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Synthesis of arbitrary SU(3) transformations of atomic qutrits

Nikolay V. Vitanov
Department of Physics, Sofia University, 5 James Bourchier blvd, 1164 Sofia, Bulgaria

Several scenarios are proposed and analyzed for engineering of arbitrary preselected SU(3) trans-
formations of laser-driven atomic qutrits. Two of the most natural implementations of qutrits are
considered, in which the three qutrit states are coupled to each other via two-photon transitions
through either (i) a common state in a tripod linkage pattern, or (ii) two upper states in an M-
shaped linkage chain. The SU(3) transformation for the tripod qutrit can be realized by 3 Givens
SU(2) rotations, which require 9 consecutive interaction steps. Alternatively, because under certain
conditions the propagator of the tripod system reduces to the Householder reflection operator, any
SU(3) transformation can be constructed physically by 3 Householder reflections, each of which is
implemented in a single interaction step. As an example, the discrete Fourier transform can be
synthesized by 7 consecutive interaction steps with Givens rotations or, alternatively, by only a
single Householder reflection and a phase gate. For the M-qutrit, the propagator is given by coupled
Householder reflections and it cannot be reduced to Givens rotations or independent Householder
reflections. By using these coupled Householder reflections it is shown that an arbitrary SU(3)
transformation of the M-qutrit can be realized with just two fields in at most 3 interaction steps;
the discrete Fourier transform, in particular, requires only 2 interaction steps.

PACS numbers: 03.67.Ac, 32.80.Qk, 42.50.Dv, 32.80.Be

I. INTRODUCTION

The theory of quantum information processing is
largely based upon qubits — two-state quantum systems
— because of their conceptual simplicity and the relative
ease of their physical implementation in various quantum
systems [1]. A vital part of quantum information process-
ing is the ability for complete control of the qubits, the
most general SU(2) transformation of which is described
by three real parameters: one mixing angle θ and two
phases α and β. Its most popular implementation uses
three sequential physical steps: a phase gate, a rotation
gate and another phase gate [2].

A quantum computer built of qutrits — realized phys-
ically by three-state quantum systems — promises some
advantages over the qubit quantum computer. In addi-
tion to the immediate exponential increase of the compu-
tational Hilbert space qutrits offer new types of quantum
protocols [3, 4], more secure and efficient quantum com-
munications [5], new types of entanglement [6], larger
violations of nonlocality via Bell tests [7], and optimiza-
tion of the Hilbert-space dimensionality [8]. While most
of the research on qutrits has been focused on photonic
qutrits, a qutrit quantum computer with trapped ions
was proposed by Klimov et al. [9] who described how con-
ditional gates and the quantum Fourier transform can be
implemented in analogy to the circuit model of the qubit
quantum computer.

For the complete control of a qutrit it is essential to
have the ability to construct any preselected SU(3) trans-
formation of it. The extension of the physical control
techniques from qubits to qutrits is nontrivial because the
coherent operations in the 3D Hilbert space of a qutrit
are far more demanding than in the 2D Hilbert space
of a qubit. The most general SU(3) transformation of
a qutrit is described by 8 independent real parameters,
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FIG. 1: Qutrit in a tripod linkage: linkage patterns in the
original basis (top) and in the Morris-Shore basis (bottom).
The qutrit is formed of states |1〉, |2〉 and |3〉. The bright
state |b〉 and the two dark state |d′〉 and |d′′〉 are linear super-
positions of the ground sublevels (i.e. the qutrit states).

compared to only 3 parameters for a SU(2) transforma-
tion of a qubit.

Here I describe how the most general SU(3) transfor-
mation of a qutrit can be constructed physically in two
of the most natural realizations of an atomic qutrit: in a
quantum system with a tripod linkage pattern and in a
quantum system with a chainwise M-shaped linkage pat-
tern. The qutrit states |1〉, |2〉 and |3〉 are represented
by the lower manifolds of states in these systems. These
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FIG. 2: Qutrit in an M system: linkage patterns in the origi-
nal basis (top) and in the Morris-Shore basis (bottom). The
qutrit is formed of the magnetic sublevels |−2〉, |0〉 and |+2〉
of the lower level. The qutrit states are coupled with two-
photon Raman transitions via the upper sublevels | − 1〉 and
| + 1〉 by an elliptically polarized field, which is a superposi-
tion of right (σ+) and left (σ−) circularly polarized fields. Ω+

and Ω− the the Rabi frequency “units” associated with the
σ+ and σ− fields; the actual couplings are given by Ω+ (or
Ω−) times the corresponding Clebsch-Gordan coefficient ξme

mg
,

cf. Sec. IV. The two bright states |b′〉 and |b′′〉 and the dark
state |d〉 in the Morris-Shore basis are linear superpositions
of the ground sublevels (i.e. the qutrit states), while the two
new upper states |c′〉 and |c′′〉 are linear superpositions of the
excited sublevels.

systems arise naturally in the optical transition between
the magnetic sublevels of two levels with angular mo-
menta Jg and Je. The tripod system, shown in Fig. 1,
is formed of three lower states |1〉, |2〉 and |3〉 coupled
to each other with two-photon transitions via a common
upper state |a〉. Such a tripod system can be formed by
the mg = −1, 0, 1 sublevels of a Jg = 1 level coupled to
the only me = 0 sublevel of a Je = 0 level with σ+, π,
and σ− polarized light, respectively; the tripod linkage,
however, can emerge also in other physical implemen-
tations. The M system, shown in Fig. 2, is formed by
the mg = −2, 0, 2 sublevels (which form the qutrit) of a
Jg = 2 level coupled to the me = −1 and 1 sublevels of a
Je = 1 (or Je = 2) level with σ+ and σ− polarized light.

