Attosecond electron dynamics: A multiresolution approach
Nicholas Vence, Robert Harrison, and Predrag Krstić
Phys. Rev. A 85, 033403 — Published 2 March 2012
DOI: 10.1103/PhysRevA.85.033403
Attosecond electron dynamics: a multiresolution approach

Nicholas Vence,1 Robert Harrison,2,3 and Predrag Krstić1,3,*

1Dept. of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996
2Dept. of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
3Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

We establish a numerical solution to the time dependent Schrödinger equation employing an adaptive, discontinuous spectral element basis that automatically adjusts to the requested precision. The explicit time evolution is accomplished by a band-limited, gradient-corrected, symplectic propagator and uses separated representations of operators for efficient computation in multiple dimensions. We illustrate the method calculating accurate bound and continuum transition probabilities along with the photoelectron spectra for H(1s), He+(1s), and Li2+(2s) in three dimensions and H2++ in three and four dimensions under a two-cycle attosecond laser pulse with driving frequency of 36 eV and an intensity of $1 \times 10^{15} \text{W/cm}^2$.

PACS numbers: 32.80.Rm, 31.15.ac, 32.80.Fb

* krsticp@ornl.gov
I. INTRODUCTION

Collisions of electrons, ions, and photons with molecules and atoms create energetic species that drive chemical and physical changes in environments ranging from plasmas to living tissue; predicting these changes requires an understanding of the fundamental underlying processes. This article details the development of an effective time-evolution scheme and establishes its accuracy through three dimensional (3D) benchmark studies of the one-electron species H, He+, and Li2+ in a two-cycle attosecond laser pulse, by presenting bound and continuum transition probabilities along with photoelectron spectra. Single-electron dynamics has served to debut many established methods [1–13]. We extend a highly-accurate method of computational chemistry [14–17] towards a robust description of many-electron systems, beyond the single-electron approximation. As H+ is taken from 3D to 4D we add multiresolution analysis [18–20] to the rapidly growing body of research in dynamic nuclear-electron coupling [21–28].

The standard \textit{ab initio} few-electron solutions to the Time Dependent Schrödinger Equation (TDSE) [29–42] for electron/photon scattering are time-dependent grid methods and time-independent close-coupling-type approaches with a large number of physical/pseudo-states. While great progress has been made in chemistry modeling complex molecules and clusters close to their electronic ground state, the inclusion of the highly excited bound and continuum states has been the crucial challenge in many-electron transition dynamics. The simplicity of our method comes from a unified treatment of the bound and continuum states and a high level of programming abstraction using operators and functions whose mesh automatically adapts to guarantee the requested precision. It does not rely on special coordinates or symmetry to treat singularities or reduce the dimensionality. Currently it can accommodate an elliptically polarized laser pulse and is readily extendable to describe the dynamics of a multi-particle system using either the standard multi-configuration wave function or a fully-correlated, many-dimension few particles wave function electrons and/or nuclei.

We are numerically solving the TDSE of a finite laser pulse in the length gauge within the dipole approximation (atomic units are used throughout the text, unless stated otherwise),

\[
\frac{id\Psi}{dt} = \hat{H}\Psi \quad \hat{H} = -\frac{1}{2}\nabla^2 + V(r) + E(t) \cdot r
\]

where \(E(t)\) is the electric field strength and \(V(r)\) is the atomic potential. The \(n_{cy}\) cycle pulse of duration \(T\)

\[
E(t) = E_0 \sin^2(\omega t / 2n_{cy}) \cos(\omega t + \varphi) \hat{z}
\]

\[0 \leq t < \frac{2\pi n_{cy}}{\omega} = T\]

has a Carrier Envelope Phase of \(\varphi = -\pi/2\). These parameters were chosen to match the isolated attosecond pulse [43] crafted by Sansone et al. This linearly-polarized, two-cycle, ultraviolet laser pulse has a central photon energy of \(\omega = 1.32\) (36 eV), peak intensity \(I = 10^{15}\)W/cm\(^2\) i.e. \(E_0 = 0.176\), and duration 9.6 (230 as). The power spectrum of the two cycle pulse (see Fig. 1) spans many bound and continuum states and can be thought of as a multimode laser with a continuum of frequencies.

MADNESS (Multiresolution Adaptive Numerical Environment for Scientific Simulation) [15–17, 44] provides a front end for scientists who wish to apply the multiresolution framework [14] without focusing on the low level math or the computational implementation. It is an interface to functions and operators that keeps track of the numerical precision, the hardware optimization, and
FIG. 1. (Color online) The linearly-polarized, two-cycle laser pulse with a driving frequency of 36 eV, intensity of 1×10^{15} W/cm2, and a carrier envelope phase of $-\pi/2$ was chosen to match that of Sansone et al. [43].
II. THEORY

A. Spatial Representation

Multiresolution analysis within a multiwavelet basis [14] is best explored with a 1D function \(f \). At the coarsest level (n=0), \(f \) is represented by a linear combination of scaling functions

\[
\phi_i(x) = \begin{cases} \sqrt{2^i + 1} \ P_i(2x-1) & x \in [0,1] \\ 0 & \text{otherwise} \end{cases} \tag{3}
\]

where \(P_i(x) \) are the Legendre polynomials. These parent scaling functions (n=0) are shifted and dilated as \(f \) is refined. The first level of refinement (n=1) splits the domain and represents each side with an independent set of \(k \) scaling functions.

\[
\phi_i^n(x) = 2^{n/2} \phi_i(2^nx - \ell) \tag{4}
\]

At level \(n \) of refinement there are \(2^n \) subdomains that are indexed by \(\ell \).

