potential and have a non-zero overlap with initial state. Since
the eigenstates of Vξ are too expensive to compute directly, we remove the non-physical overlap
between the Coulomb eigenfunctions and those of the initial state of the model potential.

Pn` = |〈φn` | ψ(T )〉 − 〈φn` | ψ(0)〉〈ψ(0) | ψ(T )〉|2 (22)

Υk = |〈φk | ψ(T )〉 − 〈φk | ψ(0)〉〈ψ(0) | ψ(T )〉|2 (23)

Eq. 22 describes this first-order Gramm-Schmidt correction to the transition amplitudes. The
second-order error is visible in the initial value (t=0) of the transition probability to the spherically
symmetric s states Pns and can be seen about 5 orders of magnitude below ε in Fig. 4.

The partial integration of Eq. 23 provides the single differential probability distributions.

dP

dEf
=

∫
|Υk|2 k dΩk

dP

dΩ
=

∫
|Υk|2k2dk

dP

dk
=

∫
|Υk|2k2dΩk. (24)

where Ef is the kinetic energy of the freed electron.

2. Angular Projection

To determine the relative strength of each ionization process in Table III we computed the
difference between the total angular momentum resolved probability coefficients |c`|2 and those of
the individual bound states. The partial wave expansion

ψ(r, θ) =
∑
`

C`(r) Y`0(θ), (25)

provides the `’th radial distribution

C`(r) = 〈Y`0 | ψ〉Ω. (26)

projecting the wave function onto the `’th spherical harmonic by integrating over concentric spher-
ical shells. Since ψ is normalized, the total angular probability can be found by integrating C`(r).

|c`|2 =

∫
|C`(r)|2 r2dr (27)
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The angular component of ionization

|cion` |2 = |c`|2 −
∑
n

|〈φn` | ψ〉|2 (28)

is simply the difference between the total and bound probability of the `’th component.

B. Convergence

In this section we study the effects of the sources of error in our numerical scheme: the numerical
truncation threshold ε, the size of the time step dt, and the model potential cutoff parameter ξ.
ε sets an upper bound on local error, and the time propagation error is proportional to the size
and number of time steps. The cutoff parameter ξ determines the highest frequency allowed in the
wave function by controlling the depth of the model potential and the band limit of the free-particle
propagator.

1. Truncation Error

MADNESS’s adaptive refinement allows arbitrary accuracy. However, finite resources impose a
limit on the spacial refinement. This is realized by the truncation threshold ε which controls the
local error. While the error in the wave function accumulates over multiple time steps potentially
becoming greater than ε, some transition amplitudes achieve convergence below ε.

To determine the effect of ε on the system, we present the dynamics of the transition probabilities
in Fig. 4 computed at three different truncation thresholds ε = 10−3, 10−5, and 10−7. Visually, the
dynamics of the p-states and the 2s state are converged with ε = 10−3, whereas the 3s and 4s
states require ε = 10−5 for convergence. Numerical error is also readily apparent for states with
populations that continue to evolve after the end of the pulse, such as the f-states for ε = 10−3.
Contrast the parallel curves within a converged angular momentum population with the behavior
of an insufficiently converged group e.g. the f-states (Fig. 4(a) and (b)). Nevertheless, these states
are within an order of magnitude of their final value at in Fig. 4(c).

Fig. 5 shows the response of the photoionization momentum spectrum to ε. While the ionization
of hydrogen is unaffected by ε, the weak ionization processes in He+ (Fig. 5(b)) are more sensitive
and are misrepresented by the calculations when ε > 10−6.

Table I shows convergence trends in the transition probabilities of He+. The one-photon transition
probabilities to the 2p state is correct to three digits for ε = 10−3, and the two-photon transitions
to the s and d states have errors on the order of 10%. An unconverged changes with successively
smaller ε (see 5g) while a converged state oscillates about the correct value (see 2p and 2s). The 4f
population is converged to 2 digits (2.0× 10−8).

2. Time Step Error

At each time step dt, error is accumulated from the size of the time step εdt and the truncation
εtrunc of the adaptive basis.