In general, the implementations of SU(N) transforma-
tions of N -state systems usually use sequences of SU(2)
operations, i.e., transformations acting at each instance
of time upon only two of the N states; these are known as
Givens rotations. The general SU(N) transformation of a
qunit requires O(N2) such Givens operations [10]. For a
qutrit (N = 3), three Givens rotations are needed to con-
struct SU(3), which require 9 interaction steps in total.

It has been shown recently that a general SU(N) trans-
formation can be implemented much more efficiently, in
only N − 1 interaction steps, by using Householder re-
flections (HR) [11],

M(χ;ϕ) = I+
(

eiϕ − 1
)

|χ〉〈χ|, (1)

where |χ〉 is a normalized complex N -dimensional vector,
ϕ is a real phase and I is the identity operator. HR is a
very powerful unitary transformation, which has many
applications in classical data analysis [12]. Each uni-
tary matrix can be represented as a product of N − 1
HR matrices and a diagonal matrix (a phase gate) and
hence, any SU(N) transformation can be constructed in
this manner. In contrast to the construction of SU(N)
transformations by Givens rotations, here each HR acts
simultaneously upon many states: upon all N states in
the first step, N−1 states in the second, etc. This allows
one to greatly reduce the number of steps, from O(N2)
with Givens rotations to only O(N) with HRs.
Recently, it has been discovered that the HR transfor-

mation occurs naturally as the propagator in the degen-
erate manifold of an N -pod quantum system, which con-
sists of N degenerate states coupled to a single common
upper state by N simultaneous pulsed fields [13]. This
remarkable property of the N -pod system has been used
subsequently to design techniques for engineering of ar-
bitrary unitary transformations in a single atom [11] and
in an ensemble of trapped ions in a linear Paul trap [14].
It has been demonstrated that just a single HR suffices
in an important special case — the transition between
two arbitrary N -dimensional superpositions of quantum
states [15]. Furthermore, because the HR transformation
is the key operation in the quantum search algorithm of
Grover [16], it has been shown that theN -pod system can
run this algorithm naturally, without gates and circuits
[17]; this implementation in a classical database can be
modified to non-classical [18] and fully scalable quantum
databases [19].
The tripod qutrit, as a special case of the N -pod sys-

tem, allows for such a natural implementation of the HR
transformation, and hence, for efficient construction of
SU(3) in just three physical steps. The explicit construc-
tion, which requires the simultaneous addressing of the
three qutrit states, is presented in Sec. III B. In some im-
plementations, it may be more convenient to use Givens
rotations because they require the addressing of only two
of the qutrit states at each step; the explicit synthesis of
SU(3) for a tripod qutrit by Givens rotations is described
in detail in Sec. III A. Moreover, the mathematical SU(3)
parameters are explicitly linked to the physically con-
trolled parameters: Rabi frequencies, relative phases and
detunings.
The M-qutrit system is a special case of a more general

physical system, in which the upper state of the N -pod
is replaced by another manifold of degenerate states. It
has been shown recently that the propagator in each of
the degenerate manifolds is given by a product of HRs
with orthogonal vectors [20]; however, no decomposition
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of SU(N) is known in terms of such coupled HRs. The
propagator of the M-qutrit is a product of two coupled
HRs. The decomposition of SU(3) by this coupled-HR
operator is a far more demanding mathematical task than
for the tripod qutrit because coupled HRs cannot be re-
duced to independent Givens rotations or Householder
reflections. Fortunately, the recipe for the experimenter,
which is worked out in detail in Sec. IV, appears far less
complex: it requires a proper control of ellipticity, po-
larization, pulse area and detuning of the driving field.
Moreover, the proposed implementation for the M qutrit
requires just two fields, left and right circularly polarized,
and three physical steps, whereas for the tripod qutrit
three fields are needed.
This paper is organized as follows. The basic theoreti-

cal background, including the manipulation of qubits and
two parametrizations of SU(3), are presented in Sec. II.
The construction of arbitrary SU(3) transformations for
qutrits in tripod systems is described in Sec. III and for
qutrits in M-systems in Sec. IV. The conclusions are
summarized in Sec. V.

II. BACKGROUND

A. SU(2) transformation of a qubit

The toolbox for qubit transformations in quantum in-
formation processing is well established. The most gen-
eral SU(2) transformation of a qubit,

U(θ, ξ, η) =

[

eiξ cos θ −e−iη sin θ
eiη sin θ e−iξ cos θ

]

, (2)

can be realized by three gates: phase gates Φ(ξ± η) and
a rotation gate R(θ) [2],

U(θ, ξ, η) = Φ(ξ − η)R(θ)Φ(ξ + η), (3)

where

Φ(φ) =

[

eiφ/2 0
0 e−iφ/2

]

, R(θ) =

[

cos θ − sin θ
sin θ cos θ

]

.

