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Abstract

The Gunnarsson-Lundqvist (GL) theorem of density functional theory states that there is a

one-to-one relationship between the density of the lowest nondegenerate excited state of a given

symmetry and the external potential. As a consequence, knowledge of this excited state density

determines the external potential uniquely. (The GL theorem is the equivalent for such excited

states of the Hohenberg-Kohn (HK) theorem for nondegenerate ground states.) For other excited

states, there is no equivalent of the GL or HK theorem. For these states, there thus exist multiple

potentials that generate the excited state density. We show, by example, the satisfaction of the

GL theorem, and the multiplicity of potentials for excited states.
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I. INTRODUCTION

Matter – atoms, molecules, solids – can be described as a system of N electrons in the

presence of an external electrostatic field F
ext(r) = −∇v(r), where v(r) is a scalar potential.

For such a system in a nondegenerate ground state, the Hohenberg-Kohn (HK) theorem [1]

proves via the variational principle for the energy that there is a one-to-one relationship

between the external potential v(r) and the ground state density ρ(r). Hence, knowledge

of the density ρ(r) uniquely determines the external potential v(r) to within an additive

constant. The significance of this is that the knowledge of the ground state density ρ(r) of a

physical system then uniquely determines the Hamiltonian Ĥ since the kinetic and electron-

interaction operators are assumed known, and via the solution of the Schrödinger equation,

all the properties of that system.

(As a consequence of the HK theorem, the ground state wave function Ψ is a functional

of the density ρ(r). Via a density preserving unitary transformation, it has been shown [2, 3]

that the wave function must also be a functional of a gauge function α(R);R = r1, . . . , rN

in order to ensure that the wave function written as a functional is gauge variant. Thus,

Ψ = Ψ[ρ, α]. The HK theorem is valid for each choice of gauge function α(R) [2, 3]. It

follows from the HK theorem that all physical observables are unique functionals of the

ground state densityρ(r).)

Within conventional Schrödinger wave function theory, the variational principle is also

applicable to the lowest excited state of a given symmetry. In the variational procedure,

one restricts the approximate wave functions to have the given excited state symmetry, and

the lowest state of that symmetry is achieved by energy minimization. A corresponding HK

theorem for such states can therefore be proved. The proof is for v-representable densities

derived from wave functions that have the given excited state symmetry. Thus, knowledge

of the density ρe(r) for such an excited state then also determines the external potential

v(r) uniquely to within a constant, and thereby the Hamiltonian Ĥ . We refer to this as

the Gunnarsson-Lundqvist (GL) theorem [4] as these authors originally proved the above

theorem for the special case of spin-density functional theory. (The excited state wave

function Ψe is a functional solely of the density ρe(r), and of course of a gauge function

α(R) to ensure that Ψe written as a functional is gauge variant. Thus, for the lowest excited

state of a given symmetry Ψe = Ψe[ρe, α]. The GL theorem is valid for each choice of gauge
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function α(R). In addition, all properties are also unique functionals of the density ρe(r).)

For the other excited states, it is known [4–6] that there is no equivalent of the HK

theorem. In other words, there is no one-to-one relationship between the excited state

density ρe(r) and the external potential v(r). As knowledge of the density ρe(r) of these

excited states does not uniquely determine the external potential v(r), the implication is that

there could exist several potentials v(r) for which the corresponding Schrödinger equations

all generate the same excited state density ρe(r).

