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We have studied interspecies scattering in an ultracold mixture of 87Rb and 133Cs atoms, both
in their lowest-energy spin states. The three-body loss signatures of 30 incoming s- and p-wave
magnetic Feshbach resonances over the range 0 to 667 G have been catalogued. Magnetic field mod-
ulation spectroscopy was used to observe molecular states bound by up to 2.5 MHz×h. We have
created RbCs Feshbach molecules using two of the resonances. Magnetic moment spectroscopy along
the magneto-association pathway from 197 to 182 G gives results consistent with the observed and
calculated dependence of the binding energy on magnetic field strength. We have set up a coupled-
channel model of the interaction and have used direct least-squares fitting to refine its parameters
to fit the experimental results from the Feshbach molecules, in addition to the Feshbach resonance
positions and the spectroscopic results for deeply bound levels. The final model gives a good descrip-
tion of all the experimental results and predicts a large resonance near 790 G, which may be useful
for tuning the interspecies scattering properties. Quantum numbers and vibrational wavefunctions
from the model can also be used to choose optimal initial states of Feshbach molecules for their
transfer to the rovibronic ground state using stimulated Raman adiabatic passage (STIRAP).

PACS numbers: 31.50.Bc, 34.20.Cf, 67.85.-d

I. INTRODUCTION

Dilute quantum gases are ideal for studying many-
body physics, because they provide model systems in
which the parameters can be precisely controlled. Ex-
ternal fields can be used to tune the effective isotropic
contact interactions between the particles, and the geom-
etry and strength of the confining optical potentials can
be controlled by laser beams. For example, quantum-gas
analogues of superconductivity [1] and the superfluid-to-
Mott-insulator quantum phase transition [2] have been
observed in the laboratory, and their properties have
been shown to agree beautifully with the predictions
from theoretical models [3]. Recently, quantum gases
of particles with long-range anisotropic interactions have
been created [4–6]. For particles with permanent electric
dipole moments, the range of the dipole-dipole interac-
tions can be much larger than typical optical lattice spac-
ings, and interesting new quantum phases and quantum
information applications have been proposed [7–11]. A
quantum gas of 40K87Rb ground-state molecules is the

only such system that presently exists in the laboratory
[6].

Our goal is to generate a dipolar quantum gas of
ground-state 87Rb133Cs, which, unlike KRb, is expected
to be collisionally stable because both the exchange re-
action 2RbCs → Rb2 + Cs2 and trimer formation reac-
tions are endothermic [12]. Although other approaches
are under development [13–16], the only method cur-
rently available to produce high phase-space density
gases of ground-state molecules is to create weakly bound
molecules from ultracold atomic gases by magnetic tun-
ing across a Feshbach resonance [17, 18], and then to
transfer the molecules to the rovibronic ground state by
stimulated Raman adiabatic passage (STIRAP) [6, 19–
24]. As a first step, we have performed evaporative cool-
ing on Rb and Cs samples in separate optical traps,
combining them at the end to obtain an Rb-Cs mix-
ture with high phase-space density [25]. We have suc-
cessfully used this mixture to produce ultracold samples
of weakly bound RbCs [26]. In this paper, we present a
combined experimental and theoretical study of the inter-
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FIG. 1: [Color online.] Molecular potential energy curves
V0(R) and V1(R) for the singlet and triplet states of RbCs
correlating with two separated 2S1/2 ground-state atoms. The
inset shows an expanded view of the long-range potentials
separating to the four different hyperfine thresholds at zero
field, labelled by (f87Rb, f133Cs), but no longer by singlet or
triplet.

species Feshbach resonances and weakly bound molecular
energy levels of Rb-Cs and use the results to develop an
accurate coupled-channel model of the interaction, based
on the derived interaction potentials for the molecular
states X 1Σ+ and a 3Σ+.

II. OVERVIEW

The work described in this paper involved a close col-
laboration between experiment and theory. At the start
of the work, the Feshbach resonances and bound states
observed experimentally [27] were unassigned. In ini-
tial theoretical work, we developed preliminary coupled-
channel models of the bound states and scattering and
used these to propose assignments of quantum numbers
to observed energy levels and Feshbach resonances. Ex-
periments were then carried out to test the assignments
and extend the early measurements. The whole process
was repeated several times. However, to aid understand-
ing, we will describe the experiments in Section III below
using quantum numbers based on our final understand-
ing from theory (Section IV), even though the quantum
numbers were not known at the outset.
Two alkali-metal atoms in 2S states interact at short

range to form singlet (X 1Σ+) and triplet (a 3Σ+) states.
Docenko et al. [28] have carried out an extensive spectro-
scopic study of these states by Fourier transform spec-
troscopy and have developed potential energy curves as
shown in Fig. 1. They were able to observe the vibra-
tional ladder up to high-lying levels with outer turning
points around 1.5 nm, at which point the coupling be-
tween singlet and triplet molecular states is already sig-
nificant. They also identified in the observed spectra ac-
cidental coincidences of singlet and triplet levels deeper
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FIG. 2: [Color online.] Thresholds for 87Rb133Cs and the
“bins” (vertical boxes) below each threshold within which
each vibrational state must lie for any value of the scatter-
ing length. The horizontal boxes, 1.5 GHz deep, show the
energy range within which bound levels can cause resonances
at the |1, 1〉+ |3, 3〉 and |2,−1〉+ |3, 3〉 thresholds at fields un-
der 500 G. The vibrational “bin” for each hyperfine state that
contains bound states that can cause resonances at the lowest
threshold is colored. Selected levels are shown (short horizon-
tal lines) as a function of L (s, p, d, f , g for L = 0, 1, 2, 3, 4)
for the specific choice of scattering length that gives a least-
bound state for L = 0 with 110(20) kHz below threshold. For
fields below 500 G, only levels |n(fRb, fCs)〉 = |−2(1, 3)〉 and
|−6(2, 4)〉 can cause resonances at the |1, 1〉+ |3, 3〉 threshold
and only levels |−4(1, 4)〉 and |−2(2, 3)〉 can cause resonances
at the |2,−1〉+ |3, 3〉 threshold.

within the potential wells, which fixed their relative en-
ergy position very well. In the present work, we initially
constrained the short-range part of the potential to fol-
low these curves and adjusted the long-range parameters
to reproduce the Feshbach resonances and weakly bound
states.
The bound states (Feshbach molecules) that are of

most interest in the present paper have binding en-
ergies of at most a few MHz×h [68] and require a
quite different description. For a heteronuclear bial-
kali molecule, there are 4 field-free atomic thresholds,
which for 87Rb133Cs may be labelled in increasing or-
der of energy by (fRb, fCs) = (1,3), (2,3), (1,4), and
(2,4), as shown in the inset of Fig. 1. In a magnetic
field, each threshold splits into (2fRb + 1)(2fCs + 1)
sublevels labelled |fRb,mRb〉 + |fCs,mCs〉. The Fesh-
bach molecules might be described using two different
sets of quantum numbers, either (fRb,mRb, fCs,mCs) or
(fRb, fCs, F,MF ), where F is the resultant of fRb and fCs

and MF = mRb +mCs. In the non-rotating case F and
MF are exact quantum numbers if there is no external
field, but if there is an external magnetic field, it mixes
states with different F values, destroying the exactness
of F as a quantum number; the character of the Fesh-
bach molecules at the magnetic fields considered here is
more accurately described by (fRb,mRb, fCs,mCs). For
high magnetic fields, fRb and fCs are also no longer good
quantum numbers.
Additional quantum numbers are needed for the