In MADNESS, each subdomain of \(f \) is adaptively refined until it satisfies the requested numerical tolerance \(\epsilon \). \(f \) is represented (see Fig. 2) by subdomains (boxes) that cover the original domain.

\[
f^{(\epsilon)}(x) = \sum_{n\ell} \sum_{i=0}^{k-1} s_{n\ell} \phi_{n\ell}^i(x) \quad s_{n\ell} = \int f(x) \phi_{n\ell}^i \, dx. \tag{5}
\]

![Fig. 2](#)

FIG. 2. (Color online) The function \(f(x) \) in (a) is approximated in (b) - (d) showing refinement (at \(k = 1 \)) with successively smaller numerical thresholds \(\epsilon \). In (e) the first four scaling functions (from Eq. 5) are shown above their corresponding wavelets (from Eq. 7). The absolute value of the refinement error in is shown in (f) with \(k = 1 \) and \(\epsilon = 10^{-1}, 10^{-3}, 10^{-5} \) and in (g) with \(\epsilon = 10^{-5} \) and \(k = 1, 2, 3, 6 \).

Each scaling function \(\phi_{n\ell}^i(x) \) (see Fig. 2(e) upper row) has a corresponding wavelet function \(\psi_{n\ell}^i(x) \) (see Fig. 2(e) lower row).

\[
\psi_{n\ell}^i(x) = \phi_{i2\ell+1}^n(x) - \phi_{i2\ell+1}^{n+1}(x) \tag{6}
\]
This provides a second mathematically equivalent representation of f

$$f^{(c)}(x) = \sum_{i=0}^{k-1} \int dx \int dx' s_{i\ell}^0 \phi_{i\ell}^0(x) + \sum_{n\ell} \sum_{i=0}^{k-1} d_{i\ell}^n \psi_{ij}^n(x) \quad d_{i\ell}^n = \int f(x) \psi_{i\ell}^n \, dx. \quad (7)$$

The wavelets provide a more efficient basis for certain operations (like the inner product) due to the following orthogonality relations.

$$\int \phi_{i\ell}^n(x) \phi_{i'\ell'}^{n'}(x) \, dx = \delta_{nn'} \delta_{\ell\ell'} \delta_{ii'} \quad (8)$$

$$\int \psi_{i\ell}^n(x) \psi_{i'\ell'}^{n'}(x) \, dx = \delta_{nn'} \delta_{\ell\ell'} \delta_{ii'} \quad (8)$$

$$\int \phi_{i\ell}^n(x) \psi_{i'\ell'}^{n'}(x) \, dx = 0 \text{ if } n > n'$$

There exists a fast transform between the scaling function representation in Eq. 5 and wavelet representation in Eq. 7. This dual representation is analogous to the real/momentum space representation.

Function refinement, the recursive subdivision of the domain, continues until the difference coefficients satisfy the refinement criteria.

$$||d_{i\ell}^n||_2 = \sqrt{\sum_i |d_{i\ell}^n|^2} \leq \epsilon \quad (9)$$

The refinement is deepest in regions where f is not smooth (see Fig. 2). The approximation error for a locally smooth function scales as $O(2^{-nk})$ while the error near a discontinuity as $O(2^{-n})$. A typical, low-accuracy run of the TDSE for the hydrogen atom ($k = 12$, $\epsilon = 1 \times 10^{-5}$, and $\xi = 0.3$) (see Section II C) refines to a depth of $n = 9$ while a high-precision run ($\xi = 0.05$, $k = 24$ and $\epsilon = 1 \times 10^{-7}$) refines to $n = 11$.

The Cartesian coordinate representation, while not necessary for simulation in MADNESS, carries many benefits. It is easy to extend a function to an arbitrary number of spatial dimensions while maintaining a consistent interface with the operators. Thus, the implementation of the 3D solution to the TDSE is only marginally more complicated than that of a 1D solution, and the extension of 3D atomic hydrogen to fixed nuclear H_2^+ was only a modification of the input file parameters. In Section IV D, we provide preliminary results from a 4D representation of H_2^+ where the internuclear separation is treated dynamically, on the same footing as the 3D electronic components. A 6D treatment of two-electron He, while more computationally intensive, only requires the addition of an electron-electron repulsion term to the Hamiltonian.

In summary, the multiresolution formalism provides the impression of a basis-free simulation by automating the extension or contraction of the basis through adaptive refinement. Most ab initio schemes compute matrix elements to machine precision within a fixed finite basis. MADNESS, however, computes to finite precision in a dynamically changing basis. Finally, the Cartesian framework of MADNESS is readily extendable to larger systems.
B. Time Evolution

For the temporal propagation of the TDSE (Eq. 1), we employ the fourth-order, gradient-corrected, symplectic propagator developed by Chin and Chen [45]. This time evolution operator

\[
U(dt, t) = e^{-i\frac{1}{6}V(t+dt)dt} e^{-i\frac{1}{2}\hat{T}dt} e^{-i\frac{1}{6}V(t+\frac{1}{2}dt)dt} e^{-i\frac{1}{2}\hat{T}dt} e^{-i\frac{1}{6}V(t)dt} + O(dt^5)
\] (10)

reduces the error and total computational expense by allowing a much longer time steps than the second-order accurate, Trotter splitting [46]. The application of the exponentiated potential, in MADNESS, is simply function multiplication while the application of the exponentiated kinetic energy operator

\[
U_0(t) = e^{-i\frac{1}{2}\hat{T}dt} = e^{i\nabla^2 dt/2}
\] (11)

is an integral convolution. The potential-free Green’s function (free-particle propagator) of the TDSE in \(D\) spatial dimensions

\[
G_0(x, t) = (2\pi i dt)^{-D/2} e^{-\frac{x^2}{2\pi i dt}}
\] (12)

is applied to the wave function

\[
\psi(x, dt) = U_0(dt) \psi(x, 0) = \int dx' G_0(x - x', dt) \psi(x', 0).
\] (13)

advancing it forward in time.