In this paper we demonstrate the satisfaction of the GL theorem, and the multiplicity

of the potentials for excited states for a model system of two noninteracting fermions in a

one-dimensional infinite potential well. (This model is the original system.) In addition to

demonstrating the lack of an HK theorem for excited states, the results of our calculations

are interesting in their own right as discussed below. In particular we demonstrate the

following: (a) For the first excited triplet state – the lowest excited state of this symmetry –

we show that the potential that generates the corresponding excited state density is unique;

(b) For the second excited triplet state, we show (i) that there exists no other potential that

generates the excited state density for this state with an orbital configuration which is the

same as the original; (ii) that there exist multiple potentials which generate this excited

state density, but with orbital configurations and eigenvalues that differ from each other

and from the original; and (iii) that there exist multiple potentials with the same orbital

configuration, but with different eigenvalues, that generate the excited state density. These

calculations for the multiple potentials, orbitals, and eigenvalues are exact. We note that

although the solutions of the original potential are analytically obtainable, the determination

of the multiple alternate potentials is difficult particularly in the region close to and at the

boundaries. We have overcome this problem by relating the orbitals of the original potential

to those of the other (multiple) potentials via a rotation. As such we provide the structure

of the multiple potentials and corresponding orbitals including the region close to and at

the boundaries. We also provide the resulting self-consistently determined eigenvalues.

For completeness we note that in order to demonstrate the lack of a HK theorem for ex-

cited states, the above model problem for the second excited triplet state has been studied by

Gaudoin and Burke [7] within the linear response approximation. Their search is restricted

to those potentials with this fixed excited state configuration for the model fermions. They

show that there are multiple potentials for this configuration, and that this multiplicity
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is related to the positive eigenvalues of the nonlocal susceptibility for excited states. The

results of these authors, therefore, differ from ours. Additionally, they do not provide the

structure of the multiple potentials near and at the boundaries. Following the description

of our methodology and the subsequent description of our exactly determined structures,

we make comparisons with the results of these authors. Finally, employing the Zhao-Parr

numerical method [8], which determines local potentials that reproduce a known density,

Samal et al [9] state that they have replicated the results of Gaudoin-Burke.

In Sec. II we describe the model system of noninteracting fermions in an arbitrary

local effective potential, and derive the general equation required for the determination of

the multiple potentials. In Sec. III we demonstrate the satisfaction of the GL theorem

for the first excited triplet state for the case of an infinite potential well. For the second

excited triplet state of this potential we determine in Sec. IV multiple potentials that

generate the excited state density thereby demonstrating the lack of HK theorem for this

state. We conclude in Sec. V by summarizing the broader understanding of the issue of

uniqueness/nonuniqueness of the potentials that generate a ground or excited state density.

II. MODEL SYSTEM

Consider a system of 2 noninteracting fermions in a local one-dimensional potential v(x).

The Schrödinger equation for these fermions in atomic units (e = ~ = m = 1) is

[

− 1

2

d2

dx2
+ v(x)

]

φi(x) = ǫiφi(x), i = 1, 2. (1)

Suppose there exists another local potential v′(x) which generates the same density as that

of v(x). The corresponding Schrödinger equation is

[

− 1

2

d2

dx2
+ v′(x)

]

φ′

i(x) = ǫ′iφ
′

i(x), i = 1, 2. (2)

The density ρ(x) corresponding to the two potentials is

ρ(x) = φ2

1
(x) + φ2

2
(x) = φ′2

1
(x) + φ′2

2
(x). (3)
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Suppose one may obtain φ′

i(x) from φi(x) via a rotation θ(x), and that such a rotation exists:





φ′

1
(x)

φ′

2
(x)



 =





cos θ(x) sin θ(x)

− sin θ(x) cos θ(x)









φ1(x)

φ2(x)





=





φ1(x) cos θ(x) + φ2(x) sin θ(x)

−φ1(x) sin θ(x) + φ2(x) cos θ(x)



 . (4)

From Eq. (2) it follows that

v′(x) = ǫ′
1
+

1

2φ′

1
(x)

φ̈′

1
(x) = ǫ′

2
+

1

2φ′

2
(x)

φ̈′

2
(x), (5)

with φ̈′

i(x) = d2φ′

i(x)/dx
2. The corresponding equation for v(x) follows from Eq. (1). From

these equations one obtains

∆ = ǫ2 − ǫ1 =
1

2φ1(x)φ2(x)

d

dx

(

φ2(x)φ̇1(x)− φ1(x)φ̇2(x)
)