(4)
The SU(2) transformation can be realized more effi-
ciently, with only two gates, a HR M(χ, ϕ) and a phase
gate [11],

U(θ, ξ, η) = eiϕ/2
M(χ;−ϕ)Φ(−ϕ), (5)

where

|χ〉 = [ei(ξ+η) cos θ − 1, ei(η−ξ) sin θ]T
√

2[1− cos θ cos(ξ + η)]
, (6a)

ϕ = π − 2 arg[1− ei(ξ+η) cos θ]. (6b)

Since detM(χ,−ϕ) = e−iϕ one finds detU(θ, ξ, η) = 1
due to the phase factor eiϕ/2. Because the Householder
implementation (5) requires only two physical steps it is
superior to the implementation (3), which needs three
physical steps.

B. Parametrizations of SU(3)

1. Parametrization of SU(3) by generalized Euler angles

A general SU(3) matrix U is parametrized by 8 real
parameters. There exist several parametrizations derived
from various mathematical arguments. I shall use the
intuitive geometric parametrization of SU(3) by Bronzan
[21] in terms of 3 Euler angles θj (0 ≦ θj ≦ π/2; j =
1, 2, 3) and 5 phases φk (0 ≦ φk ≦ 2π; k = 1, 2, 3, 4, 5),

U =





eiφ1c1c2 eiφ3s1 eiφ4c1s2
e−iφ4−iφ5s2s3 − eiφ1+iφ2−iφ3s1c2c3 eiφ2c1c3 −e−iφ1−iφ5c2s3 − eiφ2−iφ3+iφ4s1s2c3
−e−iφ2−iφ4s2c3 − eiφ1−iφ3+iφ5s1c2s3 eiφ5c1s3 e−iφ1−iφ2c2c3 − e−iφ3+iφ4+iφ5s1s2s3



 , (7)

where ck = cos θk and sk = sin θk. There exist other equivalent parametrizations [22].

2. Householder parametrization of SU(3)

An alternative, very simple parametrization of SU(3),
which is scalable to an arbitrary SU(N) in a straight-
forward manner, is by the product of two Householder
reflections [11, 14],

U = M(χ1;ϕ1)M(χ2;ϕ2)Φ3(−ϕ1 − ϕ2), (8)

where Φ3(ϕ) = eiϕ|3〉〈3| is a 3D phase gate, i.e. the
diagonal matrix Φ3(ϕ) = diag (1, 1, eiϕ). Here χ1 is a
three-component normalized complex vector; because the

overall phase of χ1 is irrelevant this vector brings four real
parameters. The vector χ2 is another three-component
normalized complex vector but with a null element; hence
this vector brings only two real parameters. With the two
phases ϕ1 and ϕ2 the total number of real independent
parameters in Eq. (8) is eight, exactly as needed. The
phase gate Φ3(−ϕ1 − ϕ2) serves to compensate the HR
phases so that det SU(3) = 1.
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3. Householder parametrization of SU(N)

The Householder factorization of an arbitrary SU(N)
matrix U proceeds similarly [11],

U = M(χ1;ϕ1)M(χ2;ϕ2) · · ·M(χN−1;ϕN−1)ΦN (−ϕN ),
(9)

with ϕN =
∑N−1

k=1 ϕk, where ΦN (−ϕN ) = e−iϕN |N〉〈N |
is an N -dimensional phase gate. Here χk is an N -
component normalized complex vector with N + 1 − k
nonzero components and k − 1 null components. The
normalization and the irrelevant global phase take away
two real parameters and leave 2(N −k) independent real
parameters in this vector. The vectors χk contain alto-

gether
∑N−1

k=1 2(N−k) = N(N−1) real parameters; with
the addition of the N −1 phases ϕk there are N2−1 real
independent parameters in Eq. (9), as needed for a most
general SU(N) matrix.

III. QUTRIT IN A TRIPOD LINKAGE

A mathematically very convenient implementation of a
qutrit is the manifold of three degenerate lower states |1〉,
|2〉, and |3〉, forming the qutrit, coupled to each other by
two-photon Raman processes via an ancilla upper state
|a〉, thereby forming a tripod linkage pattern, as illus-
trated in Fig. 1 (top) [23]. The Hamiltonian describing
this tripod system reads

H(t) = 1
2







0 0 0 Ω1(t)
0 0 0 Ω2(t)
0 0 0 Ω3(t)

Ω1(t)
∗ Ω2(t)

∗ Ω3(t)
∗ 2∆






, (10)

where Ωk(t) = |Ωk(t)| eiαk is the complex Rabi frequency
of the coupling of the |k〉 ↔ |a〉 transition, and ∆ is the
single-photon detuning of state |a〉. It is obvious from
this Hamiltonian that two-photon resonance conditions
are assumed in the Raman transition between each pair
of qutrit states. The coherent dynamics of the tripod
propagator is determined by the Schrödinger equation,

i~∂tU(t) = H(t)U(t), (11)

subject to the initial condition at time ti: U(ti) = I,
the identity matrix. If the Rabi frequencies of the three
coupling fields coincide in time, which I assume hereafter,
the dynamics of this qutrit system is reducible by the
Morris-Shore transformation [24] to a two-state system,
as illustrated in Fig. 1. The solution of the tripod system
can be derived from the two-state solution; it is discussed
in detail elsewhere [13]. I shall use this earlier solution
for the construction of arbitrary SU(3) transformations
of the qutrit.