![FIG. 3. (color online) (a) The real component of the 1D free particle propagator and (b) its band limited counterpart. The band limit (inset) in momentum space is the black line and the excluded Fourier components of the original function are dashed.](image)

The unbounded spectrum of the kinetic energy operator \(U_0\) in Fig. 3(a) makes its complete computational representation impossible. However, we are not interested in representing the full operator, only the components necessary for the propagation of a band limited wave function. This is directly analogous to the upper energy limit on a uniform grid. The band limit is applied by
transforming the full G_0 to momentum space (see inset in Fig. 3(b)), multiplying by a band limiting filter, and transforming back to real space (Fig. 3(b)). The band limited G_0 is bounded both in real space and momentum space.

The discontinuous, spectral element basis is a computationally convenient alternative to the finite element or finite difference methods. Continuity emerges (within finite precision) with the application of an appropriately constructed integral or differential operator [14] as is the case with the stencils used in finite difference methods. Nevertheless, the adaptive, discontinuous, polynomial basis unavoidably includes numerical, high frequency components even when representing smooth functions. The insensitivity of the band limited G_0 to this numerical noise preserves the integrity of the wave function.

Scattering off the Coulomb singularity also allows arbitrarily high frequencies into the wave function. These legitimate, physical frequencies would introduce propagation error upon application of the band limited G_0. We prevent this error by band limiting the nuclear potential (see Sec. II C) to allow exact propagation. This is accomplished by smoothing the singularity at a closest scattering distance, which prevents high frequencies from entering the system. The cutoff parameter ξ controls the depth of the potential, the band limit, and the complexity of the simulation (see Sec. III B 3).

In addition to increasing the size of the wave function, the fine spatial variations associated with high frequencies require an impractically small time step. The TDSE is limited by a Courant-Friedrichs-Lewy-like [47] condition ($dt \propto (\Delta x)^2$) where the critical time step

$$dt_{crit} \approx \frac{2\pi}{c^2} \propto (\Delta x)^2 \propto \xi^2$$

where c is an empirically estimated band limit and Δx is the smallest mesh spacing which is controlled by ξ the potential smoothing parameter.

The application of the G_0 (see Fig. 3) is the most computationally intensive step of time evolution and efficiency hinges on its separability. While computer memory limits the size of the solution domain in fixed grid schemes, in MADNESS, memory limits the total complexity of the wave function. Massively-parallel, distributed-memory computers replace the memory constraint by a communication bandwidth limit. For a sufficiently large number of computational nodes, the convolution of G_0 is bottlenecked by interprocessor communication. The application cost of a general D dimensional convolution of a wave function with N coefficients scales as $O(N^{2D})$. A 3D convolution $G_0(x, y, z, x', y', z') \ast \psi(x, y, z)$ requires six spatial indices. MADNESS takes advantage of the separable nature of the Gaussian form of G_0 (see Eq. 12) to accomplish the time evolution of a higher dimension system by repeated application of the 1D propagator

$$\prod_i G_0(x_i, x'_i) \ast \psi(x, y, z) \quad x_i \in (x, y, z)$$

which scales as $O(N^{D+1})$. The reduced data transfer enables the time evolution of higher dimension systems. Details concerning the choice of the frequency windowing function, parametrization of the effective band limit, and accurate application of this oscillatory operator are found in the MADNESS implementation notes [44].

In summary, successful time evolution of a multiresolution wave function hinges on the band limit. First, it allows a multiresolution representation of G_0 by bounding its size. It allows a reasonable time step by quenching the high frequency noise endemic in the multiresolution wavelet representation. The band limit is controlled by the cut parameter ξ which confines the Coulomb singularity removing high momentum components and their associated propagation error. Finally, the separated nature of G_0 allows robust scaling on distributed memory computers.
C. Model Potential

Since our eventual objective is the treatment of a general polyatomic systems without symmetry, we cannot rely on the Jacobian of special coordinates to exactly represent the Coulomb singularity in an integrable fashion. Thus, we use a smoothed approximation successfully employed in Hartree-Fock and density functional computations [16] to model a nuclear potential of charge Z (see Fig. 2(a)).

$$V_{model}(r) = \frac{\text{erf}(r)}{r} + \frac{e^{-r^2}}{\sqrt{\pi}}$$

(16)

The coefficient of the Gaussian term is chosen so that the mean error is zero.

$$\int_0^\infty r^2 \left(V_{model}(r) - \frac{1}{r} \right) dr = 0$$

(17)

The depth of the model potential

$$V_\xi(r) = \frac{Z}{\xi} V_{model}(\frac{r}{\xi})$$

(18)

controls the maximum momentum component allowed in the wave function and is controlled by the cut parameter ξ. The band limit $c = 5/\xi$ (shown in the inset of Fig. 2(b)) has been empirically determined. The coarsest potential ($\xi = 0.3$) agrees with the Coulomb function to machine precision when $r > 2$. Smaller ξ produce an arbitrarily accurate agreement.

$$\lim_{\xi \to 0} V_\xi(r) = -\frac{Z}{r}$$

(19)

Since rescattering is understood to be sensitive to the finest length scales [48], we emphasize the importance of the ξ convergence study in Section III.B.3.

It is desirable to begin the simulation with a stationary state of V_ξ. The initial Coulomb eigenstate is relaxed into an eigenstate of the model potential through the following self-consistent solution.

$$\psi(r) = \left(-\frac{1}{2} \nabla^2 - E \right)^{-1} V_\xi(r) \psi(r)$$

(20)

III. OBSERVABLES AND CONVERGENCE

As a necessary prelude to applications in higher dimensional systems, we benchmark this method with 3D hydrogenic ions and establish its convergence.