(6)

and

∆′ = ǫ′
2
− ǫ′

1
=

1

2φ′

1
(x)φ′

2
(x)

d

dx

(

φ′

2
(x)φ̇′

1
(x)− φ′

1
(x)φ̇′

2
(x)

)

, (7)

where φ̇i(x) = dφi(x)/dx etc. On substituting for φ′

1
(x), φ′

2
(x) from Eq. (4) in Eq. (7) one

then obtains

d

dx

[

θ̇(x)
{

φ2

1
(x) + φ2

2
(x)

}

+
{

φ2(x)φ̇1(x)− φ1(x)φ̇2(x)
}

]

= ∆′

[

2φ1(x)φ2(x) cos 2θ(x) +
{

φ2

2
(x)− φ2

1
(x)

}

sin 2θ(x)

]

, (8)

or equivalently on employing Eq. (3) and Eq. (6) in Eq. (8)

ρ(x)θ̈(x) + ρ̇(x)θ̇(x) + f(φ1, φ2,∆,∆′, θ) = 0, (9)

where

f = 2∆φ1(x)φ2(x)−∆′

[

2φ1(x)φ2(x) cos 2θ(x) + {φ2

2
(x)− φ2

1
(x)} sin 2θ(x)

]

. (10)

This is the general differential equation for the rotation θ(x) for the determination of the

alternate system. Thus, for a given φ1(x), φ2(x),∆, and ρ(x), one solves Eq. (9) for the

rotation θ(x) and ∆′. This leads to the orbitals φ′

1
(x) and φ′

2
(x) via Eq. (4), and the

potential v′(x) via Eq. (5). It is evident that when θ(x) = 0 with θ ∈ [0, 2π], then f =

2(∆ − ∆′)φ1(x)φ2(x) = 0, or that ∆′ = ∆, φ′

1
(x) = φ1(x) and φ′

2
(x) = φ2(x). Thus,
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v′(x) = v(x) and there is no new solution. The orbitals φ′

1
(x) and φ′

2
(x) must be normalized.

Thus, solutions of Eq. (9) must be such as to ensure normalization of φ′

1
(x). Then φ′

2
(x) is

automatically normalized via Eq. (3). (Note that for θ(x) = constant, the primed orbitals

are simply linear combinations of the unprimed orbitals (see Eq. (4)). As such no new

physics is garnered for such a case.)

The potential v(x) that we consider is the infinite potential well:

v(x) =
∞ for x = 0, 1

0 for 0 < x < 1.
(11)

The orbitals φn(x) and eigenvalues En for the nth state are

φn =
√
2 sin nπx ; En =

n2π2

2
. (12)

The ground state of this system corresponds to the two fermions of opposite spin in the

lowest state n = 1. The first (lowest) excited triplet state corresponds to one fermion in

the lowest n = 1 state, and the second fermion with parallel spin in the n = 2 state. The

configuration of the orbitals is 1-2, there being one node for the orbital in the n = 2 state.

The second excited triplet state corresponds to one fermion in the n = 1 state and the

second fermion of parallel spin in the n = 3 state with a 1-3 configuration and two nodes

for the orbital in the excited state.

III. SATISFACTION OF THE GUNNARSSON-LUNDQVIST THEOREM

Employing the framework described in the previous section, we next demonstrate that

for the first excited triplet state the potential v(x) is unique, viz. that of Eq. (11). Thereby,

the GL theorem is satisfied. For this state ǫ1 = π2/2, ǫ2 = 2π2, ∆ = ǫ2 − ǫ1 = 3π2/2, the

density

ρ(x) = 2[sin2(πx) + sin2(2πx)], (13)

and the equation corresponding to Eq. (9) for the rotation θ(x) is

ρ(x)θ̈(x) + ρ̇(x)θ̇(x) + 6π2 sin(πx) sin(2πx)