A. Synthesis of SU(3) by Givens rotations

1. Givens decomposition

It is straightforward to verify that the SU(3) matrix (7)
can be decomposed as a product of three SU(2) transfor-
mations,

U = R23(θ3, φ2 − φ5, 0)R12(θ1,−φ5, φ3 + π)

×R31(θ2, φ1 + φ5, φ4 + φ5), (12)

where

R23(θ, ξ, η) =





1 0 0
0 eiξ cos θ −eiη sin θ
0 e−iη sin θ e−iξ cos θ



 , (13a)

R31(θ, ξ, η) =





eiξ cos θ 0 eiη sin θ
0 1 0

−e−iη sin θ 0 e−iξ cos θ



 , (13b)

R12(θ, ξ, η) =





eiξ cos θ −eiη sin θ 0
e−iη sin θ e−iξ cos θ 0

0 0 1



 . (13c)

Each of these Givens rotations Rjk can be realized phys-
ically by addressing only two of the qutrit states |j〉 and
|k〉 in three steps — a phase gate, a rotation, and another
phase gate, as described in Sec. II. Hence, 9 consecutive
steps are required to construct an arbitrary SU(3) trans-
formation of the qutrit by Givens rotations.

2. Example: Discrete Fourier transform

The discrete Fourier transform (DFT) is the key sub-
routine in many quantum algorithms [2], most notably
in Shor’s quantum factoring [25]. The DFT may be
viewed also as an analog of the Hadamard transform
of a qubit because, when acting upon any qutrit state,
it creates an equal superposition of all qutrit states.
The DFT of a qutrit has the matrix elements Fjk =

e2iπ(j−1)(k−1)/3/
√
3, or explicitly,

F = 1√
3





1 1 1
1 e2iπ/3 e−2iπ/3

1 e−2iπ/3 e2iπ/3



 . (14)

It is U(3) but not SU(3) because detF = −i; however,
if multiplied by the phase factor eiπ/6 it becomes SU(3).
The DFT can be decomposed by three Givens rotations

F = e−iπ/6
R23

(π

4
,
π

3
, π

)

R12

(

cot−1
√
2,−π

2
,−5π

6

)

×R31

(

π

4
,
2π

3
,
2π

3

)

. (15)

(This decomposition is superior to the one given in Ref.
[9], which requires an additional three-dimensional phase
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gate.) Hence the DFT can be constructed with 3 rota-
tions and 5 phase gates [one phase gate reduces to an
identity because of the equal angles in R31 in Eq. (15)].
The decomposition of SU(3) to Givens rotations is not

unique. For example, the decomposition (15) is obtained
by first nullifying the element F32 of F, then F21 and
finally F13. Alternatively, one can, for instance, proceed
by nullifying first the element F21, then F31, and then
F32; this gives the decomposition

F = e−iπ/6
R12

(π

4
, 0, 0

)

R31

(

cot−1
√
2,

π

6
,
5π

6

)

×R23

(

3π

4
, π,

π

3

)

; (16)

which can be obtained in 7 steps by 3 rotations and 4
phase gates [two phase gates vanish because of the zero
angles in R12 in Eq. (15)].

B. Synthesis of SU(3) by Householder reflections

1. Householder decomposition of SU(3)

The decomposition (9) of any SU(3) matrix into a
product of two HRs provides a much faster recipe for
construction of arbitrary SU(3) transformations. Given
an SU(3) matrix U, the HR vectors |χk〉 and phases ϕk

(k = 1, 2) can be found as follows [11].
The vector |χ1〉 and the phase ϕ1 of the first HR read

|χ1〉 =
|u1〉 − |e1〉

√

2(1− Reu11)
, ϕ1 = π − 2 argu11, (17)

where |u1〉 = (u11, u21, u31)
T is the first column of U

and |e1〉 = (1, 0, 0)T . The action of M(χ1;−ϕ1) on U

produces the matrix

U
′ = M(χ1;−ϕ1)U =





1 0 0
0 u′

22 u′
23

0 u′
32 u′

33



 , (18)

from where the vector |χ2〉 and the phase ϕ2 of the second
HR are derived,

|χ2〉 =
|u′

2〉 − |e2〉
√

2(1− Reu′
22)

, ϕ2 = π − 2 argu′
22, (19)

where |u′
2〉 = (0, u′

22, u
′
32)

T is the second column of U′

and |e2〉 = (0, 1, 0)T . The combined action of the HRs
M(χ1;−ϕ1) and M(χ2;−ϕ2) on U produces the matrix

M(χ2;−ϕ2)M(χ1;−ϕ1)U = Φ3(−ϕ1 − ϕ2), (20)

which gives U immediately in the form (8) by noticing
that M−1(χ;ϕ) = M

†(χ;ϕ) = M(χ;−ϕ).