εtotal = O
(Tεtrunc

dt

)
+O

(Tεdt
dt

)
(29)
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FIG. 4. (Color online) The bound state probabilities of He+ as calculated in Eq. 22 for different values of
the numerical truncation threshold ε (a) 10−3 (b) 10−5 (c) 10−7. ε is represented by the horizontal dashed
line. See labels in (a) for legend.

For large time steps εdt dominates, whereas, small dt implies many time steps and hence greater
overall truncation error. Fig. 6(a) shows how different time steps affect the energy (expectation of
the Hamiltonian) of hydrogen. At the end of the pulse, the relative error in Fig. 6(a) is shown in
Fig. 6(b). For dt/tcrit = 10 we see a slight deviation in the energy which quickly diverges for larger
values as εdt dominates. The photoionization peak in Fig. 6(c) is largely insensitive to dt. However,
the peak of the smallest time step is slightly shifted to the right as εtrunc accumulates after many
time steps. Thus, the high-order symplectic integrator [45] is beneficial in enabling large time steps.
The illustrations presented in Section IV use dt = 5tcrit.

3. The Cutoff Parameter

The length scale on which the model potential is smoothed can be thought of as the closest
scattering distance or cutoff parameter (ξ). In this section we probe the aberrations caused by its
modification.
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ε for (a) H (ξ = 0.1) and (b) He+ (ξ = 0.06).

Fig. 7(a) shows the dynamic energy 〈Ĥ〉 (where Ĥ is the Hamiltonian from Eq. 1) of hydrogen
for different ξ. Smaller ξ lead to a lower, more accurate ground state energy E0 which converges
towards the analytic value of -0.5 in Fig. 7(d). The relative position of the transition energies in
atomic hydrogen and the power spectrum of the laser (see the inset in Fig. 8(a)) predict single-
photon ionization as the dominant process. As ξ → 0, higher energy events are included, and the
change in energy of the system

∆E = E(T )− E0 (30)

increases as ξ → 0 (see Fig. 7(e)). This can also be seen for the total inelastic excitation

P (t) = 1− |〈ψ(0) | ψ(t)〉|2 (31)

(Fig. 7(h)) and total ionization (Fig. 8(a)).
While the convergence of hydrogen depends on high energy events, the convergence of He+ is

related to the stability of the ground state. In He+ the ∆E (Fig. 7(g)), the total inelastic state
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ε 1s 2s 2p 3d 4f 5g ΣPbound Pion

10−3 0.974448 0.851×10−4 0.021424 6.03×10−5 5.6×10−7 7×10−7 0.999016 8.58×10−4

10−4 0.974507 1.059×10−4 0.021432 6.52×10−5 2.7×10−6 2×10−7 0.999108 8.01×10−4

10−5 0.974513 0.998×10−4 0.021415 6.67×10−5 4.2×10−8 1×10−9 0.999081 8.28×10−4

10−6 0.974512 0.999×10−4 0.021422 6.72×10−5 2.1×10−8 2×10−10 0.999060 8.43×10−4

10−7 0.974516 0.996×10−4 0.021409 6.70×10−5 2.0×10−8 1×10−11 0.999057 8.49×10−4

ξ

0.2 0.97678 1.158×10−4 0.02520 6.96×10−5 1.4×10−7 7×10−8 0.99890 8.97×10−4

0.12 0.97319 1.017×10−4 0.02244 6.80×10−5 2.2×10−8 6×10−12 0.99898 9.21×10−4

0.08 0.97421 1.004×10−4 0.02166 6.74×10−5 2.6×10−8 3×10−11 0.99905 8.59×10−4

0.06 0.97452 0.996×10−4 0.02141 6.70×10−5 2.0×10−8 1×10−11 0.99906 8.49×10−4

0.05 0.97460 0.997×10−4 0.02135 6.71×10−5 2.2×10−8 6×10−12 0.99909 8.38×10−4

TABLE I. Convergence of the transition probabilities of He+ with L ∈ [−1000, 1000]. ξ = 0.059 for the
threshold convergence ε study (top), and ε = 10−7 during convergence of ξ. The bound states were summed
up to n = 9.

excitation (Fig. 7(i)), and the photoionization (Fig. 8b) decrease as the transition energies shift
towards a less intense region of the power spectrum as ξ → 0. See Table I for a quantitative
comparison.