− ∆′[4 sin(πx) sin(2πx) cos 2θ(x) + 2{sin2(2πx)− sin2(πx)} sin 2θ(x)] = 0.(14)

Note that since φ1(x) is symmetric, φ2(x) antisymmetric, and ρ(x) symmetric about x = 1/2,

then Eq. (14) dictates that θ(x) is antisymmetric so that θ(1/2) = 0.
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The structure of the solution in the limit as x → 0 is

θ(x) ∼
x→0

a

x
+ b+ cx+O(x2). (15)

To see that this is the general structure in the limit, consider the large θ(x) case for which

the cos 2θ(x) and sin 2θ(x) oscillate rapidly and may be dropped from the equation. The

Eq. (14) reduces to

ρ(x)θ̈(x) + ρ̇(x)θ̇(x) + 2∆φ1(x)φ2(x) = 0, (16)

whose solution can be obtained analytically as

θ(x) = C2 +
1

25π

[

tan−1(2−
√
5 tan

πx

2
)(25π − 4

√
5C1)

+ tan−1(2 +
√
5 tan

πx

2
)(25π + 4

√
5C1)− 5C1 cot πx

]

. (17)

The behavior of θ(x) of Eq. (16) in the limit x → 0 is given by Eq. (15). As θ(x) is

antisymmetric, the physical solution must be such that it is finite at the boundary. Thus,

one needs to consider the limit x → 0 of the different solutions of Eq. (14) possible.

Furthermore, the physical solution then corresponds in Eq. (15) to the coefficient a = 0.

The procedure for determining the potential v′(x) is the following. For a given value of

∆′ and θ̇(1/2), (the initial conditions), Eq. (14) is solved for θ(x). Then from Eq. (4), φ′

1
(x)

and φ′

2
(x) are obtained. And v′(x) obtained from Eq. (5). The orbitals φ′

1
(x) and φ′

2
(x)

must also be normalized, i.e. satisfy the constraint

∫

1

0

φ′

1
(x)2dx− 1 = R = 0. (18)

Note that not all θ(x) can satisfy Eq. (18). Once the normalized φ′

1
(x) is determined, then

φ′

2
(x) is automatically normalized via Eq. (3).

In Fig. 1, we plot the function R of Eq. (18) as a function of θ̇(1/2) for values of

∆′ = 10, 30, 50. The points A1, B1, C1;A2, B2, C2 etc., for which R = 0 correspond to

φ′

1
(x), (and therefore φ′

2
(x)), that are normalized. (The symmetrical points lead to the same

solutions.) Next the limit θ(x) as x → 0 is examined to determine the coefficient ‘a′ of

Eq. (15). The values of ‘a′ as a function of ∆′ are plotted in Fig. 2. Observe that of

the normalized solutions corresponding to A1, B1, C1, only the solution corresponding to A1

is such that on examining the θ(x) as x → 0 limit, the coefficient ‘a′ = 0. As indicated

previously, this then corresponds to a physical solution. The coefficient ‘a′ = 0 at a value
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FIG. 1: The function R of Eq. (18) which is the normalization integral minus one versus the

derivative of the rotation: dθ(x)/dx|x=1/2 for the first (lowest) excited triplet state. Panels a, b,

c correspond to the difference in eigenvalues of the alternate system: ∆′ = ǫ′
2
− ǫ′

1
= 10, 30, 50

respectively.

of ∆′ = 3π2/2 ≡ ∆. Thus there exists only one solution which is the original one. Hence,

for the density ρ(x) of the lowest triplet state, there exists only one potential v(x). This

demonstrates the satisfaction of the GL theorem.

IV. MULTIPLICITY OF POTENTIALS FOR EXCITED STATES

We next demonstrate the lack of the HK theorem for excited states by determining

multiple potentials v′(x) that generate the density of the second excited triplet state of the

two fermions in the potential v(x) of Eq. (11). For this state ǫ1 = π2/2, ǫ2 = 9π2/2,∆ =
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FIG. 2: The coefficient ‘a’ of Eq. (15) versus ∆′ = ǫ′
2
− ǫ′

1
the difference in eigenvalues of the

alternate system for the first (lowest) excited triplet state.