2. Implementation

The convenience of the tripod implementation of a
qutrit derives from the fact that the tripod system is de-
composed by the Morris-Shore (MS) transformation [24]
into a set involving two decoupled dark states and a two-
state system composed of the bright coherent superpo-
sition of qutrit states and the upper state [13, 23], as
illustrated in Fig. 1 (bottom). The conditions for this
decomposition are that the three coupling fields have the
same time dependence and are equally detuned from the
common upper state. The coupling in the MS two-state
system is the root-mean-square (rms) of the original cou-

pling, Ω =
√

|Ω1|2 + |Ω2|2 + |Ω3|2, and the detuning ∆
is the original one. If the transition probability in the
MS two-state system is zero then the propagator in the
tripod manifold is exactly the HR operator needed for
the synthesis of SU(3) [11, 13],

U = M(χ;ϕ), (21)

where the HR vector is the bright ground state, |χ〉 = |b〉;
its components are the complex Rabi frequencies,

|b〉 = [|Ω1| eiα1 , |Ω2| eiα2 , |Ω3| eiα3 ]T /Ω. (22)

This allows one to produce any desired Householder vec-
tor by adjusting the couplings and their relative phases.
The Householder phase ϕ depends on the Rabi fre-

quency and the detuning; in the asymptotic limit of very
large detuning it is given by the ac Stark shift,

ϕ ≈
∫ ∞

−∞

Ω(t)2

4∆(t)
dt, (|∆| ≫ Ω). (23)

For smoothly shaped Ω(t) (e.g. Gaussian), a more accu-
rate formula which is valid also for |∆| < Ω reads [26]

ϕ ≈
∫ ∞

−∞

∆(t)

2

[
√

Ω(t)2

∆(t)2
+ 1− 1

]

dt, (24)

provided |∆| ≫ 1/T , where T is the pulse width. Even
a more accurate expression for this phase exists which
uses the superadiabatic approximation [26]. Hence any
desired HR phase can be produced by a suitably chosen
detuning ∆.
These properties of the tripod system remain valid in

the general case of N degenerate states coupled to each
other via an upper state, forming an N -pod linkage pat-
tern. This allows one to construct SU(N) in a similar
fashion: the HR vectors by properly adjusting the mag-
nitudes and the relative phases of the couplings and the
HR phases by properly choosing the detuning.
The HR decomposition (8) of SU(3) into a product

of two HRs and a phase gate, and the direct correspon-
dence of the HR vectors and phases to the interaction
parameters described above, allow one to produce an ar-
bitrary preselected SU(3) transform of a tripod qutrit in
only 3 physical steps. For the first reflection M(χ1;ϕ1)
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FIG. 3: Numerical simulation of two-step synthesis of
DFT of a tripod qutrit according to Eq. (26) for Gaus-

sian pulse shapes, Ω(1)(t) = Ω
(1)
0 e−(t−t1)

2/T2

and Ω(2)(t) =

Ω
(2)
0 e−(t−t2)

2/T2

, where Ω
(1)
0 = 6/T , ∆(1) = 15.06/T in the

first step and Ω
(2)
0 = 6/T , ∆(2) = −4.45/T in the second step

(approximate numerically derived values), with T being the
characteristic pulse width. Upper frame: Magnitudes of the
Rabi frequencies of the three fields Ω1(t), Ω2(t) and Ω3(t). In
the first step at time t1 the three Rabi frequencies are equal
(they are made slightly different for visualization), but Ω1(t)
is phase shifted, Eq. (26), while in the second step at time t2
only Ω1(t) is applied, while Ω2(t) = Ω3(t) = 0. Lower frame:
Distance D = ‖U(t) − F‖ between the propagator U(t) and
the DFT (14).

all three couplings are applied, for the second reflection
M(χ2;ϕ2) only the couplings for the transitions |2〉 ↔ |a〉
and |3〉 ↔ |a〉 are applied, and in the phase gate Φ3 only
state |3〉 is involved.
It is clear that the HR decomposition of SU(3) de-

scribed above is not unique, for one can choose different
columns or rows at each step of the diagonalization of U.

3. Example: Discrete Fourier transform

It is readily verified that the DFT (14) can be con-
structed by a single HR and a phase gate,

F = iΦ1(−2π/3)M(χ; 2π/3), (25)

with |χ〉 = (e−2iπ/3, 1, 1)/
√
3. These steps can be con-

structed by the following interaction sets:

[Ω1(t),Ω2(t),Ω3(t)] = [Ω(1)(t) e−2iπ/3,Ω(1)(t),Ω(1)(t)],
(26a)

[Ω1(t),Ω2(t),Ω3(t)] = [Ω(2)(t), 0, 0], (26b)

where the values of the rms Rabi frequencies in the two
steps, Ω(1)(t) and Ω(2)(t), and the respective detunings
∆(1) and ∆(2) are obtained numerically from the condi-
tions to produce the HR phase 2π/3 in the first step and

the phase gate phase −2π/3 in the second step. There
exist infinitely many sets of values of the interaction pa-
rameters which satisfy these conditions; these values de-
pend on the pulse shapes. An example for construction
of SU(3) of a tripod qutrit with Gaussian pulses is pre-
sented in Fig. 3, which shows the evolution of the dis-
tance between the time-dependent propagator U(t) and
the desired DFT (14). There are two steep declines of
this distance, one around the first step, when the HR
is constructed, and another one around the second step,
when the phase gate Φ1(−2π/3) is applied. Ultimately,
the distance vanishes, which indicates the synthesis of
the desired DFT (14).
Because between the two steps the population resides

in the qutrit states, the possible decay from the upper
state |a〉 with a rate Γ is only relevant during each pulse,
i.e. one must have T ≪ 1/Γ. Of course, possible decay
can be suppressed by using large enough detuning ∆.