We are interested in gauging the accuracy of our calculations. We generate a series of values with
successively smaller ξ, interpolate between the lines, and mark the spot where the given quantity is
within 1% of the final value (see the vertical dotted lines in Figs. 7(d)-(i)). The analytic value of the
ground state energy offers unambiguous convergence, for hydrogen ξ1% ≈ 0.24 (Fig. 7(d)) and for
He+ξ1% ≈ 0.08. Systems with a larger nuclear charge (Z) require a smaller ξ for the same accuracy.
In previous work [16] the value of ξ required to obtain a fixed accuracy for the total energy was
found to depend upon the atomic number Z according to ξ ∝ Z−5/3. The least converged value,
∆E in He+ (Fig. 7(g), has ξ1% = 0.07 which is above the smallest value ξ = 0.05.

The effects of the smoothing can be seen in the oscillation of the z-dipole (Fig. 9). As ξ decreases
from 0.2→ 0.059, larger transition energies have two effects. First, the dipole amplitude is damped:

|c(0.059)
2p |2 < |c(0.2)

2p |2 (see Table I). Second, the period of oscillation increases. While t ∈ (10, 50),
the dipole moment of ξ = 0.2 oscillates 9 times, while that of ξ = 0.059 oscillates 9.5 times. The
1s → 2p transition energy of ω12 = 2π/T = 1.496, which deviates 0.2% from the analytic value
of 1.5. The broadband laser pulse also excites the 3p state whose presence can be seen by the
beats of the modulating envelope with a period only 13% away from the predicted value of 5/36:
ω23 = 2π/T = 2π/(38− 12) = 0.242.

4. Box Size, Norm, and Timing Issues

The simulation box is a cube [−L,L]3 deliberately chosen to be much larger than the final wave
packet to avoid reflection or the need for absorbing boundary conditions. In MADNESS, the size

of the sparse wave function ψ scales as O
(

log(L)
)
. The dense momentum eigenfunctions φ

(−)
k (r),

however, fill the entire simulation box scaling as O(L3). For efficiency we compute φ
(−)
k (r) in a
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FIG. 6. (Color online) The dynamic convergence of atomic hydrogen (ξ = 0.2, ε = 1 × 10−5, and dtcrit =

3.4 × 10−3) with respect to the time step dt. The energy 〈Ĥ〉 from Eq. 1 is shown in (a) along with its
error, at different time steps, at the end of the pulse in (b). (c) shows the photoionization spectrum (see
Eq. 24).

reduced volume corresponding to the furthest extent

Lsmall = T
√

2(nω − Ip) (32)

of an n-photon ionization from the beginning of the pulse to escape from an ionization potential Ip.
A 2 and 5 photon ionization of hydrogen corresponds to Lsmall = 19 and 35 in the current pulse.
The largest relative error, arising from this truncation, in the ionization probability k2 Υk is on the
order of 10−5. Lsmall will be a more important issue with infrared pulses in the tunneling regime
where the electron is carried much further from the atom.

The loss of norm

εnorm(t) = |1− 〈ψ(t) | ψ(t)〉| (33)

is due to several factors. The finite precision of the spatial representation of the wave function, and
the repeated application of the band limited propagator. While the split-operator time evolution
schemes preserve norm and are unitary, norm is lost through the truncation of the high-frequency
coefficients. Typically this loss accumulates uniformly throughout the pulse ending with εnorm
approximately 10ε. Occasionally εnorm(T ) < ε, while the worst deviation (atomic hydrogen with
ε = 10−7, ξ = 0.1) had εnorm(T ) ≈ 100ε.