ǫ2 − ǫ1 = 4π2 = 39.478, and the density

ρ(x) = 2[sin2 πx+ sin2 3πx]. (19)

The equation corresponding to Eq. (9) for the rotation θ(x) is

ρ(x)θ̈(x) + ρ̇(x)θ̇(x) + 16π2 sin(πx) sin(3πx)

= ∆′
[

16π2 sin(πx) sin(3πx) cos 2θ(x) + 2{sin2(3πx)− sin2(πx)} sin 2θ(x)
]

= 0. (20)

Eq. (20) requires that θ(x) is symmetric about x = 1/2 so that θ̇(1/2) = 0. With the

initial conditions of ∆′ and θ(1/2), Eq. (20) is solved for the rotation θ(x). The procedure

for determining the orbitals φ′

1
(x), φ′

2
(x) and the potential v′(x) is the same as before. We

emphasize that for all physical solutions, the rotation θ(x) is finite at the boundaries. The

use of a rotation θ(x) to relate the original and new orbitals allows the determination of the

structure of the new orbitals and potentials near and at the boundaries.

In Fig. 3, we plot the function R of Eq. (18) as a function of θ(1/2) for values of

∆′ = 1, 20, 40 and in Fig. 4 for ∆′ = 60, 80, 160. Note that values of θ(1/2) for which R = 0

correspond to the φ′

1
(x) that are normalized.

We first note that there exist no alternate physical solutions v′(x) for ∆′ = ∆ = 4π2 =

39.478 with the 1-3 configuration of the original potential v(x).
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FIG. 3: The function R of Eq. (18) which is the normalization integral minus one versus the

rotation θ(1/2) for the second excited triplet state. Panels a, b, c correspond to the eigenvalue

difference ∆′ = ǫ′
2
− ǫ′

1
= 1, 20, 40 respectively.

In Fig. 5 we plot the functions (a) for the rotation θ(x), (b) the orbitals φ′

1
(x), φ′

2
(x), and

(c) the potential v′(x) for ∆′ = 160.077. Observe, Fig. 5a, that θ(x) is symmetric about

x = 1/2 and finite at the boundaries as expected for this state. Note from Fig. 5b, that this

corresponds to a 3-5 configuration of the fermions: φ′

1
(x) has 2 nodes, φ′

2
(x) has 4 nodes.

Finally, in Fig. 5c, note that the potential v′(x) is symmetric about x = 1/2, and that its

structure near and at the boundaries is explicitly given.

In Fig. 6 we plot θ(x), φ′

1
(x), φ′

2
(x), v′(x) for ∆′ = 359.029. Although the symmetry of

these functions is the same as in Fig 5, the structure of these functions is different. Observe,

however, Fig. 6b, that this case too corresponds to the fermions having a 3-5 configuration.

From Figs. 5 and 6 we see that there exist multiple potentials v′(x) with the same 3-5

configuration but with different eigenvalues and eigenfunctions that generate the excited
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FIG. 4: The same as Fig. 3 but for ∆′ = 60, 80, 160.

state density.

Finally, in Fig. 7, we plot θ(x), φ′

1
(x), φ′

2
(x), v′(x) for ∆′ = 600.85. From Fig. 7b it is

evident that this is a 3-7 configuration of the fermions: φ′

1
(x) has 2 nodes; φ′

2
(x) has 6 nodes.

Thus, there exist yet another potential v′(x) with the fermions having yet another different

configuration and eigenvalues that generate the excited state density.

The fact of existence of such multiple potentials v′(x) that generate the same excited

state density shows that with the exception of the lowest excited state of a given symmetry,

there is no HK theorem for excited states.