molecules’ end-over-end angular momentum L and the
molecular vibration. For near-dissociation levels it is con-
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venient to specify the vibrational quantum number with
respect to the asymptote of the atom pair, so that the
topmost level is n = −1, the next is n = −2, and so
on. Each level lies within a “bin” below its associated
dissociation threshold, with the boundaries of the bins
determined by the long-range forces between the atoms.
For RbCs, using the published values of the long-range
dispersion coefficients, [29, 30], which are the same for the
singlet and triplet potentials, we find that the n = −1
level lies between zero and −165 MHz, and the n = −2
level lies between −165 and −1150 MHz. Subsequent
lower bin boundaries lie at 3.7, 8.6, 16.7 and 28.8 GHz
below threshold for n = −3 to−6, respectively. As shown
below, the actual levels for 87RbCs lie close to the top of
their bins.
Feshbach resonances occur at fields where a bound

state exists at the same energy as the colliding atoms.
Zero-energy Feshbach resonances are caused by molec-
ular levels that cross atomic thresholds as a function
of magnetic field. Since the level shifts due to the
Zeeman effect at fields below 500 G [69] are not more
than 1.5 GHz, there is only one vibrational level below
each field-free threshold that can cause Feshbach reso-
nances at the |1, 1〉+ |3, 3〉 threshold, as shown in Fig. 2;
these are n = −5, −5 and −6 for levels associated with
(fRb, fCs) = (2, 3), (1,4) and (2,4), respectively. In addi-
tion to this, levels very close to dissociation (n = −1 or
−2) corresponding to the same zero-field threshold as the
incoming wave can also cause low-field resonances. Fig. 2
also shows the situation at the |2,−1〉+ |3, 3〉 threshold,
which will be considered in Section IVG2.
In the general case we label weakly bound

states with a complete set of quantum numbers
|n(fRb, fCs)L(mRb,mCs),M〉, with L = 0, 1, 2, etc.
designated by s, p, d, etc. M is the sum of all
angular momenta projected onto the field axis,
M = mRb + mCs + ML, and is the only exactly
conserved quantum number in an external field. Since,
however, M is always 4 for the levels studied in this
paper (except in sections IVG1 and IVG2), we will
omit it in the following discussion. All other angular
momenta are approximate quantum numbers, but
are sufficient for proper labeling. We characterize by
Lc = 0, 1, ... the partial wave character of the continuum
scattering process and speak of incoming s- and p-wave
resonances for Lc = 0 and Lc = 1, respectively.

III. THE EXPERIMENTS

A. Feshbach resonances

Magnetic Feshbach resonances are an important tool
for the production of weakly bound molecules and for
tuning the scattering length, which determines the elas-
tic and inelastic scattering properties of cold atomic gases
[31]. In addition, their positions provide important clues
to the molecular bound state structure that lies below the

scattering threshold. In previous work [27] we observed
23 resonances over the range 0 to 300 G, using a mixture
of the lowest spin states, 87Rb|1, 1〉 and 133Cs|3, 3〉. Since
this mixture was prepared by evaporating both species si-
multaneously in the same optical trap, interspecies three-
body recombination loss and heating [31] limited the
evaporative cooling efficiency, resulting in comparatively
high temperatures of 7 µK and low particle densities of
about 5× 1011 cm−3 for each species.

In the current experiment, the mixture is created by
combining separately cooled atomic clouds [25], so it
is much colder (100 to 200 nK) and denser (5 × 1012

cm−3) and gives a much better signal-to-noise ratio for
the loss features discussed below. We stop the evapora-
tion procedure before the onset of condensation, because
we have previously found the two Bose-Einstein conden-
sates (BECs) to be immiscible [25]. We hold the mixture
at constant magnetic field B for 200 ms. Enhanced losses
that occur simultaneously for Rb and Cs are attributed
to three-body recombination [31] at an interspecies Fesh-
bach resonance. We associate the field value B at which
maximum atom loss occurs with the pole of the reso-
nance. For example, Fig. 3 shows the atom loss in the
vicinity of the resonance near 197 G.

For sufficiently wide resonances, we find that the num-
ber of Rb atoms exhibits a maximum at fields just above
resonance. Rb has a lower trap depth than Cs and thus
bears most of the heat load through evaporation when
the two species are in thermal equilibrium [25]. Re-
duced thermalization with Cs at zero interspecies scat-
tering length reduces the heat load on the Rb part of the
sample and thus leads to less loss of Rb atoms. This sim-
ple explanation allows us to provide an estimate for the
resonance width ∆: It is the difference between the field
values for the minima (for Rb and Cs) and the maximum
(for Rb) as indicated in Fig. 3. A detailed comparison
with calculated widths requires a thorough analysis, in-
cluding three-body and evaporation effects, and will be
made in a future publication.

As part of this work, we have scanned over a wider
range (0 to 667 G) than in Ref. [27], finding 7 new in-
coming s-wave resonances in addition to those reported
in Ref. [27]. The old and new resonances are collected
together in Table I. The resonances observed for tem-
peratures ≤ 200 nK are assigned as incoming s-wave
(Lc = 0) resonances, while those observed at 7 µK and
not observed at 200 nK are assigned as incoming p-wave
(Lc=1) resonances. The magnetic field is calibrated near
each resonance using Rb microwave transitions. The cal-
ibration in our previous work [27] was based on low-field
data and was found to deviate from the current calibra-
tion by as much as 0.5 G when extrapolated to 300 G.
The positions of the incoming p-wave resonances have
therefore been scaled to the new calibration, using the in-
coming s-wave resonances observed in both experiments
as a reference. The incoming p-wave resonances from
258 to 272 G have been remeasured at 4 µK with the
new calibration.



4

196.2 196.4 196.6 196.8 197.0 197.2 197.4 197.6
0

10000

20000

30000

40000

50000

60000

70000

80000

 

 

 Rb
 Cs

A
to

m
s r

em
ai

ni
ng

Magnetic field B (G)

FIG. 3: [Color online.] Example of a Feshbach resonance scan
showing simultaneous loss for Rb and Cs near 197.06(5) G for
a hold time of 200 ms. The maximum for the number of Rb
atoms to the right of the resonance is attributed to the zero
crossing for the interspecies scattering length. The difference
in the positions of the minima and the maximum as indicated
gives an estimate for the resonance width ∆.
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FIG. 4: [Color online.] Measurement of the binding energy of
the Feshbach molecules. This is an example of a field mod-
ulation free-bound resonance scan showing simultaneous loss
for Rb and Cs for a hold time of 900 ms. The modulation
frequency is held fixed at fm = 330 kHz.

B. Magnetic-field modulation spectroscopy

We have used magnetic-field modulation spectroscopy
[17, 32–34] on our atom mixture to measure binding en-
ergies of Feshbach molecules. A set of auxiliary coils
modulates the magnetic field B along the quantization
axis by up to 0.2 G. Atom losses occur when the modu-
lation frequency fm is resonant with a free-bound transi-
tion (Fig. 4). We observe the losses by holding fm fixed
and scanning B, or by holding B fixed and scanning fm.

TABLE I: 87Rb|1, 1〉 + Cs|3, 3〉 Feshbach resonances observed
over the range 0–667 G for s-wave scattering and 0–300 G
for p-wave scattering. The magnetic field uncertainties result
from a quadrature of resonance position uncertainty due to
atom number noise, and an estimated field calibration error
of 0.03 G. Resonances too narrow to allow a clear width mea-
surement have no width indicated.

s-wave p-wave
Field B (G) Width ∆ (G) Field B (G)
181.64(8) 0.27(10) 128.00(25)∗

197.06(5) 0.09(1) 129.60(25)∗

217.34(5) 0.06(1) 140.00(25)∗

225.43(3) 0.16(1) 140.50(25)∗

242.29(5) 234.35(25)∗

247.32(5) 0.09(3) 235.96(25)∗

272.80(4) 258.10(11)
273.45(4) 259.60(11)
273.76(4) 264.19(11)
279.12(5) 0.09(3) 266.23(11)
286.76(5) 271.73(11)
308.44(5) 289.97(25)∗

310.69(6) 0.60(4) 292.08(25)∗

314.74(11) 0.18(10)
352.65(34) 2.70(47)
381.34(5)
421.93(5)

∗From Ref. [27] with field rescaled to current calibration.