The application cost of G0, which is related to its spatial extent and the size of the wave function,
is affected by several interrelated parameters. Smaller ε directly increases the size of both G0 and
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shown for: the energy 〈Ĥ〉 from Eq. 1 in (a) & (b) and the total inelastic excitation vs time from Eq. 31 in
(c). Convergence of the ground state energy (d) & (f), the energy difference Eq. 30 in (e) & (g), and total
inelastic excitation in (h) & (i) are shown as a function of ξ. The dotted line represents convergence within
1% of the extrapolated value.
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to ξ for (a) H and (b) He+. The relationship between the energy levels and the laser power spectrum is
shown in the insets.

the wave function. Second, the cost is directly proportional to the number of time steps.

Nt = T/dt ∝ T/ξ2 (34)

While dt and ξ directly affect Nt, they also add to the complexity of G0. The electron propagates
further during longer time steps; this increases the spatial extent of G0 (Lprop). Smaller ξ increases
the band limit c and includes lager momentum components |kmax|, which enlarges Lprop.

Lprop ∝ ξ
−1

∝ c ∝ |kmax| (35)

On an 8 core Intel Xeon 2.9 GHz computer with 24 GB of shared memory, the time evolution of H
in 3D (L = 300, k = 12, ε = 10−5, dt = 5dtcrit, ξ = 0.2) was accomplished in about an hour. Higher
accuracy requires more memory, which becomes the limiting factor on larger calculations. For He+

(L = 300, k = 24, ε = 10−7, dt = 4dtcrit, ξ = 0.059) a typical high fidelity time evolution took 46
hours running on a Cray XT5 running with 2,000 - 5,000 cores. Both time evolution and projection
code realize performance increase (for sufficiently complex wave functions) through 12,000 cores.
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C. Comparison to Prior Work
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FIG. 10. (Color online) The photoionization spectrum of the present work is compared with that of Grum-
Grzhimailo et al. [13] for atomic hydrogen in a four-cycle laser pulse with a sin2 envelope applied to the
electric field, having a peak intensity of 1.0× 1015W/cm2 (E0 = 0.169) and a central frequency of ω = 0.3
(152 nm).

Pronin et al. [50] used perturbation theory to find the ionization of atomic hydrogen in a two-cycle
pulse of the same frequency and intensity. However, their velocity gauge scheme applied the sin2

pulse envelope to the vector potential rather than the electric field yielding a qualitatively different
photoionization spectrum. Grum-Grzhimailo et al. [13] noted this and ran a series of computations
with a four-cycle laser pulse at peak intensity 1× 1015W/cm2 (E0 = 0.169) and central frequency
ω = 0.3 (152 nm) testing the effect of the pulse envelope on the vector potential and electric field
on the photoionization spectrum of atomic hydrogen. We reproduced this numerical experiment
for comparison purposes and obtained excellent agreement (see Fig. 10).

IV. ILLUSTRATIVE EXAMPLES

We present the highlights of our method with H, He+, Li2+, and H+
2 subject to the attosecond

laser pulse [43] described in Fig. 1. This intense, two-cycle pulse with I = 1 × 1015W/cm2 (E0 =
0.176) and driving frequency ω = 1.32 yields a Keldysh parameter

γ =
ω

E

√
2Ip (36)

of γ = 8, 15, and 11 for the ionization potential Ip = 0.5, 2.0, and 1.125 of H, He+, and Li2+

respectively which is in the multiphoton regime (γ > 1). Access to the wave function enables us to
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calculate the transition probabilities, photoionization spectrum, and dynamic observables such as
the energy and dipole moments.

A. Atomic Hydrogen

Single photon ionization dominates atomic hydrogen (ε = 10−7, ξ = 0.05, and L = 3000) as
suggested by the relative position of the laser pulse power spectrum and the transition energies in
Fig. 11(c). Fig. 11(b) shows the signature dipole radiation pattern in the single differential cross
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FIG. 11. (Color online) (a) The full differential photoionization momentum distribution of atomic hydrogen
and (b) angular distribution dP/dΩ from Eq. 24 are shown against the laser polarization access (the arrow).
(c) The transition energies in hydrogen are superimposed on the power spectrum of the laser.

section (from Eq. 24) where the arrow represents the laser polarization axis. The logarithmic,
contour plot of the double photoelectron differential momentum distribution (Fig. 11(a) shows a

ridge of two-photon ionization just below the predicted value at (k =
√

2(ω − Ip) = 2.1) which
is three orders of magnitude weaker than the dominant single photoionization process ionization.
Table II shows quantitative results for selected transition probabilities.