C. Summary

To summarize this section, a general SU(3) transfor-
mation of a tripod qutrit can be constructed by 3 Givens
SU(2) rotations, each of which is decomposed into a ro-
tation and two phase gates, thereby adding up to 9 phys-
ical steps. In particular, the DFT is decomposed into 3
Givens rotations, which can be constructed by at least
7 physical steps in total: 3 rotations and 4 phase gates.
Alternatively, an arbitrary SU(3) transformation can be
synthesized by only two Householder reflections and a
phase gate, that is by only 3 physical steps. The DFT
itself is constructed by a single HR and a phase gate, i.e.
by just two physical steps.

IV. QUTRIT IN AN M-SHAPED LINKAGE

Another natural implementation of an atomic qutrit is
with the magnetic sublevels mg = −2, 0, 2 of a level with
an angular momentum Jg = 2. The three sublevels are
coupled to each other by two-photon transitions via the
magnetic sublevels me = −1 and me = 1 of an exited
level with an angular momentum Je = 1 or Je = 2 by
two laser fields with right (σ+) and left (σ−) circular po-
larizations. The coupling linkage pattern is reminiscent
of the letter “M” as illustrated in Fig. 2, hence the term
M-system. In this Jg ↔ Je transition, these laser fields
create also another Λ-linkage between the magnetic sub-
levelsmg = −1, me = 0 and mg = 1 (shown by light-grey
lines in Fig. 2); however, this Λ-system is decoupled from
the M-system and will be ignored.

A. Description

If all couplings have the same time dependence and
the detunings between the laser frequencies and the cor-



7

responding transition frequencies are the same then the
M-shaped chain can be decomposed by the Morris-Shore
transformation [20, 24, 27] into a pair of independent
two-state systems and a dark state |d〉, as shown in Fig.
2. In each of the MS two-state systems, the lower state
|b′〉 or |b′′〉 is a (bright) coherent superposition of ground
sublevels and the upper state is a coherent superposition
of upper sublevels only. The dark state itself is a su-
perposition of ground sublevels. The bright MS states
are defined as the eigenstates of the matrix VV

† with
nonzero eigenvalues (Ω′)2 and (Ω′′)2, while the dark state

|d〉 is the null-eigenvalue of VV
†. Similarly, the upper

MS states are the eigenstates of V†
V. Here the matrix

V contains the couplings between the three lower and
two upper states (ordered in ascending order of mg and
me) in the original M-system (cf. Fig. 2) [20, 24, 27],

V =





ξ−1
−2Ω+e

iβ+ 0
ξ−1
0 Ω−e

−iβ− ξ10Ω+e
iβ+

0 ξ12Ω−e
−iβ−



 , (27)

where ξme
mg

are the Clebsch-Gordan coefficients for the re-
spective transitions. For the transition Jg = 2 ↔ Je = 1

they are ξ−1
−2 = ξ12 =

√

3
5 , ξ−1

0 = ξ10 =
√

1
10 , while

for Jg = 2 ↔ Je = 2 they are ξ−1
−2 = −ξ12 = −

√

1
3 ,

ξ−1
0 = −ξ10 =

√

1
2 . The two real functions Ω+(t) and

Ω−(t) are time-dependent (pulse-shaped) Rabi frequency
“units” for the couplings induced by the σ+ and σ− po-
larized laser fields; they are supposed to share the same
time dependence but are allowed to have different peak
values. β+ and β− are the phases of the σ+ and σ− fields.
The couplings in the interaction matrix (27) can be

produced by a single elliptically polarized laser pulse,
which can be represented as a superposition of two cir-
cularly polarized σ+ and σ− pulses. The electric field
of the elliptically polarized pulse in the complex rep-
resentation E(t) = Ex(t) + iEy(t) is given by E(t) =
E+(t)e

−iωt+iβ+ + E−(t)e
iωt+iβ− [28, 29]. The polariza-

tion ellipticity is

ε =
Ω2

+ − Ω2
−

Ω2
+ +Ω2

−
=

E2
+ − E2

−
E2

+ + E2
−

(28)

and the angle of rotation of the polarization ellipse is
1
2β, with β = β+ + β−. Ω+ and Ω− are parametrized in

terms of ε as Ω± = Ω
√

1
2 (1± ε) where Ω =

√

Ω2
+ +Ω2

−.

Ellipticity ε = ±1 corresponds to σ± polarization and
ε = 0 to linear polarization.
The dark and bright states read [27]

|d〉 = d−(ε)e
iβ | − 2〉+ d0(ε)|0〉+ d+(ε)e

−iβ |2〉, (29a)

|b′〉 = b′−(ε)e
iβ | − 2〉+ b′0(ε)|0〉+ b′+(ε)e

−iβ |2〉, (29b)

|b′′〉 = b′′−(ε)e
iβ | − 2〉+ b′′0(ε)|0〉+ b′′+(ε)e

−iβ |2〉, (29c)

where the parameters of these new basis states are given
in the Tables I and II. The MS couplings are Ω′ and Ω′′,

TABLE I: Coefficients of the bright and dark states, Eqs. (29),
for the transition Jg = 2 ↔ Je = 1 [27].