We find that the free-bound signal dies off for fm above
2.5 MHz and attribute this to lower field amplitudes gen-
erated by the coils due to their increased impedance at
high frequencies and to the Bessel-function-squared de-
pendence of the coupling strength on the binding energy
[35].

The binding energies obtained in this way near the
Feshbach resonances at 181.6 G and 197 G are plot-
ted in Fig. 5. Two avoided crossings close below
threshold can clearly be identified. We attribute these
to the presence of a bound state running parallel to
the atomic threshold (with the same magnetic moment
as the atom pair) with a binding energy of approx-
imately 110 ± 20 kHz×h. This “least-bound state”
|n(fRbfCs)L(mRbmCs)〉 = |−1(1, 3)s(1, 3)〉 cannot be ob-
served directly with the modulation technique except
near avoided crossings, because the initial and final states
involved are exactly equal in all spin quantum numbers;
they thus do not differ in magnetic moment and magnetic
dipole transitions between them are forbidden. The least-
bound state causes avoided crossings directly below the
Feshbach resonances by the same coupling mechanism as
the Feshbach resonances, and the resulting mixed states
can be observed near these crossings. The binding en-
ergy of the least-bound state allows us to estimate the
interspecies background scattering length as +645(60) a0
for this scattering channel. This value is further refined
in Section IVF below. The large value for the scattering
length is responsible for the large background interspecies
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FIG. 5: [Color online.] Weakly bound states of RbCs obtained by free-bound (red) and bound-free (green) magnetic-field
modulation spectroscopy, together with levels calculated for the final, fitted potentials (blue solid lines). All levels are shown
relative to dissociation limit Rb |1, 1〉 + Cs |3, 3〉 at the given magnetic field value B. Avoided crossings between the least-bound
state and the ramping n = −2 levels are shown as red arrows. The smaller panels below, labeled a), b), and c) refer to the
areas on the larger panel marked by rectangles and the same labels. The quantity 2β is the minimum separation in energy
between the two states.

thermalization and three-body loss rates observed previ-
ously [25, 36, 37].

C. Feshbach molecules

To create Feshbach molecules, we sweep the magnetic
field B adiabatically from high to low field across one of
the Feshbach resonances. The weakly bound molecules
formed in this way can collide with atoms and decay
to deeply bound states. We must therefore remove the
atoms quickly. In previous experiments it was found
that the atoms can be removed from the molecular cloud
with radiation pressure from a laser (see e.g. Refs. [38–
40]). Here, however, we find that the difference in mag-
netic moments between the atoms and molecules can be
made large enough that the Stern-Gerlach effect due to
the magnetic levitation gradient can be used to sepa-
rate atoms and molecules, allowing us to produce pure

samples of 2000 to 4000 RbCs molecules starting from
approximately 150000 Rb and 60000 Cs atoms [25]. The
temperature of the molecular cloud is approximately the
same as that of the atomic sample, i.e. 100 to 200 nK.

We magnetoassociate at either the 197.06 or the
225.43 G resonance, entering the bound-state manifold as
seen in Fig. 5. Below each of these Feshbach resonances,
there is a strongly avoided crossing with the least-bound
state, which we cannot jump over with our finite mag-
netic switching capability. As a result, immediately af-
ter magnetoassociation, the molecules transfer into the
least-bound state |−1(1, 3)s(1, 3)〉, which has a magnetic
moment µ = −1.3µB, almost identical to that of the free
atom pair. In order to separate the atomic and molecular
clouds, we switch off the crossed optical dipole force trap
confining the atom/molecule mixture and quickly (in 0.5
ms) sweep B down to the next avoided crossing, below
the 181.64 or 217.34 G resonance, respectively.

In the case of magnetoassociation at 197.06 G, we cross
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over onto the low-field-seeking state |−6(2, 4)d(2, 4)〉
(with µ = +2.0µB) near 182 G, and then use an-
other avoided crossing (Fig. 5, panel (a)) to transfer to
the high-field-seeking state |−2(1, 3)d(0, 3)〉 (with µ =
−0.9µB). Just before we take the first of these two
crossovers, the magnetic field gradient is ramped up
to a value suitable for levitating the |−2(1, 3)d(0, 3)〉
molecules. At this moment, the molecules are still in
the least-bound state |−1(1, 3)s(1, 3)〉 and are pushed
upwards together with the atoms. Rb |1, 1〉 and Cs
|3, 3〉 have nearly the same magnetic-moment-to-mass ra-
tio at these field values and thus move together. A large
downward impulse is imparted to the molecules as they
pass through the low-field-seeking state. This separates
the atomic cloud from the molecular cloud. After go-
ing through the second crossover, the molecules become
high-field seekers that are levitated exactly against grav-
ity, and the optical dipole force trap is turned on again,
trapping the molecules. The Stern-Gerlach separation
takes 3 ms and produces a pure sample of up to 4000
molecules. These are observed by a dissociation ramp
backwards along the previous path, after which the Rb
and Cs atom clouds are imaged separately.
In the case of magnetoassociation at 225.43 G, we cross

over near 217 G onto the |−6(2, 4)d(2, 2)〉 state, which is
also strongly low-field-seeking. To levitate the molecules
in this state, the direction of the current in the gradi-
ent coils must be switched, causing a delay that results
in additional atom-molecule collisions. In this case, we
produce pure clouds of typically 2000 molecules.
We note that the molecule creation efficiency of less

than 10% is much lower than can be reached under opti-
mized conditions for single-species experiments, e.g. more
than 25% or even 30% [41–43] for the creation of Fesh-
bach molecules in a single-species BEC, and more than
90% [24] for the creation of Feshbach molecules in the
two-atom shell of a single-species atomic Mott-insulator
state. For the present experiment we believe that we are
limited by phase-space density, which is of order unity
for both clouds before they are brought to overlap. We
expect to increase the molecule creation efficiency greatly
once we are capable of overlapping the two atomic sam-
ples in the quantum-degenerate regime in the presence of
an optical lattice, as discussed in Ref. [25].

D. Magnetic moment spectroscopy

We have measured the magnetic moments of the
Feshbach molecules along the high-field-seeking sections
of the 197.06 G magnetoassociation route. After re-
trapping the pure |−2(1, 3)d(0, 3)〉 molecular cloud, we
backtrack to a magnetic field value B where we are inter-
ested in measuring the magnetic moment, and change the
magnetic field gradient. The dipole trap is then switched
off and after 10–15 ms the molecules are dissociated and
the fragments are imaged. The field gradient that ex-
actly levitates the molecules is scaled to the field gradi-

ent needed to levitate Rb atoms at the same magnetic
field value. The Breit-Rabi equation is used to calcu-
late the Rb|1, 1〉 magnetic moment at this field, and we
multiply this by the scaling factor (considering also the
atomic and molecular masses) to get the molecular mag-
netic moment. The measured magnetic moments (Fig. 6)
are consistent with those expected from the coupled-
channel calculations, which confirms our interpretation
of the 197.06 G magnetoassociation route. The error in
the magnetic moment is dominated by the error in judg-
ing the correct levitation gradient due to the large cloud
sizes which result from expansion during the levitation
period. Since the experiment takes place in a field gradi-
ent, the error in the magnetic field measurement is due
mainly to the difference in vertical position between the
atomic Rb cloud used for microwave-based magnetic field
calibration and the molecular cloud.
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FIG. 6: [Color online.] Calculated (solid line) and measured
(red points) molecular magnetic moment along the magne-
toassociation route starting at the 197.06 G Feshbach res-
onance. The two horizontal error bars mark the estimated
field values for two weak avoided crossings, which we detect
by variations in the cloud displacement at fixed gradient field;
see inset. The crossings are visible here as spikes in the cal-
culated curve and are indicated more explicitly in Figs. 5b
and 5c. Inset: Cloud displacement as a function of magnetic
field B near the weak avoided crossing at B = 189.50G. The
strong variation in the displacement data indicates the pres-
ence of the crossing. Similar data is obtained for the weak
avoided crossing near B = 185.17 G.