To conclude this section we compare our exactly determined results with those of

Gaudoin-Burke [7] obtained via linear response theory. The work of these authors is for

a fixed level of excitation or orbital configuration. Thus, for the second excited triplet state,

they show a second potential [v′(x)] that reproduces the excited state density but with the

same 1-3 orbital configuration. (See Fig. 1 of [7].) The potential is asymmetric about
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FIG. 5: The functions for (a) the rotation θ(x); (b) the orbitals φ′

1
(x), φ′

2
(x); (c) the potential v′(x)

for the alternate physical system for an eigenvalue difference ∆′ = ǫ′
2
− ǫ′

1
= 160.077. Observe, Fig.

5b, the configuration of the fermions is 3-5. The original system is the second excited triplet state

of configuration 1-3.

x = 1/2. Furthermore, the structure of this potential close to and at the boundary is not

provided. In addition, the magnitude of the value of the potential given near each boundary

differs.

Our results differ in the following ways. First, as noted above, we find no alternate

potential v′(x) for the same 1-3 orbital configuration. (In other words there is no physical

solution corresponding to ∆′ = ∆ = 4π2 even though there exist a couple of normalized

set of orbitals φ′

i(x). See Fig 3c for ∆′ = 40.) Second, all our multiple potentials v′(x)

are symmetrical, as are all the orbitals φ′

i(x), about x = 1/2. Third, we provide the exact

structure of the potentials v′(x) and orbitals φ′

i(x) close to and at the boundaries.
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FIG. 6: The same as Fig. 5 but for an eigenvalue difference of ∆′ = 359.029. Observe, Fig. 5b,

that this too is a 3-5 configuration of the fermions.

V. RESULTS AND DISCUSSION

We conclude by discussing our current understanding of the construction of multiple

local potentials v(r) that generate a density ρ(r). In the present work we have considered a

system of noninteracting fermions in an infinite potential well for which the eigenfunctions

and eigenvalues are known. For this system, we have shown the explicit satisfaction of

the GL theorem, i.e. for the lowest excited triplet state – the lowest excited state of this

symmetry – there exists only one potential v(r), the original one, that generates the excited

state density. For the same system, we have also demonstrated the multiplicity of the

potentials for the higher second excited triplet state. The results of these calculations are

quite fascinating. First, there exists multiple potentials v(r) with orbital configurations and

eigenvalues that differ from the original but which generate the density of this excited state.

Second, different potentials v(r) with the same configuration but different eigenvalues also
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FIG. 7: The same as Fig. 5 but for an eigenvalue difference of ∆′ = 600.85. Observe, Fig. 7b, that

this is a 3-7 configuration of the fermions.

generate the excited state density. Third, there exists no other potential v(r) with the

original orbital configuration that generates the excited state density.

Consider next a system of interacting fermions – electrons – in an external field F
ext(r) =

−∇v(r) and in a ground or excited state. It is possible via QDFT [3, 10] to map such a

system to one of a model system of noninteracting fermions – the S system – with equivalent

density ρ(r). The state or orbital configuration of the S system is arbitrary. Thus, the ground

state of the interacting system can be mapped to an S system that is either in a ground

or excited state. Similarly, the system of electrons in an excited state may be mapped to

an S system that is in a ground or an excited state of the same or different configuration.

In principle then, in addition to the external potential v(r) of the interacting system, there

exist an infinite number of local effective potentials vs(r) that generate a given density ρ(r).

Given a density ρ(r), it is also possible to determine [11] via the Zhao-Parr [8] numerical

14



method different local effective potentials that reproduce the density by choosing different

orbital configurations. In the mapping from a nondegenerate excited state of the electrons,

the constrained-search extension of density functional theory to excited states by Levy-Nagy

[12] selects one local potential function vs(r) with the same orbital configuration that will

generate the excited state density.

Finally, it is also possible [3, 13–15] to map the interacting system of electrons in a

ground or excited state to one of noninteracting bosons in a ground state: the B system.

Hence, there exists yet another local effective potential vB(r) that generates the density of

the interacting electrons.
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