A. Projection

The spatial representation and time propagation are directly generalized to 3D. Projection onto the bound and scattering states, however, is unique to the geometry of each system. Analytic eigenfunctions make the hydrogenic systems a natural test case.
1. Transition Amplitudes

The ionization spectrum is calculated by projecting the wave function onto the incoming spherical wave eigenstates \([49]\) of the field-free Coulomb potential

\[
\phi_k^{(-)}(r) = (2\pi)^{-3/2} e^{\pi\eta/2} \times \Gamma(1 + i\eta) e^{i\mathbf{k} \cdot \mathbf{r}} \times \mathbf{1}_F(- i\eta, 1, -ikr - i\mathbf{k} \cdot \mathbf{r})
\]

for nuclear charge \(Z\), momentum of magnitude \(k\), and \(\eta = Z/k\). These Coulomb scattering states are momentum normalized \(\langle \phi_{k'}^{(-)} | \phi_k^{(-)} \rangle = \delta^3(\mathbf{k}' - \mathbf{k})\).

The softening of the Coulomb singularity in Eq. 20 implies the Coulomb eigenstates are not eigenfunctions of the new model potential and have a non-zero overlap with initial state. Since the eigenstates of \(V_\xi\) are too expensive to compute directly, we remove the non-physical overlap between the Coulomb eigenfunctions and those of the initial state of the model potential.

\[
P_{n\ell} = |\langle \phi_{n\ell} | \psi(T) \rangle - \langle \phi_{n\ell} | \psi(0) \rangle |^2
\]

\[
\Upsilon_k = |\langle \phi_k | \psi(T) \rangle - \langle \phi_k | \psi(0) \rangle |^2
\]

Eq. 22 describes this first-order Gramm-Schmidt correction to the transition amplitudes. The second-order error is visible in the initial value (\(t=0\)) of the transition probability to the spherically symmetric s states \(P_{ns}\) and can be seen about 5 orders of magnitude below \(\epsilon\) in Fig. 4.

The partial integration of Eq. 23 provides the single differential probability distributions.

\[
\frac{dP}{dE_f} = \int |\Upsilon_k|^2 k \, d\Omega_k \quad \frac{dP}{d\Omega} = \int |\Upsilon_k|^2 k^2 \, dk \quad \frac{dP}{dk} = \int |\Upsilon_k|^2 k^2 \, d\Omega_k.
\]

where \(E_f\) is the kinetic energy of the freed electron.

2. Angular Projection

To determine the relative strength of each ionization process in Table III we computed the difference between the total angular momentum resolved probability coefficients \(|c_\ell|^2\) and those of the individual bound states. The partial wave expansion

\[
\psi(r, \theta) = \sum_\ell C_\ell(r) Y_{\ell0}(\theta),
\]

provides the \(\ell\)'th radial distribution

\[
C_\ell(r) = \langle Y_{\ell0} | \psi \rangle \Omega.
\]

projecting the wave function onto the \(\ell\)'th spherical harmonic by integrating over concentric spherical shells. Since \(\psi\) is normalized, the total angular probability can be found by integrating \(C_\ell(r)\).

\[
|c_\ell|^2 = \int |C_\ell(r)|^2 r^2 \, dr
\]
The angular component of ionization

\[|c_{\ell}^{\text{ion}}|^2 = |c_{\ell}|^2 - \sum_n |\langle \phi_n \ell | \psi \rangle|^2 \]

(28)

is simply the difference between the total and bound probability of the \(\ell \)th component.

B. Convergence

In this section we study the effects of the sources of error in our numerical scheme: the numerical truncation threshold \(\epsilon \), the size of the time step \(dt \), and the model potential cutoff parameter \(\xi \). \(\epsilon \) sets an upper bound on local error, and the time propagation error is proportional to the size and number of time steps. The cutoff parameter \(\xi \) determines the highest frequency allowed in the wave function by controlling the depth of the model potential and the band limit of the free-particle propagator.

1. Truncation Error

MADNESS’s adaptive refinement allows arbitrary accuracy. However, finite resources impose a limit on the spacial refinement. This is realized by the truncation threshold \(\epsilon \) which controls the local error. While the error in the wave function accumulates over multiple time steps potentially becoming greater than \(\epsilon \), some transition amplitudes achieve convergence below \(\epsilon \).

To determine the effect of \(\epsilon \) on the system, we present the dynamics of the transition probabilities in Fig. 4 computed at three different truncation thresholds \(\epsilon = 10^{-3}, 10^{-5}, \) and \(10^{-7} \). Visually, the dynamics of the p-states and the 2s state are converged with \(\epsilon = 10^{-3} \), whereas the 3s and 4s states require \(\epsilon = 10^{-5} \) for convergence. Numerical error is also readily apparent for states with populations that continue to evolve after the end of the pulse, such as the f-states for \(\epsilon = 10^{-3} \). Contrast the parallel curves within a converged angular momentum population with the behavior of an insufficiently converged group e.g. the f-states (Fig. 4(a) and (b)). Nevertheless, these states are within an order of magnitude of their final value at in Fig. 4(c).

Fig. 5 shows the response of the photoionization momentum spectrum to \(\epsilon \). While the ionization of hydrogen is unaffected by \(\epsilon \), the weak ionization processes in He\(^+\) (Fig. 5(b)) are more sensitive and are misrepresented by the calculations when \(\epsilon > 10^{-6} \).

Table I shows convergence trends in the transition probabilities of He\(^+\). The one-photon transition probabilities to the 2p state is correct to three digits for \(\epsilon = 10^{-3} \), and the two-photon transitions to the s and d states have errors on the order of 10%. An unconverged changes with successively smaller \(\epsilon \) (see 5g) while a converged state oscillates about the correct value (see 2p and 2s). The 4f population is converged to 2 digits (\(2.0 \times 10^{-8} \)).