Magnetic moment spectroscopy has also allowed us
to estimate the magnetic field values at which the two
|−2(1, 3)d〉 states cross the least-bound state, as shown
by arrows in Fig. 5. Results for one of the crossings are
shown in the inset to Fig. 6. A very small increase in the
magnetic moment is seen near 189.50 G, which we inter-
pret as a partial crossover onto |2(1, 3)d(1, 1)〉 during the
magnetic field sweep before levitation; the corresponding
avoided crossing is illustrated in Fig. 5(c). We have tried
to cross over to this state adiabatically but have not been



7

successful, most likely due to technical magnetic field
fluctuations. The | − (1, 3)d(0, 3)〉 ↔ |−1(1, 3)s(1, 3)〉
crossing, illustrated in Fig. 5(b), has also been observed
in this way. The magnetic moment signal produced by
these crossings is difficult to analyze because it is so weak,
and the error bars shown in Fig. 5 simply span the range
over which the magnetic moment deviates from its back-
ground value.

E. Bound-free modulation spectroscopy and

binding energy of the |−2(1, 3)d(0, 3)〉 state

The binding energy of the |−2(1, 3)d(0, 3)〉 state proved
to be difficult to measure directly, presumably due to
extremely weak coupling to the atomic scattering chan-
nel. However, it was possible to observe this state in the
vicinity of the crossing with |−6(2, 4)d(2, 4)〉, as shown
in Fig. 5(a), using bound-free magnetic-field modulation
spectroscopy [17]. In this version of modulation spec-
troscopy, molecules that are produced by magnetoasso-
ciation (as described in subsection III C) are dissociated
when the energy hfm corresponding to the modulation
frequency fm is equal to or slightly greater than the bind-
ing energy. The threshold frequency at which molecules
begin to be destroyed is associated with the binding en-
ergy. We observe the bound-free transition by omitting
from our experimental sequence the reverse magnetoas-
sociation ramp that is used to observe the molecules.
Any atoms that appear after applying the modulation
are assumed to be produced from molecule-atom tran-
sitions. Because the atomic signal background is now
very low, this method has inherent signal-to-background
advantages over free-bound spectroscopy, but the low
number of molecules increases the statistical noise. The
|−2(1, 3)d(0, 3)〉 state was observable only due to mix-
ing with |−6(2, 4)d(2, 4)〉 near the crossover at about
2.5 MHz×h binding energy. This is consistent with
the fact that no Feshbach resonance could be found for
the |−2(1, 3)d(0, 3)〉 state near its predicted intersection
with the incoming scattering channel. Power broaden-
ing causes the binding energy of the most deeply bound
states to be underestimated. While this effect was ex-
trapolated to zero intensity, the error bars shown in Fig. 5
reflect our best estimate of the possible systematic error
that remains.

IV. THEORY AND CALCULATIONS

The Hamiltonian for the interaction of two alkali-metal
atoms may be written as

~
2

2µ

[

−R−1 d2

dR2
R+

L̂2

R2

]

+ ĥ1 + ĥ2 + V̂ (R), (1)

where µ is the reduced mass and L̂ is the operator for the
end-over-end angular momentum of the two atoms about

one another. The monomer Hamiltonians including Zee-
man terms are

ĥj = ζı̂j · ŝj + geµBB ŝzj + gnµBB ı̂zj , (2)

where ŝ1 and ŝ2 represent the electron spins of the two
atoms and ı̂1 and ı̂2 represent the nuclear spins. The con-
stants ge and gn are the electron and nuclear g-factors,
µB is the Bohr magneton, and ŝz and ı̂z represent the z-
components of ŝ and ı̂ along a space-fixed Z axis whose
direction is defined by the external magnetic field B. The
atomic g-factors were taken from the 2006 CODATA ad-
justment of fundamental constants [44] and the 87Rb hy-
perfine constant from Bize et al. [45]. The Cs hyperfine
constant is exact by definition.
The interaction between the two atoms V̂ (R) is

V̂ (R) = V̂ c(R) + V̂ d(R). (3)

Here V̂ c(R) = V0(R)P̂(0) + V1(R)P̂(1) is an isotropic po-
tential operator that depends on the potential energy
curves V0(R) and V1(R) for the respective X1Σ+

g singlet

and a3Σ+
u triplet states of the diatomic molecule. The

singlet and triplet projectors P̂(0) and P̂(1) project onto
subspaces with total electron spin quantum numbers 0
and 1 respectively. Figure 1 shows the two potential en-
ergy curves for RbCs. The term V̂ d(R) represents small,
anisotropic spin-dependent couplings, which are respon-
sible for the avoided crossings described in the experi-
mental section and are discussed further in Section IVC
below.

A. Computational methods for bound states and

scattering

The three theoretical groups working on this problem
used different sets of computer codes that gave results
in agreement with one another. The methods used in
Hannover to interpret the Fourier transform spectra and
Feshbach resonance positions are described in Ref. [46].
Those used at Temple University and NIST are described
in Ref. [47]. The methods used at Durham are described
below.
For the scattering and Feshbach bound states, we solve

the Schrödinger equation by coupled-channel methods,
using a basis set for the electron and nuclear spins in a
fully decoupled representation,

|sRbms,Rb〉|iRbmi,Rb〉|sCsms,Cs〉|iCsmi,Cs〉|LML〉. (4)

The matrix elements of the different terms in the Hamil-
tonian in this basis set are given in the Appendix of
Ref. [48]. The calculations in this paper used basis sets
with all possible values of ms and mi for both atoms,
truncated at Lmax = 2 unless otherwise indicated.
Scattering calculations are carried out using the

MOLSCAT package [49], as modified to handle collisions
in magnetic fields [50]. At each magnetic field B, the
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wavefunction log-derivative matrix at collision energy E
is propagated from R = 0.3 to 2.5 nm using the propa-
gator of Manolopoulos [51] with a fixed step size of 0.02
pm and from 2.5 to 1,500 nm using the Airy propagator
[52] with a variable step size controlled by the parameter
TOLHI=10−5 [53]. Scattering boundary conditions [54]
are applied at R = 1, 500 nm to obtain the scattering S-
matrix. The energy-dependent s-wave scattering length
a(k) is then obtained from the diagonal S-matrix element
in the incoming L = 0 channel using the identity [55]

a(k) =
1

ik

(

1− S00

1 + S00

)

, (5)

where k2 = 2µE/~2. For L = 1, this is generalized by
replacing a with a31 and k with k3.
Weakly bound levels for Feshbach molecules are ob-

tained using a variant of the propagation method de-
scribed in Ref. [48]. The log-derivative matrix is propa-
gated outwards from R = 0.3 to 2.5 nm with a fixed step
size of 0.02 pm and inwards from 1,500 and 2.5 nm with a
variable step size. In Ref. [48], bound-state energies at a
fixed value of the magnetic field B were located using the
BOUND package [56], which converges on energies where
the smallest eigenvalue of the log-derivative matching de-
terminant is zero [57]. However, for the purposes of the
present work we used a new package, FIELD, which in-
stead works at fixed binding energy and converges in a
similar manner on the magnetic fields at which bound
states exist. BOUND and FIELD both implement a
node-count algorithm [57] which makes it straightforward
to ensure that all bound states that exist in a particular
range of energy or field are located.
Zero-energy Feshbach resonances can in principle be

located as fields Bres at which the scattering length a(B)
passes through a pole. However, with this method it is
necessary first to search for poles, and it is quite easy to
miss narrow resonances. Since resonances occur at fields
where there is a bound state at zero energy, the FIELD
package provides a much cleaner approach: simply run-
ning FIELD at zero energy provides a complete list of all
fields at which zero-energy Feshbach resonances exist.