20

1s 2s 2p 3d 4f 5g ΣPbound Pion

H 0.976 2.09×10−5 5.03×10−3 1.17×10−6 2.4×10−7 10−13 0.0076 0.016

He+ 0.975 1.00×10−4 2.14×10−2 6.72×10−5 2.1×10−8 10−12 0.025 8.5×10−4

Li2+2s 2.8×10−6 0.965 1.1×10−6 2.55×10−6 1.3×10−8 — 0.023 0.010

TABLE II. Transition probabilities for atomic hydrogen, He+ and Li2+.

B. He+

He+ (ε = 10−7, ξ = 0.05, and L = 1000) is best explored in contrast to hydrogen where excitation
rather than ionization is the dominant process since the 1s→ 2p transition lies near the peak of the
power spectrum (see Fig. 11(c)). The dynamic behavior of the total inelastic excitation in Fig. 7(c)
exemplifies this difference. In He+, the resonantly pumped electron has monotonically increasing
excitation. The excitation of the loosely bound electron in hydrogen oscillates as it is driven back
and forth across the origin. The dynamics of the total energy (Eq. 1) in Fig. 7(a) and (b) show
similar behavior.
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FIG. 12. (Color online) (a) The fully differential photoionization momentum distribution of Li2+ and (b)
angular distribution dP/dΩ from Eq. 24 are shown against the laser polarization access (the arrow). (c)
The transition energies from the ground state are superimposed on the power spectrum of the laser.
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The weaker photoionization of He+ in Fig. 12(a) has competition among ionization mechanisms
(see arrows in Fig. 12(c)). The single photon ionization relies on a weak component of the power
spectrum while two- and three-photon, non-sequential ionization has peaks at k = 1.1 and 2.0
respectively. Sequential double ionization (primarily) through the 2p peaks at 1.28. We differentiate
these processes by analyzing the coefficients of the partial wave expansion (see Eq. 28 in Section
III A 2). |cp|2 and |cd|2 comprise 98% of the ionization probability, with a small fraction coming
from the s and f states (see Table III).

` |cion` |2

0 1.39×10−5

1 5.20×10−4

2 3.56×10−4

3 3.88×10−6

TABLE III. The angular resolved ionization coefficients for He+.

C. Li2+
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FIG. 13. (Color online) The total ionization and inelastic excitation probability (see Eq. 31) of Li2+, and
bound state transition probabilities |〈ψn`0 | ψ(t)〉|2 are plotted versus time.

The 1s ground state of Li2+ (ξ = 0.03, ε = 10−6, and L = 1000) lies 3.375 units of energy below
the excitation to the 2p state and 4.5 units below the continuum edge requiring multiple photons
from our laser pulse. The resulting transition probabilities are almost all below the numerical
threshold ε. The metastable 2s state of Li2+, however, yields more interesting results.
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Fig. 13 shows the bound state population dynamics of Li2+(2s). Ionization and dipole excitation
to the 3p state are the leading events with similar probability. The 2s→ 1s channel has no single-
photon transitions, consequently the 1s population does not follow the field as do the other states,
but increases to saturation in the middle of the pulse. The 2s→ 2p transition is significantly smaller
than the other p transitions since the power spectrum of the laser pulse has no DC component
(ω = 0) for transition between the degenerate states (see Fig. 14(c)). Its most probable 3 photon
pathway is 2s → 4p → 3d/3s → 2p. The three forward peaks in the photoionization spectrum of
Li2+ in Fig. 14(a) (k = 0.6, 1.7, and 2.4) correspond to the one-, two-, and three-photon ionization
(ω = 1.32).
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FIG. 14. (Color online) (a) The fully differential photoionization momentum distribution of Li2+ and (b)
angular distribution dP/dΩ from Eq. 24 are shown against the laser polarization access (the arrow). (c)
The transition energies from the initial 2s state are superimposed on the power spectrum of the laser.