2. Time Step Error

At each time step \(dt \), error is accumulated from the size of the time step \(\varepsilon_{dt} \) and the truncation \(\varepsilon_{\text{trunc}} \) of the adaptive basis.

\[\varepsilon_{\text{total}} = \mathcal{O}\left(\frac{T\varepsilon_{\text{trunc}}}{dt}\right) + \mathcal{O}\left(\frac{T\varepsilon_{dt}}{dt}\right) \]

(29)
FIG. 4. (Color online) The bound state probabilities of He$^+$ as calculated in Eq. 22 for different values of the numerical truncation threshold ϵ (a) 10^{-3} (b) 10^{-5} (c) 10^{-7}. ϵ is represented by the horizontal dashed line. See labels in (a) for legend.

For large time steps $\epsilon \Delta t$ dominates, whereas, small Δt implies many time steps and hence greater overall truncation error. Fig. 6(a) shows how different time steps affect the energy (expectation of the Hamiltonian) of hydrogen. At the end of the pulse, the relative error in Fig. 6(a) is shown in Fig. 6(b). For $\Delta t/\tau_{\text{crit}} = 10$ we see a slight deviation in the energy which quickly diverges for larger values as $\epsilon \Delta t$ dominates. The photoionization peak in Fig. 6(c) is largely insensitive to Δt. However, the peak of the smallest time step is slightly shifted to the right as ϵ_{trunc} accumulates after many time steps. Thus, the high-order symplectic integrator [45] is beneficial in enabling large time steps. The illustrations presented in Section IV use $\Delta t = 5\tau_{\text{crit}}$.

3. The Cutoff Parameter

The length scale on which the model potential is smoothed can be thought of as the closest scattering distance or cutoff parameter (ξ). In this section we probe the aberrations caused by its modification.
FIG. 5. (Color online) The photoionization momentum spectra for different values of the numerical threshold ϵ for (a) H ($\xi = 0.1$) and (b) He$^+$ ($\xi = 0.06$).

Fig. 7(a) shows the dynamic energy $\langle \hat{H} \rangle$ (where \hat{H} is the Hamiltonian from Eq. 1) of hydrogen for different ξ. Smaller ξ lead to a lower, more accurate ground state energy E_0 which converges towards the analytic value of -0.5 in Fig. 7(d). The relative position of the transition energies in atomic hydrogen and the power spectrum of the laser (see the inset in Fig. 8(a)) predict single-photon ionization as the dominant process. As $\xi \to 0$, higher energy events are included, and the change in energy of the system

$$\Delta E = E(T) - E_0$$ \hspace{1cm} (30)

increases as $\xi \to 0$ (see Fig. 7(e)). This can also be seen for the total inelastic excitation

$$P(t) = 1 - |\langle \psi(0) | \psi(t) \rangle|^2$$ \hspace{1cm} (31)

(Fig. 7(h)) and total ionization (Fig. 8(a)).

While the convergence of hydrogen depends on high energy events, the convergence of He$^+$ is related to the stability of the ground state. In He$^+$ the ΔE (Fig. 7(g)), the total inelastic state
TABLE I. Convergence of the transition probabilities of He$^+$ with $L \in [-1000,1000]$. $\xi = 0.059$ for the threshold convergence ϵ study (top), and $\epsilon = 10^{-7}$ during convergence of ξ. The bound states were summed up to $n = 9$.

<table>
<thead>
<tr>
<th>ϵ</th>
<th>$1s$</th>
<th>$2s$</th>
<th>$2p$</th>
<th>$3d$</th>
<th>$4f$</th>
<th>$5g$</th>
<th>ΣP_{bound}</th>
<th>P_{ion}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>0.974448</td>
<td>0.851×10^{-4}</td>
<td>0.021424</td>
<td>6.03×10^{-5}</td>
<td>5.6×10^{-7}</td>
<td>7×10^{-7}</td>
<td>0.999016</td>
<td>8.58×10^{-4}</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>0.974507</td>
<td>1.059×10^{-4}</td>
<td>0.021432</td>
<td>6.52×10^{-5}</td>
<td>2.7×10^{-6}</td>
<td>2×10^{-7}</td>
<td>0.999108</td>
<td>8.01×10^{-4}</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>0.974513</td>
<td>0.998×10^{-4}</td>
<td>0.021415</td>
<td>6.67×10^{-5}</td>
<td>4.2×10^{-8}</td>
<td>1×10^{-9}</td>
<td>0.999081</td>
<td>8.28×10^{-4}</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>0.974512</td>
<td>0.999×10^{-4}</td>
<td>0.021422</td>
<td>6.72×10^{-5}</td>
<td>2.1×10^{-8}</td>
<td>2×10^{-10}</td>
<td>0.999600</td>
<td>8.43×10^{-4}</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>0.974516</td>
<td>0.996×10^{-4}</td>
<td>0.021409</td>
<td>6.70×10^{-5}</td>
<td>2.0×10^{-8}</td>
<td>1×10^{-11}</td>
<td>0.999057</td>
<td>8.49×10^{-4}</td>
</tr>
</tbody>
</table>

excitation (Fig. 7(i)), and the photoionization (Fig. 8b) decrease as the transition energies shift towards a less intense region of the power spectrum as $\xi \to 0$. See Table I for a quantitative comparison.