B. Representation of the potential curves

The singlet and triplet curves are represented as de-
scribed by Docenko et al. [28]. In a central region from
RSR

S to RLR
S , with S = 0 or 1 for the singlet or triplet

state, respectively, the curves are well determined by the
Fourier transform spectra and are represented as finite
power expansions of a nonlinear function ξ that depends
on the internuclear separation R,

VS(R) = hc

n
∑

i=0

aiξ
i(R), (6)

where

ξ(R) =
R−Rm

R+ bRm
. (7)

The quantities ai and b are fitting parameters, and Rm

is chosen to be near the equilibrium distance. At long
range (R > RLR

S ), the potentials are

V LR
S (R) = −C6/R

6 − C8/R
8 − C10/R

10

−(−1)SVexch(R),
(8)

where the dispersion coefficients Cn are common to both
potentials. The exchange contribution is [58]

Vexch(R) = Aex(R/a0)
γ exp(−βR/a0), (9)

and makes an attractive contribution for the singlet and a
repulsive contribution for the triplet. β and γ are related
via γ = 7/β − 1 and are obtained from the ionization
energies of Rb and Cs [58], and Aex is a fitting parameter.
The mid-range potentials are constrained to match the
long-range potentials at RLR

S . Lastly, the potentials are
extended to short range (R < RSR

S ) with simple repulsive
terms,

V SR
S (R) = ASR

S +BSR
S [a0/R]N , (10)

where ASR
S = VS(R

SR
S ) − BSR

S [a0/R
SR
S ]N is chosen to

match the short-range and mid-range potentials at RSR
S .

C. Magnetic dipole interaction and second-order

spin-orbit coupling

At long range, the coupling V̂ d(R) of Eq. 3 has a simple
magnetic dipole-dipole form that varies as 1/R3 [59, 60].
However, for heavy atoms it is known that second-order
spin-orbit coupling provides an additional contribution
that has the same tensor form as the dipole-dipole term
and dominates at short range [61, 62]. In the present

work, V̂ d(R) is represented as

V̂ d(R) = λ(R) (ŝ1 · ŝ2 − 3(ŝ1 · ~eR)(ŝ2 · ~eR)) , (11)

where ~eR is a unit vector along the internuclear axis and λ
is an R-dependent coupling constant. This term couples
the electron spins of Rb and Cs atoms to the molecular
axis. In particular, it couples the even partial waves (s,
d, ...) with one another and does the same for the odd
partial waves (p, f , ...).
In the present work the second-order term was eval-

uated from electronic structure calculations in a man-
ner similar to that described in Ref. [62], using a rela-
tivistic configuration-interaction valence bond (RCI-VB)
method. The molecular wave function is constructed
from atomic orbitals localized at the different atomic cen-
ters. Configuration interaction (CI) coefficients are ob-
tained by solving a generalized eigenvalue matrix prob-
lem of the relativistic electronic Hamiltonian based on
a nonorthogonal basis set. At short internuclear separa-
tions, the one-electron orbitals from different centers have
considerable overlap or nonorthogonality, which gives rise
to a large exchange interaction and thereby creates the
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bond. For large internuclear separations, the molecular
wave function automatically obtains a pure atomic form,
which is the correct asymptotic limit for any molecular
wave function. In our version of the RCI-VB method,
the atomic Slater determinants are constructed from one-
electron numerical Dirac-Fock functions for occupied core
and valence orbitals and numerical Sturmian functions
for virtual or unoccupied orbitals. These Sturmian or-
bitals are obtained by solving integro-differential Dirac-
Fock-Sturm equations [63].

For RbCs, all occupied orbitals up to the 4s2 shell in
Rb and the 5s2 shell in Cs are defined as the core orbitals.
The 4p6 orbitals in Rb and 5p6 orbitals in Cs are included
in the core-valence subspace, allowing single and double
excitations. The 5s, 5p, 4d, 6s, and 6p orbitals of Rb
and 6s, 6p, 5d, 7s, and 7p orbitals of Cs are added to the
active subspace with single, double, and triple occupancy.
In addition, we included virtual Sturm 5d, 4f, 7s, and 7p
orbitals of Rb and 6d, 4f, 8s, and 8p orbitals of Cs to
complete the active space. Up to double occupancy is
allowed for these virtual orbitals.

Our relativistic valence bond method calculates the
second-order spin-orbit splitting nonperturbatively. The
calculation finds the energetically lowest Ω = 0− and 1
states, which correspond to the two fine-structure compo-
nents of the S = 1 a3Σ+ Born-Oppenheimer potential.
We denote the relativistic potentials by VS,Ω(R). The
difference V1,1(R)−V1,0−(R) = −(3/2)λ(R) provides the
second-order spin-orbit splitting shown in Fig. 7. Also
shown is the strength of the spin-spin dipole interaction,
which leads to a splitting between the 0− and 1 Born-
Oppenheimer potentials with opposite sign compared to
the second order spin-orbit contribution.

The second-order spin-orbit splitting has a nearly ex-
ponential dependence on R and lies about half-way be-
tween the values for Rb2 and Cs2 molecules calculated
previously [62]. The results of the electronic structure
calculations were fitted to a biexponential form, so that
the overall form of λ(R) is

λ(R) = Ehα
2

[

Ashort
2SO exp

(

−βshort
2SO (R/a0)

)

+Along
2SO exp

(

−βlong
2SO(R/a0)

)

+
1

(R/a0)3

]

, (12)

where α ≈ 1/137 is the atomic fine-structure constant.
The parameters obtained from fitting to the electronic

structure calculations are Ashort
2SO = −50.974, Along

2SO =

−0.0525, βshort
2SO = 0.80 and βlong

2SO = 0.28. However, in
fitting to the weakly bound levels, this coupling func-
tion was found to be too strong to reproduce the avoided
crossings shown in Fig. 5. We therefore retained the func-

tional form (12) but allowed the parameter Along
2SO to vary

in the least-squares fit to the experimental results de-
scribed below.
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FIG. 7: [Color online] Study of the second-order spin-orbit
interaction energy V1,1(R) − V1,0− (R) as a function of inter-
nuclear separation R. The filled circles are the result of the
ab initio RCI-VB electronic structure calculation. The green
dash-dotted is a fit to the ab initio values using the functional
form of Eq. 12. The blue line corresponds to the second-order
spin-orbit interaction energy optimized to reproduce the loca-
tion of the observed magnetic Feshbach resonances for Along

2SO

= -0.03310. For comparison the absolute value of the corre-
sponding splitting due to the magnetic dipole-dipole interac-
tion is shown by a red dashed line.