D. H+
2

The computational flexibility of MADNESS’s Cartesian coordinates is best exemplified in H+
2 .

No new code was needed to run the molecular system, only a modification of the input file. The
4D simulation only required the inclusion of an additional coordinate to the wave function and a
nuclear-nuclear term in the Hamiltonian.

The mass of the 4th coordinate s was scaled to unity

s =
√
µR s ∈ [0,

√
µRmax] r = (x, y, z, s) (37)
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FIG. 15. (Color online) A comparison of the total energy of the 3D and 4D simulations of H+
2 , with the

internuclear axis oriented perpendicular to the laser field polarization axis, as shown by the inset.

where µ is the reduced mass of the two protons and R is the internuclear coordinate. This allows
a uniform application of the free particle propagator. The initial internuclear wave function was
approximated by the ground state of the harmonic oscillator centered at R0 = 2.0.

ψ(R) =

(
µω

π

) 1
4

eµω(R−R0)2/2 ψ(s) =

(
ω

π

) 1
4

eω(s−√µR0)2/2 (38)

Finally, the fully-coupled, 4D wave function was relaxed into the numerical ground state as described
in Section II C.

Inclusion of the nuclear-nuclear potential (VNN ) as discussed in Section II C) was straightforward.

Ĥ = −1

2
∇2 + VeN (r) + VNN (s) + E(t) · r (39)

VeN (r) = Vξ

(√
(x− s

2
√
µ

)2 + y2 + z2

)
+ Vξ

(√
(x+

s

2
√
µ

)2 + y2 + z2

)
VNN (s) =

√
µ

s

It took about an hour to run the 3D simulation of H+
2 using the same computer/parameters as

atomic hydrogen case mentioned in Section III B 4. The 4D H+
2 ran on a few thousand cores of

the XT5 Cray at Oak Ridge National Laboratory taking just under 5 hours. Fig. 15 compares
the electronic energy (expectation value of the Hamiltonian) as a function of time. The agreement
between the two simulations is expected since nuclear motion is negligible on the attosecond time
scale. The application of an infrared pulse should show a breakdown in the fixed nuclear approxi-
mation. The 4D scheme used the second-order accurate Trotter propagator that, along with finite
precision computation, caused the aberration in the energy at the end of the pulse.
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V. CONCLUSIONS

We have introduced an explicit, ab initio scheme for solving the TDSE. Convergence was es-
tablished for 3D hydrogenic systems in an attosecond pulse [43]. The accuracy was achieved with
an adaptively refined mesh, large simulation box, and a high-order symplectic propagator. This
scheme is readily extendible to higher dimensional systems as shown by the 4D treatment of H+

2 .
The direct photoionization of hydrogen was compared to that of He+ whose complex distribution

came from the competition between ionization channels. Access to the complete wave function
allows dynamic access to observables. The energy and total inelastic excitation of resonant He+

show a monotonic increase. The same quantities in hydrogen oscillate as the loosely bound electron
is driven back and forth with the field. The excitation dynamics of Li2+ allow the comparison
of: the dipole excitation 2s → 3p; the non-sequential, two-photon de-excitation 2s → 1s; and the
three-photon sequential transition from 2s→ 2p. Finally, a preliminary comparison of 3D and 4D
calculations of H+

2 was reported.
We have successfully implemented an explicit solution of the TDSE in the multiresolution frame-

work for hydrogenic atoms and molecular systems in the multiphoton regime. Future work will
examine high harmonic generation and above threshold ionization in the tunneling regime us-
ing the same numerical framework. These studies are, however, a precursor to high-dimensional,
few-particle (electron and/or nuclei) wave functions and multiconfiguration self consistent field
calculation on many electron systems.
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