We are interested in gauging the accuracy of our calculations. We generate a series of values with successively smaller ξ, interpolate between the lines, and mark the spot where the given quantity is $\approx 1\%$. The effects of the smoothing can be seen in the oscillation of the z-dipole (Fig. 9). As ξ decreases from $0.2 \to 0.059$, larger transition energies have two effects. First, the dipole amplitude is damped: $|c_{2p}^{(0.059)}|^2 < |c_{2p}^{(0.3)}|^2$ (see Table I). Second, the period of oscillation increases. While $t \in (10,50)$, the dipole moment of $\xi = 0.2$ oscillates 9 times, while that of $\xi = 0.059$ oscillates 9.5 times. The $1s \to 2p$ transition energy of $\omega_{12} = 2\pi/T = 1.496$, which deviates 0.2% from the analytic value of 1.5. The broadband laser pulse also excites the 3p state whose presence can be seen by the beats of the modulating envelope with a period only 13% away from the predicted value of 5/36: $\omega_{23} = 2\pi/T = 2\pi/(38 - 12) = 0.242$.

4. Box Size, Norm, and Timing Issues

The simulation box is a cube $[-L,L]^3$ deliberately chosen to be much larger than the final wave packet to avoid reflection or the need for absorbing boundary conditions. In MADNESS, the size of the sparse wave function ψ scales as $O(\log(L))$. The dense momentum eigenfunctions $\phi_k^{(-)}(r)$, however, fill the entire simulation box scaling as $O(L^3)$. For efficiency we compute $\phi_k^{(-)}(r)$ in a
FIG. 6. (Color online) The dynamic convergence of atomic hydrogen ($\xi = 0.2$, $\epsilon = 1 \times 10^{-5}$, and $dt_{cr} = 3.4 \times 10^{-3}$) with respect to the time step dt. The energy $\langle H \rangle$ from Eq. 1 is shown in (a) along with its error, at different time steps, at the end of the pulse in (b). (c) shows the photoionization spectrum (see Eq. 24).

The largest relative error, arising from this truncation, in the ionization probability $k^2 \Upsilon_k$ is on the order of 10^{-5}. L_{small} will be a more important issue with infrared pulses in the tunneling regime where the electron is carried much further from the atom.

The loss of norm

$$\varepsilon_{norm}(t) = |1 - \langle \psi(t) | \psi(t) \rangle|$$

is due to several factors. The finite precision of the spatial representation of the wave function, and the repeated application of the band limited propagator. While the split-operator time evolution schemes preserve norm and are unitary, norm is lost through the truncation of the high-frequency coefficients. Typically this loss accumulates uniformly throughout the pulse ending with ε_{norm} approximately 10ϵ. Occasionally $\varepsilon_{norm}(T) < \epsilon$, while the worst deviation (atomic hydrogen with $\epsilon = 10^{-7}$, $\xi = 0.1$) had $\varepsilon_{norm}(T) \approx 100\epsilon$.

The application cost of G_0, which is related to its spatial extent and the size of the wave function, is affected by several interrelated parameters. Smaller ϵ directly increases the size of both G_0 and...
FIG. 7. (Color online) The dynamic convergence of H and He^+ with respect to the cut parameter ξ is shown for: the energy $\langle \hat{H} \rangle$ from Eq. 1 in (a) & (b) and the total inelastic excitation vs time from Eq. 31 in (c). Convergence of the ground state energy (d) & (f), the energy difference Eq. 30 in (e) & (g), and total inelastic excitation in (h) & (i) are shown as a function of ξ. The dotted line represents convergence within 1% of the extrapolated value.
FIG. 8. (Color online) Convergence of the photoionization momentum distribution ($\epsilon = 10^{-7}$) with respect to ξ for (a) H and (b) He$^+$. The relationship between the energy levels and the laser power spectrum is shown in the insets.

the wave function. Second, the cost is directly proportional to the number of time steps.

$$N_t = T/dt \propto T/\xi^2$$

(34)

While dt and ξ directly affect N_t, they also add to the complexity of G_0. The electron propagates further during longer time steps; this increases the spatial extent of G_0 (L_{prop}). Smaller ξ increases the band limit c and includes larger momentum components $|k_{\text{max}}|$, which enlarges L_{prop}.

$$L_{\text{prop}} \propto \xi^{-1} \propto c \propto |k_{\text{max}}|$$

(35)

On an 8 core Intel Xeon 2.9 GHz computer with 24 GB of shared memory, the time evolution of H in 3D ($L = 300, k = 12, \epsilon = 10^{-5}, dt = 5dt_{\text{crit}}, \xi = 0.2$) was accomplished in about an hour. Higher accuracy requires more memory, which becomes the limiting factor on larger calculations. For He$^+$ ($L = 300, k = 24, \epsilon = 10^{-7}, dt = 4dt_{\text{crit}}, \xi = 0.059$) a typical high fidelity time evolution took 46 hours running on a Cray XT5 running with 2,000 - 5,000 cores. Both time evolution and projection code realize performance increase (for sufficiently complex wave functions) through 12,000 cores.
FIG. 9. (Color online) The dipole moment $\langle z \rangle$ for He$^+$ as a function of time for $\xi=0.2$ and 0.059. The period changes with ξ, illustrating the shift in the bound state energies.
C. Comparison to Prior Work

FIG. 10. (Color online) The photoionization spectrum of the present work is compared with that of Grum-Grzhimailo et al. [13] for atomic hydrogen in a four-cycle laser pulse with a \(\sin^2 \) envelope applied to the electric field, having a peak intensity of \(1.0 \times 10^{15} \text{ W/cm}^2 \) (\(E_0 = 0.169 \)) and a central frequency of \(\omega = 0.3 \) (a.u.).

Pronin et al. [50] used perturbation theory to find the ionization of atomic hydrogen in a two-cycle pulse of the same frequency and intensity. However, their velocity gauge scheme applied the \(\sin^2 \) pulse envelope to the vector potential rather than the electric field yielding a qualitatively different photoionization spectrum. Grum-Grzhimailo et al. [13] noted this and ran a series of computations with a four-cycle laser pulse at peak intensity \(1 \times 10^{15} \text{ W/cm}^2 \) (\(E_0 = 0.169 \)) and central frequency \(\omega = 0.3 \) (152 nm) testing the effect of the pulse envelope on the vector potential and electric field on the photoionization spectrum of atomic hydrogen. We reproduced this numerical experiment for comparison purposes and obtained excellent agreement (see Fig. 10).