D. Assignment of quantum numbers

At the start of this work, the singlet and triplet scat-
tering lengths aS and aT for RbCs were unknown within
wide ranges and there was no assignment of quantum
numbers to the Feshbach resonances of Ref. [27]. How-
ever, the identification of a bound state in the |1, 1〉+|3, 3〉
channel bound by only about 110 kHz placed the possi-
ble values of aS and aT along a well-defined curve in the
upper-right quadrant of aS , aT space. We therefore used
a pre-publication version of the mid-range RbCs poten-
tials of Docenko et al. [28], modified to allow us to vary
the scattering lengths, and carried out coupled-channel
calculations at a number of points along this line to iden-
tify lists of s-wave Feshbach resonances. By altering the
long-range coefficients and inner-wall parameters of this
potential, we were able to produce a resonance pattern
that approximately matched the experimental one, and
also gave a pattern of bound states similar to that from
free-bound spectroscopy. A key feature that strength-
ened our confidence in this assignment was that it pre-
dicted two very weak crossings between the least-bound
state near 110 kHz and two n = −2 states, as shown
in Fig. 5. The presence of these crossings was then con-
firmed by experiment as described in Section III D above.
At around this time, the final version of the spectro-
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scopic potentials of Ref. [28] became available. These
had different numbers of singlet and triplet bound states
from the preliminary version, but approximately the cor-
rect scattering lengths. We therefore used this potential
to produce resonance patterns and a bound state map of
the region immediately below the lowest threshold. This
gave a good match to the experimentally observed Fesh-
bach resonance positions, but placed the two n = −2
states that cross the least-bound state between 180 G
and 190 G at fields about 3 G too low. In addition, the
avoided crossings between the n = −6 states and the
least-bound state were broader than was found experi-
mentally. We therefore embarked on a two-part least-
squares refinement, beginning from the potential of Ref.
[28], as described below.

E. Least-squares refinement

The Feshbach bound states and resonance positions
are strongly sensitive to the long-range potential and to
the scattering lengths, but only weakly sensitive to the
details of the potential in the well region. The Fourier
Transform spectra, by contrast, are very sensitive to the
well region. The potentials are determined in an iterative
loop using the data sequentially, as was successfully ap-
plied for example in Ref. [46]. First, in the least-squares
fit to weakly bound states and Feshbach resonance po-
sitions, the potential curves in the central region were
held fixed but the long-range coefficients C6 and C8 were
allowed to vary. In addition, the parameters BSR

0 and
BSR

1 were varied, allowing the inner walls of the two
potential curves to move sufficiently to adjust the sin-
glet and triplet scattering lengths independently of C6

and C8. The scaling factor for the long-range part of
the 2nd-order spin-orbit coupling was also varied in this
step. In the second step, the long-range function was held
fixed and the inner parts of the potentials were varied to
fit the large set of results from Fourier Transform spec-
troscopy, adding as data the uncoupled last-bound levels
constructed from the fit in the first step. Two iterations
were sufficient to achieve convergence between the two
different least-squares procedures.
The propagator approach to locating bound states and

resonances, implemented in the BOUND and FIELD
programs, is fast enough to be incorporated in a least-
squares fitting program. Nevertheless, it is still slow
enough that these calculations form the major time-
consuming step in a least-squares refinement procedure.
Furthermore, the parameter set used is highly correlated.
Under these circumstances, a fully automated approach
to fitting is unreliable: individual least-squares steps of-
ten reach points in parameter space where the levels have
moved too far to be identified reliably, particularly in the
early stages of fitting. We therefore carried out this stage
of the fitting using the I-NoLLS package [64] (Interactive
Non-Linear Least-Squares), which gives the user interac-
tive control over step lengths and assignments as the fit

proceeds. This allowed us to converge on a minimum in
the sum of weighted squares in a relatively small number
of steps.
The measurements on weakly bound states described

above complement the measurements of the positions
of Feshbach resonances. In particular: (i) the position
of the least-bound state is sensitive to the background
scattering length in the incoming |1, 1〉 + |3, 3〉 chan-
nel; (ii) the strengths of the avoided crossings between
the least-bound state and the ramping n = −6 states
from the (2,4) threshold are sensitive to the magnitude
of the 2nd-order spin-orbit coupling; (iii) the positions
of the n = −2 states associated with the (1,3) thresh-
old, observed through their avoided crossings with the
least-bound state, are sensitive to the long-range C6 coef-
ficient, but relatively uncontaminated by the influence of
C8, which becomes important for deeper levels. In com-
bination with the Feshbach resonances due to n = −6
states, whose position is significantly influenced by the
C8 coefficient, the n = −2 levels open the way for C6

and C8 to be determined separately.
Once we were confident of the assignment of the weakly

bound states and Feshbach resonances, we therefore car-
ried out least-squares refinement of the potential using
the I-NoLLS package in the 5-parameter space BSR

0 ,

BSR
1 , C6, C8, Along

2SO. The set of experimental results
used for this stage of fitting is listed in Table II. It
consists of the magnetic fields for all the measured s-
wave resonances, except the resonance at 273.45 G, which
we attribute to a bound state of g character, and is
supplemented by a selection from the measurements of
the binding energies: (i) two additional resonance po-
sitions for the n = −2 states, obtained from the po-
sitions of the avoided crossings between the n = −2
states and the least-bound state by a (very short) ex-
trapolation to zero energy using the calculated slopes
of the n = −2 states; (ii) fields at which the bound
states |−6(2, 4)d(2, 4)〉 and |−6(2, 4)d(2, 3)〉 exist near
1 MHz; (iii) four fields at which bound states exist
near 110 kHz, designated B+

(mRb,mCs)
and B−

(mRb,mCs)
,

just above and just below the avoided crossings be-
tween the least-bound state and the |−6(2, 4)d(2, 4)〉 and
|−6(2, 4)d(2, 3)〉 states; to improve the determination of
the 2nd-order spin-orbit coupling, two of these were in-
cluded as field differences B− − B+ between levels just
above and just below each crossing; (iv) the energy of the
|−2(1, 3)d(0, 3)〉 state at 181.18 G, just below its cross-
ing with |−6(2, 4)d(2, 4)〉. The quantity optimized in the
least-squares fits was the sum of squares of residuals ((ob-
served− calculated)/uncertainty), with the uncertainties
listed in Table II.

F. Final potential

At the conclusion of the two-part least-squares refine-
ment procedure described above, we arrived at the po-
tentials given in Tables III, IV and V. Table III gives
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TABLE II: Quality of fit to Feshbach bound states and res-
onance positions. Top section: a complete list of the fields
(in G) for all calculated s-wave resonances in the region 10
to 560 G using an sd basis, together with quantum labels
as explained in the text. Some calculated resonances have
not been observed experimentally. Center section: fields
used to characterize the ramping states | − 6(2, 4)d(2, 4)〉 and
| − 6(2, 4)d(2, 3)〉 and their avoided crossings with the least-
bound state. Bottom section: the binding energy of the
|−2(1, 3)d(0, 3)〉 bound state at 181.18 G, just below its cross-
ing with |−6(2, 4)d(2, 4)〉. For all states here, the total angular
projection quantum number M is 4. The uncertainties quoted
here are those that define the weights used in our least-squares
fit.