Jg = 2 ↔ Je = 1

d−(ε) νd (1− ε)

d0(ε) −νd
√

6 (1− ε2)

d+(ε) νd (1 + ε)

[νd(ε)]
−2 4

(

2− ε2
)

b′−(ε) − 1
2
ν′

b (1 + ε)
(

1− 6ε−
√
1 + 24ε2

)

b′0(ε) ν′

bε
√

6 (1− ε2)

b′+(ε)
1
2
ν′

b (1− ε)
(

1 + 6ε−
√
1 + 24ε2

)

[ν′

b(ε)]
−2

√
1 + 24ε2

[(

1 + ε2
)√

1 + 24ε2 + 11ε2 − 1
]

b′′−(ε) − 1
2
ν′′

b (1 + ε)
(

1− 6ε+
√
1 + 24ε2

)

b′′0 (ε) ν′′

b ε
√

6 (1− ε2)

b′′+(ε)
1
2
ν′′

b (1− ε)
(

1 + 6ε+
√
1 + 24ε2

)

[ν′′

b (ε)]
−2

√
1 + 24ε2

[(

1 + ε2
)√

1 + 24ε2 − 11ε2 + 1
]

TABLE II: Coefficients of the bright and dark states,
Eqs. (29), for the transition Jg = 2 ↔ Je = 2 [27].

Jg = 2 ↔ Je = 2

d−(ε) νd
√
3 (1− ε)

d0(ε) νd
√

2 (1− ε2)

d+(ε) νd
√
3 (1 + ε)

[νd(ε)]
−2 4

(

2 + ε2
)

b′−(ε)
1
2
ν′

b (1 + ε)
(

3− 2ε−
√
9− 8ε2

)

b′0(ε) ν′

bε
√

6 (1− ε2)

b′+(ε) − 1
2
ν′

b (1− ε)
(

3 + 2ε−
√
9− 8ε2

)

[ν′

b(ε)]
−2

√
9− 8ε2

[(

1 + ε2
)√

9− 8ε2 + ε2 − 3
]

b′′−(ε)
1
2
ν′′

b (1 + ε)
(

3− 2ε+
√
9− 8ε2

)

b′′0 (ε) ν′′

b ε
√

6 (1− ε2)

b′′+(ε) − 1
2
ν′′

b (1− ε)
(

3 + 2ε+
√
9− 8ε2

)

[ν′′

b (ε)]
−2

√
9− 8ε2

[(

1 + ε2
)√

9− 8ε2 − ε2 + 3
]

where (Ω′)2 and (Ω′′)2 are the eigenvalues of VV
† [27],

(Ω′,′′)
2
=

{

1
20

(

7±
√
1 + 24ε2

)

Ω2, (Jg = 2 ↔ Je = 1),
1
12

(

5±
√
9− 8ε2

)

Ω2, (Jg = 2 ↔ Je = 2).

(30)

B. Propagator

I assume that the transition probabilities in both MS
two-state systems vanish; hence the MS states |b′〉 and
|b′′〉 acquire only phases ϕ′ and ϕ′′. Then the propaga-
tor in the lower (qutrit) manifold of states is given by a
product of HRs [20],

UM = M(b′;ϕ′)M(b′′;ϕ′′). (31)

Note that the HR vectors are the MS bright ground states
|b′〉 or |b′′〉, and that detUM = ei(ϕ

′+ϕ′′). If the detuning
∆ from the upper states is large enough the HR phases
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FIG. 4: Numerical simulation of two-step synthesis of DFT of
an M-qutrit according to Eq. (31) for the transition Jg = 2 ↔
Je = 1 for Gaussian pulse shapes, Ω(t) = Ω0 e

−(t−t1)
2/T2

in

the first step and Ω(t) = Ω0 e
−(t−t2)

2/T2

in the second. The
parameters for the two steps are ε = 0.073, β = 1.257π,
ϕ′ = 0.452π, ϕ′′ = 1.247π in the first step, and ε = 0.112,
β = 0.675π, ϕ′ = 0.621π, ϕ′′ = 1.344π in the second step
(approximate numerically derived values). The HR phases ϕ′

and ϕ′′ are produced with the following detunings and peak
rms Rabi frequencies: ∆ = −18.88/T , Ω0 = 46.68/T in the
first step and ∆ = −7.51/T , Ω0 = 32.55/T in the second
step. The corresponding σ+ and σ− Rabi frequencies calcu-
lated from here are Ω+ = 34.20/T , Ω− = 31.78/T in the first
step and Ω+ = 24.27/T , Ω− = 21.69/T in the second step.
Upper frame: Magnitudes of the Rabi frequencies Ω+(t) and
Ω−(t). Lower frame: Distance D = ‖U(t) − F‖ between the
propagator U(t) and the DFT (14). Initially the propaga-
tor is the identity, U(ti) = I and in the end it is the DFT,
U(tf ) = F.

ϕ′ and ϕ′′ are given by expressions similar to Eq. (23)
(for |∆| ≫ Ω′,′′) and Eq. (24) (for |∆| ≫ 1/T ), with Ω
replaced by Ω′ or Ω′′.