IV. ILLUSTRATIVE EXAMPLES

We present the highlights of our method with H, He\(^+\), Li\(^{2+}\), and H\(_2^+\) subject to the attosecond laser pulse [43] described in Fig. 1. This intense, two-cycle pulse with \(I = 1 \times 10^{15} \text{ W/cm}^2 \) (\(E_0 = 0.176 \)) and driving frequency \(\omega = 1.32 \) yields a Keldysh parameter

\[
\gamma = \frac{\omega}{E} \sqrt{2I_p}
\]

of \(\gamma = 8, 15, \) and 11 for the ionization potential \(I_p = 0.5, 2.0, \) and 1.125 of H, He\(^+\), and Li\(^{2+}\) respectively which is in the multiphoton regime (\(\gamma > 1 \)). Access to the wave function enables us to
calculate the transition probabilities, photoionization spectrum, and dynamic observables such as the energy and dipole moments.

A. Atomic Hydrogen

Single photon ionization dominates atomic hydrogen ($\epsilon = 10^{-7}$, $\xi = 0.05$, and $L = 3000$) as suggested by the relative position of the laser pulse power spectrum and the transition energies in Fig. 11(c). Fig. 11(b) shows the signature dipole radiation pattern in the single differential cross section (from Eq. 24) where the arrow represents the laser polarization axis. The logarithmic, contour plot of the double photoelectron differential momentum distribution (Fig. 11(a) shows a ridge of two-photon ionization just below the predicted value at $k = \sqrt{2(\omega - I_p)} = 2.1$) which is three orders of magnitude weaker than the dominant single photoionization process ionization. Table II shows quantitative results for selected transition probabilities.
<table>
<thead>
<tr>
<th></th>
<th>1s</th>
<th>2s</th>
<th>2p</th>
<th>3d</th>
<th>4f</th>
<th>5g</th>
<th>ΣP_{bound}</th>
<th>P_{ion}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.976</td>
<td>2.09×10^{-5}</td>
<td>5.03×10^{-5}</td>
<td>1.17×10^{-6}</td>
<td>2.4×10^{-7}</td>
<td>10^{-13}</td>
<td>0.0076</td>
<td>0.016</td>
</tr>
<tr>
<td>He^+</td>
<td>0.975</td>
<td>1.00×10^{-4}</td>
<td>2.14×10^{-2}</td>
<td>6.72×10^{-5}</td>
<td>2.1×10^{-8}</td>
<td>10^{-12}</td>
<td>0.025</td>
<td>8.5×10^{-4}</td>
</tr>
<tr>
<td>Li^{2+}</td>
<td>2.8×10^{-6}</td>
<td>0.965</td>
<td>1.1×10^{-6}</td>
<td>2.55×10^{-6}</td>
<td>1.3×10^{-5}</td>
<td>—</td>
<td>0.023</td>
<td>0.010</td>
</tr>
</tbody>
</table>

TABLE II. Transition probabilities for atomic hydrogen, He^+ and Li^{2+}.

B. He^+

He^+ (\(\epsilon = 10^{-7}, \xi = 0.05\), and \(L = 1000\)) is best explored in contrast to hydrogen where excitation rather than ionization is the dominant process since the 1s \(\rightarrow\) 2p transition lies near the peak of the power spectrum (see Fig. 11(c)). The dynamic behavior of the total inelastic excitation in Fig. 7(c) exemplifies this difference. In He^+, the resonantly pumped electron has monotonically increasing excitation. The excitation of the loosely bound electron in hydrogen oscillates as it is driven back and forth across the origin. The dynamics of the total energy (Eq. 1) in Fig. 7(a) and (b) show similar behavior.

![FIG. 12.](image-url) (Color online) (a) The fully differential photoionization momentum distribution of Li^{2+} and (b) angular distribution \(\frac{dP}{d\Omega}\) from Eq. 24 are shown against the laser polarization access (the arrow). (c) The transition energies from the ground state are superimposed on the power spectrum of the laser.
The weaker photoionization of He\(^+\) in Fig. 12(a) has competition among ionization mechanisms (see arrows in Fig. 12(c)). The single photon ionization relies on a weak component of the power spectrum while two- and three-photon, non-sequential ionization has peaks at \(k = 1.1\) and \(2.0\) respectively. Sequential double ionization (primarily) through the 2p peaks at 1.28. We differentiate these processes by analyzing the coefficients of the partial wave expansion (see Eq. 28 in Section III A 2). \(|c_p|^2\) and \(|c_d|^2\) comprise 98% of the ionization probability, with a small fraction coming from the s and f states (see Table III).

|\(\ell\)| \(|c_p^\text{ion}|^2|\) |
|---|---|
|0| \(1.39 \times 10^{-5}\) |
|1| \(5.20 \times 10^{-4}\) |
|2| \(3.56 \times 10^{-4}\) |
|3| \(3.88 \times 10^{-6}\) |

TABLE III. The angular resolved ionization coefficients for He\(^+\).

C. \(\text{Li}^{2+}\)

FIG. 13. (Color online) The total ionization and inelastic excitation probability (see Eq. 31) of \(\text{Li}^{2+}\), and bound state transition probabilities \(|\langle \psi_{n\ell} | \psi(t) \rangle|^2\) are plotted versus time.