Bcalc Bobs Bobs −Bcalc Unc. quantum labels

87.25 |−2 (1, 3) d (−1, 3)〉
123.09 |−2 (1, 3) d (0, 2)〉
181.63 181.64 0.01 0.10 |−6 (2, 4) d (2, 4)〉
197.07 197.06 −0.01 0.046 |−6 (2, 4) d (2, 3)〉
217.33 217.34 0.01 0.047 |−6 (2, 4) d (2, 2)〉
225.47 225.43 −0.04 0.034 |−6 (2, 4) d (1, 4)〉
242.25 242.29 0.04 0.047 |−6 (2, 4) d (2, 1)〉
247.28 247.32 0.04 0.048 |−6 (2, 4) d (1, 3)〉
272.81 272.80 −0.01 0.043 |−6 (2, 4) d (2, 0)〉

273.45 0.04
273.69 273.76 0.07 0.043 |−6 (2, 4) d (1, 2)〉
279.02 279.12 0.10 0.048 |−6 (2, 4) s (2, 2)〉
286.68 286.76 0.08 0.047 |−6 (2, 4) d (0, 4)〉
308.45 308.44 −0.01 0.045 |−6 (2, 4) d (1, 1)〉
310.71 310.69 −0.02 0.056 |−6 (2, 4) s (1, 3)〉
314.56 314.74 0.18 0.11 |−6 (2, 4) d (0, 3)〉
352.74 352.65 −0.09 0.34 |−6 (2, 4) s (0, 4)〉
353.57 |−6 (2, 4) d (0, 2)〉
381.28 381.34 0.06 0.047 |−6 (2, 4) d (−1, 4)〉
408.63 |−2 (1, 3) d (1, 2)〉
422.04 421.93 −0.11 0.047 |−6 (2, 4) d (−1, 3)〉
552.75 |−6 (2, 4) d (−2, 4)〉
185.24 185.34∗ 0.10 0.35 |−2 (1, 3) d (0, 3)〉
189.47 189.66† 0.19 0.10 |−2 (1, 3) d (1, 1)〉

Bcalc Bobs Bobs −Bcalc Unc.

B(2,4) at −1.02 MHz 181.729 181.758 0.030 0.03

B(2,3) at −0.84 MHz 196.978 196.946 −0.019 0.02
B+

(2,4) at −0.030 MHz 181.381 181.380

B−
(2,4) at −0.210 MHz 182.358 182.316 −0.042 0.03

B−
(2,4) −B+

(2,4) 0.977 0.936 −0.041 0.07

B+
(2,3) at −0.030 MHz 196.991 196.950

B−
(2,3) at −0.185 MHz 197.300 197.278 −0.022 0.03

B−
(2,3)

−B+
(2,3)

0.309 0.328 0.019 0.06

−Ecalc −Eobs −Eobs + Ecalc Unc.

E−2
(0,3) at 181.18 G 2.767 2.525 −0.242 0.10

(MHz)
∗ Resonance position extrapolated from avoided crossing at

185.17 G.
† Resonance position extrapolated from avoided crossing at

189.50 G.

TABLE III: Potential parameters and derived quantities re-
sulting from least-squares fitting to Feshbach bound states
and resonance positions.

fitted value 95% confidence sensitivity
limit

BSR
0 (Eh) 6960.7 710 0.5

BSR
1 (Eh) 19793.3 110 0.1

A
long
2SO −0.0331 0.0028 0.0001

C6 (Eha
6
0) 5693.7056 2.2 0.0004

C8 (Eha
8
0) 796487.36 1900 0.3

derived value uncertainty
parameters
aS (a0) 997 11
aT (a0) 513.3 2.2

the parameters from fitting to the Feshbach bound states
and resonance positions, whereas Tables IV and V give
the full potentials for the singlet and triplet states, re-
spectively.

Although the Feshbach bound states and resonance
positions do allow all 5 parameters in Table III to be
extracted, they are very highly correlated. The table
therefore gives both 95% confidence limits and parame-
ter sensitivities as defined by Le Roy [65]. The 95% con-
fidence limits are correlated properties that describe the
uncertainty in an individual parameter, but the parame-
ters need to be specified to within their sensitivities, not
their confidence limits, in order to reproduce the results
of the calculations.

The new version of the electronic potentials for the
RbCs ground-state system reproduces the Fourier trans-
form spectra as accurately as the original version of
Ref. [28], with the important improvement that it can
also accurately reproduce properties relating to the very
top of the electronic potentials, such as Feshbach spec-
tra. There are some remaining deviations between the
observed and calculated positions of the n = −2 states
as shown in the lower panels of Figure 5, but in view of
the possible systematic errors in the corresponding mea-
surements described in Sections III E and IIID above,
these are not a great cause for concern.

The final results for the resonance positions and weakly
bound states are listed in Table II, together with the
quality of fit to the experimental data and the quan-
tum label assignments. The calculated s-wave scattering
length and its match to the resonance positions is shown
in Figure 8, together with an overview of the bound states
responsible for the resonances.

The singlet and triplet scattering lengths aS and aT
obtained from the fitted potentials are included in Ta-
ble III, together with their fully correlated uncertainties,
calculated as described in Ref. [65]. The background
scattering length derived for the |1, 1〉 + |3, 3〉 channel
is 651 ± 10 a0, calculated at B = 500 G far from reso-
nances. We have also calculated the binding energy of the
least-bound state for L = 0 at B = 211 G (this value was
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FIG. 8: [Color online.] Weakly bound states of RbCs for M = 4 at fields up to 550 G, calculated using the final fitted potentials,
together with the scattering length at the |1, 1〉 + |3, 3〉 threshold, calculated at E = 160 nK. Bound states are plotted in a
colour corresponding to their value of MF , as shown on the figure. States arising from L = 2 (d states) are shown as solid
lines, and from L = 0 (s states) are shown as dashed lines. The resonance positions are marked on the scattering length plot
as vertical lines with the same color as the bound state that they arise from. The slanted text on the left-hand axis and below
the bottom axis indicates which vibrational and hyperfine manifold the L = 2 bound states arise from. The least-bound state
|−1(1, 3)s(1, 3)〉 is within the thickness of the zero line on this scale. The observed positions of incoming s-wave resonances are
shown as arrows above the plot.

chosen to represent a value far from resonance within the
region for which experimental values are available) and
found it to be 110± 2 kHz ×h.

G. Independent tests and predictions

1. Resonances in p-wave scattering

As described above, some of the resonances observed
by Pilch et al. [27] do not appear for the Rb+Cs mixture
at the lower temperatures studied in the present work and
are assigned as resonances in p-wave scattering. When
Lc = 1, MLc

can take values −1, 0 or +1, so M can be 3,
4, or 5 at the |1, 1〉+|3, 3〉 threshold with MF = 4. Figure
9 compares the observed p-wave resonance positions with
the p-wave scattering lengths for these three values of
M , calculated using the fitted potentials. It may be seen
that the observed resonances correspond quite well to a

subset of the calculated resonances, although it is not
altogether clear why Pilch et al. [27] observed some p-
wave resonances and not others.

2. Resonances at the |2,−1〉+ |3, 3〉 threshold

In addition to the resonances at the lowest threshold,
Pilch et al. [27] observed two resonances at an excited
threshold with the Rb atoms in their |2,−1〉 state, at
162.3 and 179.1 G. At this threshold inelastic scattering
is possible, and trap loss can occur through either 2-body
or 3-body collisions. The scattering length is complex,
a(B) = α(B) − iβ(B), and the inelastic collision rate is
proportional to β(B). Fig. 10 shows the real and imagi-
nary parts of the s-wave and p-wave scattering lengths at
this threshold, calculated using the fitted potentials, and
compares them to the experimental resonance positions.
It may be seen that the two observed resonances are in
good agreement with the calculation, with the high-field
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TABLE IV: Parameters of the analytic representation of the
potential of state X1Σ+. The energy reference is the dissoci-
ation asymptote.