Unlike the tripod qutrit, here the propagator is ex-
pressed by two coupled HRs, with vectors |b′〉 or |b′′〉
that are orthogonal to each other, 〈b′|b′′〉 = 0; moreover,
the components of these vectors have two degrees of free-
dom only, ε and β. Two more degrees of freedom are
introduced by the rms Rabi frequency Ω and the detun-
ing ∆, which determine the HR phases ϕ′ and ϕ′′. Hence
the propagator (31) contains four independent parame-
ters: ε, β,Ω,∆. This operator is a far less convenient tool
for decomposition, and hence for synthesis of SU(3) than
the single HR found in the tripod qutrit. Because it does
not appear possible to decompose an arbitrary SU(3) ma-
trix by this operator analytically, this decomposition has
to be done numerically. As discussed above, an arbi-
trary SU(3) matrix is described by 8 real parameters,
Eq. (7). Because detM(χ;ϕ) = eiϕ it is not sufficient
to use just two interaction steps, which would introduce
8 independent parameters and hence the SU(3) require-
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FIG. 5: The same as Fig. 4 but for the Jg = 2 ↔ Je = 2
transition. The parameters for the two steps are ε = 0.084,
β = 1.632π, ϕ′ = 0.987π, ϕ′′ = 1.490π in the first step, and
ε = −0.999, β = 1.558π, ϕ′ = 1.282π, ϕ′′ = 0.551π in the sec-
ond step (approximate numerically derived values). The HR
phases ϕ′ and ϕ′′ are produced with the following detunings
and peak rms Rabi frequencies: ∆ = 27.66/T , Ω0 = 51.91/T
in the first step and ∆ = −13.70/T , Ω0 = 44.74/T in the
second step. The corresponding σ+ and σ− Rabi frequencies
calculated from here are Ω+ = 38.21/T , Ω− = 35.13/T in
the first step and Ω+ = 0.97/T , Ω− = 44.73/T in the second
step.

ment detU = 1 cannot be guaranteed. Therefore three
interaction steps are needed, which introduce 12 inde-
pendent parameters εk, βk,Ωk,∆k (k = 1, 2, 3). Because
the resulting system of algebraic equations for these pa-
rameters is underdetermined, any given SU(3) matrix U

can be synthesized by many sets of such parameters and
additional restrictions on their values may be imposed if
needed.

C. Example: DFT

As an example, I consider the construction of DFT,
Eq. (14): this can be achieved in just two interac-
tion steps. The synthesis of DFT for the qutrit in the
Jg = 2 ↔ Je = 1 transition by two elliptically polarized
Gaussian laser pulses is demonstrated in Fig. 4. The dis-
tance between the propagator U(t) and the desired DFT
vanishes after the second set of fields, which signals the
synthesis of DFT. Because detUM = ei(ϕ

′+ϕ′′), after the
two steps the accumulated phase is ϕ′

1 + ϕ′′
1 + ϕ′

2 + ϕ′′
2 ;

therefore this phase and the DFT phase −π/2 (coming
from detF = e−iπ/2) are factored out when calculating
the distanceD. There exist several other sets of solutions
for ε, β, ϕ′ and ϕ′′, apart from these listed in the caption
of Fig. 4. For each of these sets, there are infinitely many
solutions for the interaction parameters ∆ and Ω; these
are different for different pulse shapes.
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Similar synthesis of DFT but for the qutrit in the Jg =
2 ↔ Je = 2 transition is demonstrated in Fig. 5. The
distance between the propagator U(t) and the desired
DFT vanishes in the end, which indicates the synthesis
of DFT. As for the Jg = 2 ↔ Je = 1 transition, there
exist several other sets of solutions for ε, β, ϕ′ and ϕ′′,
and for each such set there are infinitely many solutions
for the interaction parameters ∆ and Ω.
As for the tripod qutrit, between the two steps in

Figs. 4 and 5 the population resides in the qutrit states;
therefore the possible decay from the ancillary upper
states |a1〉 and |a2〉 with a rate Γ is only relevant during
each pulse, i.e. one must have T ≪ 1/Γ. Such a decay
can be further suppressed, if needed, by increasing the
detuning ∆ in each step.

V. CONCLUSIONS

The increasing number of applications of the qutrit
quantum computer require a pool of techniques for com-
plete control of the qutrit dynamics, that is the ability
to construct any arbitrary preselected SU(3) transforma-
tion. In this paper, several techniques for synthesizing
arbitrary SU(3) transformations have been proposed for
two physical implementations of qutrits, in systems with
tripod and M linkage patterns, which occur naturally in

laser-driven transition between magnetic sublevels for ap-
propriate angular momenta. For the tripod qutrit two
implementations are applicable using Givens SU(2) ro-
tations and Householder reflections. The technique us-
ing Householder reflections significantly outperforms the
one using Givens rotations for two reasons: (i) mathe-
matically, the decomposition of a general SU(N) matrix
demands N(N − 1)/2 Givens rotations but only N − 1
Householder reflections; (ii) physically, each Givens rota-
tion is realized by 3 interaction steps, one rotation and
two phase gates, while a Householder reflection can be
realized in a single interaction step. This double speed-
up makes the implementations based on Householder re-
flections much faster than those using Givens rotations.
The DFT of a tripod qutrit, in particular, can be con-
structed in 7 physical steps by Givens rotations and in
only 2 steps with Householder reflections. In M-qutrits,
any preselected SU(3) transformation can be constructed
by at most 3 steps by coupled Householder reflections;
the DFT, in particular, is synthesized in just 2 steps.
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