The 1s ground state of \(\text{Li}^{2+}\) (\(\xi = 0.03\), \(\epsilon = 10^{-6}\), and \(L = 1000\)) lies 3.375 units of energy below the excitation to the 2p state and 4.5 units below the continuum edge requiring multiple photons from our laser pulse. The resulting transition probabilities are almost all below the numerical threshold \(\epsilon\). The metastable 2s state of \(\text{Li}^{2+}\), however, yields more interesting results.
Fig. 13 shows the bound state population dynamics of Li$^{2+}$ (2s). Ionization and dipole excitation to the 3p state are the leading events with similar probability. The 2s \rightarrow 1s channel has no single-photon transitions, consequently the 1s population does not follow the field as do the other states, but increases to saturation in the middle of the pulse. The 2s \rightarrow 2p transition is significantly smaller than the other p transitions since the power spectrum of the laser pulse has no DC component ($\omega = 0$) for transition between the degenerate states (see Fig. 14(c)). Its most probable 3 photon pathway is 2s \rightarrow 4p \rightarrow 3d/3s \rightarrow 2p. The three forward peaks in the photoionization spectrum of Li$^{2+}$ in Fig. 14(a) ($k = 0.6, 1.7, and 2.4$) correspond to the one-, two-, and three-photon ionization ($\omega = 1.32$).

\[\text{FIG. 14. (Color online) (a) The fully differential photoionization momentum distribution of Li}^{2+} \text{ and (b) angular distribution } \frac{dP}{d\Omega} \text{ from Eq. 24 are shown against the laser polarization access (the arrow). (c) The transition energies from the initial 2s state are superimposed on the power spectrum of the laser.} \]

D. \text{H}_2^+

The computational flexibility of MADNESS’s Cartesian coordinates is best exemplified in \text{H}_2^+. No new code was needed to run the molecular system, only a modification of the input file. The 4D simulation only required the inclusion of an additional coordinate to the wave function and a nuclear-nuclear term in the Hamiltonian.

The mass of the 4th coordinate s was scaled to unity

\[s = \sqrt{\mu}R \quad s \in [0, \sqrt{\mu}R_{\text{max}}] \quad r = (x, y, z, s) \quad (37) \]
where μ is the reduced mass of the two protons and R is the internuclear coordinate. This allows a uniform application of the free particle propagator. The initial internuclear wave function was approximated by the ground state of the harmonic oscillator centered at $R_0 = 2.0$.

$$\psi(R) = \left(\frac{\mu \omega}{\pi}\right)^{1/4} e^{\mu \omega (R - R_0)^2 / 2}$$

$$\psi(s) = \left(\frac{\omega}{\pi}\right)^{1/4} e^{\omega (s - \sqrt{\mu} R_0)^2 / 2}$$

Finally, the fully-coupled, 4D wave function was relaxed into the numerical ground state as described in Section II C.

Inclusion of the nuclear-nuclear potential (V_{NN}) as discussed in Section II C) was straightforward.

$$\hat{H} = -\frac{1}{2} \nabla^2 + V_{eN}(r) + V_{NN}(s) + E(t) \cdot r$$

$$V_{eN}(r) = V_\xi \left(\sqrt{(x - \frac{s}{2\sqrt{\mu}})^2 + y^2 + z^2}\right) + V_\xi \left(\sqrt{(x + \frac{s}{2\sqrt{\mu}})^2 + y^2 + z^2}\right)$$

$$V_{NN}(s) = \frac{\sqrt{\mu}}{s}$$

It took about an hour to run the 3D simulation of H^+_2 using the same computer/parameters as atomic hydrogen case mentioned in Section III B 4. The 4D H^+_2 ran on a few thousand cores of the XT5 Cray at Oak Ridge National Laboratory taking just under 5 hours. Fig. 15 compares the electronic energy (expectation value of the Hamiltonian) as a function of time. The agreement between the two simulations is expected since nuclear motion is negligible on the attosecond time scale. The application of an infrared pulse should show a breakdown in the fixed nuclear approximation. The 4D scheme used the second-order accurate Trotter propagator that, along with finite precision computation, caused the aberration in the energy at the end of the pulse.
V. CONCLUSIONS

We have introduced an explicit, ab initio scheme for solving the TDSE. Convergence was established for 3D hydrogenic systems in an attosecond pulse [43]. The accuracy was achieved with an adaptively refined mesh, large simulation box, and a high-order symplectic propagator. This scheme is readily extendible to higher dimensional systems as shown by the 4D treatment of H_2^+.

The direct photoionization of hydrogen was compared to that of He^+ whose complex distribution came from the competition between ionization channels. Access to the complete wave function allows dynamic access to observables. The energy and total inelastic excitation of resonant He^+ show a monotonic increase. The same quantities in hydrogen oscillate as the loosely bound electron is driven back and forth with the field. The excitation dynamics of Li^{2+} allow the comparison of: the dipole excitation $2s \to 3p$; the non-sequential, two-photon de-excitation $2s \to 1s$; and the three-photon sequential transition from $2s \to 2p$. Finally, a preliminary comparison of 3D and 4D calculations of H_2^+ was reported.

We have successfully implemented an explicit solution of the TDSE in the multiresolution framework for hydrogenic atoms and molecular systems in the multiphoton regime. Future work will examine high harmonic generation and above threshold ionization in the tunneling regime using the same numerical framework. These studies are, however, a precursor to high-dimensional, few-particle (electron and/or nuclei) wave functions and multiconfiguration self consistent field calculation on many electron systems.

VI. ACKNOWLEDGEMENTS

This work was supported by the NSF (NV and RH) under grant OCI-0904972: Computational Chemistry and Physics Beyond the Petascale, by the office of Fusion Energy Sciences (PK), and the US Department of Energy at Oak Ridge National Laboratory. Simulations were performed at the National Center for Computational Sciences at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 from the Department of Energy. Figures were generated with LevelScheme [51].