R < RSR = 0.3315 nm

ASR∗
0 /hc -0.407634031×104 cm−1

BSR
0 /hc 1.52770630×109 cm−1

N0 7

RSR ≤ R ≤ RLR = 1.150 nm

b 0.09

Rm 0.442708150 nm

a0 -3836.36509 cm−1

a1 -0.0369980716645394794 cm−1

a2 0.447519742785341805×105 cm−1

a3 -0.134065881674135253×105 cm−1

a4 -0.112246913875781145×106 cm−1

a5 -0.680373468487243954×105 cm−1

a6 0.124395856928352383×106 cm−1

a7 -0.527808915105630062×106 cm−1

a8 0.160604050855185674×107 cm−1

a9 0.856669313055434823×107 cm−1

a10 -0.423220682973604128×108 cm−1

a11 -0.846286860630152822×108 cm−1

a12 0.775110557475278497×109 cm−1

a13 0.208102060193851382×109 cm−1

a14 -0.762262944271048737×1010 cm−1

a15 0.645280096247728157×1010 cm−1

a16 0.358089708848128967×1011 cm−1

a17 -0.685156406423631516×1011 cm−1

a18 -0.340359743040435295×1011 cm−1

a19 0.204117122912590576×1012 cm−1

a20 -0.207876500106921722×1012 cm−1

a21 0.712777331768994293×1011 cm−1

R > RLR

C6 5693.7056 Eha
6
0

C8 796487.36 Eha
8
0

C10 95332817 Eha
10
0

Aex/hc 0.37664685×103 cm−1

γ 5.427916

β 1.0890
∗ This parameter is set to give continuity between the short-range

and mid-range functional forms.

resonance arising from s-wave scattering and the low-field
resonance from p-wave scattering.

3. Unassigned resonance

As noted above, there is one resonance observed in
s-wave scattering, at 273.45 G, that does not appear in
coupled-channel calculations on the fitted potential using
a basis set with Lmax = 2. However, there are numerous

TABLE V: Parameters of the analytic representation of the
potential of state a3Σ+. The energy reference is the dissoci-
ation asymptote.

R < RSR = 0.522 nm

ASR∗
1 /hc -0.500680370×103 cm−1

BSR
1 /hc 4.34413885×109 cm−1

N1 7

RSR ≤ R ≤ RLR = 1.200 nm

b 0.06

Rm 0.62193776 nm

a0 -259.33587 cm−1

a1 0.1466188573699344914 cm−1

a2 0.525743927693154455×104 cm−1

a3 -0.122790966318838728×105 cm−1

a4 0.175565797136193828×104 cm−1

a5 0.173795490253058379×105 cm−1

a6 -0.119112720845007316×105 cm−1

a7 -0.245659148870101490×105 cm−1

a8 0.303380094883701415×106 cm−1

a9 -0.100054913157079869×107 cm−1

a10 -0.296340813141656632×106 cm−1

a11 0.997302450614721887×107 cm−1

a12 -0.272673123492070958×108 cm−1

a13 0.323269132716538832×108 cm−1

a14 -0.147953587185832486×108 cm−1

R > RLR

C6 5693.7056 Eha
6
0

C8 796487.36 Eha
8
0

C10 95332817 Eha
10
0

Aex/hc 0.37664685×103 cm−1

γ 5.427916

β 1.0890
∗ This parameter is set to give continuity between the short-range

and mid-range functional forms.
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FIG. 9: [Color online.] The p-wave scattering lengths at the
|1, 1〉+ |3, 3〉 threshold for the three values of M allowed for p-
wave scattering of Rb + Cs, calculated at E = 7 µK using the
final fitted potentials. Results for MF = 3, 4, and 5 are shown
as blue (dark gray), magenta (gray), and green (light gray),
respectively. The observed positions of p-wave resonances are
shown as arrows at the top of the graph.
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FIG. 10: [Color online.] The real and imaginary parts of
the complex scattering length at the Rb |2,−1〉 + Cs |3, 3〉
threshold, calculated using the final fitted potentials: s-wave
(red, dark gray, left-hand axis) and p-wave (green, light gray,
right-hand axis). The observed resonance positions are shown
as arrows at the top of the graph. The three components
of the p-wave scattering length are indistinguishable on this
scale.

additional resonances that appear when basis sets includ-
ing more partial waves are used. In particular, a calcula-
tion including L = 4 functions yields an additional reso-
nance at 275.07 G that arises from the |−6 (2, 4) g (−2, 4)〉
state. The exact position of this resonance is quite sensi-
tive to variations of the potential within its uncertainty
and is plausibly responsible for the otherwise unassigned
resonance.

4. High-field scattering

The resonances listed in Table II, at fields up to 553
G, include all those expected from |−6(2, 4)d〉 states.
However, there are additional resonances that appear at
higher field, mostly due to s and d states of |−5(2, 3)〉.
Some of the corresponding bound states appear in Fig. 8.
Figure 11 shows the s-wave scattering length at fields up
to 1000 G; in particular, the comparatively wide reso-
nance near 790 G (with width ∆ = 4.2 G) is due to
the |−5(2, 3)s(2, 2)〉 state. This wide resonance may be
useful for tuning interspecies scattering properties, and
for studying few-body properties such as interspecies Efi-
mov resonances [66]. In particular, since there is a very
broad Feshbach resonance for Cs in state |3, 3〉 with a
pole at 787 G [67], Rb+Cs mixtures may make it pos-
sible to study Efimov physics near overlapping Feshbach
resonances.

V. OUTLOOK

We have studied and modeled interspecies scattering
in an ultracold Rb-Cs gas mixture with the aim of find-
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FIG. 11: [Color online.] RbCs scattering length at the
|1, 1〉 + |3, 3〉 threshold at fields above 560 G, calculated at
E = 160 nK using the final fitted potential. Resonance po-
sitions are marked by vertical lines, with the value of MF of
the corresponding bound state indicated using the same color
scheme as in Fig. 8.

ing an assignment for the observed interspecies Feshbach
resonances and in particular to understand the spectrum
of weakly bound RbCs molecules.

Our results are of great importance for the production
of ultracold samples of heteronuclear molecules and for
the generation of dipolar quantum gases made of RbCs
molecules. With recent work on optical one- and two-
photon spectroscopy [26] we are now poised to perform
stimulated ground-state transfer using the STIRAP tech-
nique. We expect that a three-dimensional optical lattice
will allow us to maximize the molecule creation and state
transfer efficiencies, as in recent work on Cs2 [24]. As de-
tailed in Ref. [25], interspecies Feshbach tuning will be
used to bring a superfluid sample of Rb atoms into over-
lap with a single-atom-per-site Mott insulator for Cs,
in order to optimize the Rb-Cs pair-creation efficiency.
With sufficiently high efficiencies, the creation of a dipo-
lar quantum gas of RbCs molecules is within reach.
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[12] P. S. Żuchowski and J. M. Hutson, Phys. Rev. A 81,
060703(R) (2010).

[13] H. L. Bethlem and G. Meijer, Int. Rev. Phys. Chem. 22,
73 (2003).

[14] J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille,
Phys. Rev. Lett. 94, 203001 (2005).

[15] J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer,
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Nägerl, Science 321, 1062 (2008).

[22] F. Lang, K. Winkler, C. Strauss, R. Grimm, and
J. Hecker Denschlag, Phys. Rev. Lett. 101, 133005
(2008).

[23] M. J. Mark, J. G. Danzl, E. Haller, M. Gustavs-
son, N. Bouloufa, O. Dulieu, H. Salami, T. Bergeman,
H. Ritsch, R. Hart, et al., Appl. Phys. B 95, 219 (2009).

[24] J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson,
R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl,
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