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Scalable continuous variable entanglement of optical fields via concurrent interactions

with separated atomic ensembles
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It has been known that one reservoir of driven two-level atoms can establish two-mode interactions
and generate bipartite continuous-variable entangled light. Here we show that three-mode interac-
tions can be created by combining two such reservoirs, each of which interacts with two adjacent
fields in frequency. It is shown that the van Loock-Furusawa criteria [Phys. Rev. A 67, 052315
(2003)] are well satisfied for a wide range of the relevant parameters. This determines that tripar-
tite continuous variable Greenberger-Horne-Zeilinger entanglement is obtainable. The scalability to
more fields is straightforward, allowing an alternative implementation of a multipartite quantum
networks with continuous variables.

PACS numbers: 03.67.Bg, 42.50.Pq, 42.50.Dv, 32.80.Qk

I. INTRODUCTION

Continuous variable (CV) entanglement has great po-
tential in quantum networks and information processing
[1]. Possible applications range from quantum teleporta-
tion [2–6] to controlled dense coding [7] and secret sharing
[8]. The simplest teleportation schemes rely on bipartite
entanglement. However, more sophisticated protocols
may require entanglement of three parts or more[9–12].
Greenberger-Horne-Zeilinger (GHZ) state is one of im-
portant types of genuine multiple entanglement. In par-
ticular, the tripartite CV GHZ state [13] is a three-mode
momentum (position) eigenstate with total momentum
p1+p2+p3 = 0 (total position x1+x2+x3 = 0) and rel-
ative positions xi−xj = 0 (relative momenta pi−pj = 0),
i, j = 1, 2, 3, i 6= j, and exhibits maximum entanglement.
Experimental progresses have been made by using inde-
pendent squeezed fields and beam splitters [9–12].

In the context of cavity quantum electrodynamics, the
atom-field interactions are fundamental mechanisms for
creating the multipartite entanglement without use of
initially prepared squeezing. Typically, there are three
kinds of related systems as follows for the generation
of two-mode CV entanglement. The first one is a two-
photon correlated emission laser, where the laser gain
and the quantum correlation are established by combin-
ing Raman and EIT (electromagnetically induced trans-
parency [14–18]) interactions [19–21] in Lambda systems.
For this case, CV entanglement is compatible with large
numbers of photons in the two modes. The second kind
of systems is to use dispersive interactions of atoms with
both the driving and cavity fields to create parametric
conversion [22, 23]. In this way one can obtain a two-
mode squeeze operator and thus the Einstein-Podolsky-
Rosen entangled light [24]. The third kind of schemes is
based on the wave-mixing interactions in near-resonant
systems. Typically, two-level atoms are used for this pur-
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pose [25, 26]. The new photons are emitted into the
cavity modes simultaneously when the atoms absorb two
photons from the strong driving field. The frequencies
of the cavity fields are determined by Rabi resonances.
The common essence in the above three different kinds of
systems is the two-photon process, which is responsible
for the desired quantum correlations.
To obtain multipartite entanglement, it seems that one

has to resort to multilevel atomic systems [27–35], which
are usually driven by two or more strong fields. On one
hand, the strong driving fields could cause cross couplings
between adjacent transitions in frequency. The cross cou-
plings lead to not only Stark shift but also remarkable
phase damping [16, 36]. This damping will spoil the de-
sirable quantum correlations. On the other hand, the
dressed multilevel atomic systems generally have closely
spaced dressed states, which gives rise to a difficulty in
separating Rabi resonances. At the same time, the cou-
pling of the cavity fields to the adjacent dressed transi-
tions will play an opposite role in creating the desired
quantum correlations.
Here we propose an alternative scalable scheme for con-

current interactions and multipartite GHZ entanglement.
In the present work, we focus on the case where three
cavity fields interact with two atomic ensembles. Each
ensemble is only driven by one external field and is cou-
pled to two weak cavity fields of adjacent frequencies.
By using the van Loock-Furusawa [37] criteria we exam-
ine the three-mode correlations. The results show that
GHZ entanglement can be achieved. The present scheme
have three advantages as follows. First, GHZ Entangle-
ment is generated without the use of the initial squeezed
states. All field components are amplified from the vac-
uum fields, unlike those that use initially squeezed fields
[9–12]. Second, each atomic ensemble is driven by a single
driving field, and the crossing couplings on the adjacent
transitions are greatly reduced. Last but not the least,
this scheme is more easily scalable to multimode systems.
The remaining parts of the present paper are organized

as follows. In Sec. II, we describe our model and derive
the master equation. In Sec. III, we calculate the corre-
lations of the three fields and examine whether tripartite



2

entanglement criteria are satisfied. In Sec. IV, we give
realistic considerations of our proposal. A summary is
given in Sec. V.

II. MODEL AND MASTER EQUATION

Our scheme uses two ensembles of two-level atoms in
an optical cavity, as shown in Fig. 1. The atoms are
cooled in a standard magneto-optical trap [38, 39]. En-
semble j consists of Nj atoms and is driven by one ex-
ternal field, j = 1, 2. Three cavity fields are generated,
which are described by annihilation and creation opera-

tors al and a†l , l = 1, 2, 3. The fields a1,3 are coupled to
the two different atomic ensembles 1 and 2, respectively,
while the field a2 is coupled to both ensembles. The
atoms in two different ensembles have different but near
resonance frequencies. Fig. 2 shows the frequency posi-
tions of the atoms ω̄1,2, the applied fields ω1,2, and the
cavity fields ν1,2,3. In the rotating wave approximation
and in an appropriate rotating frame, we derive the mas-
ter equation for the density operator ρ of the atom-field
composite system as [40]

ρ̇ = − i

~
[H, ρ] + Lρ, (1)

with the Hamiltonian H = H0 +H1, where

H0 =

2
∑

j=1

Nj
∑

µj=1

~[∆jσ
µj

11 +
Ωj

2
(σ

µj

10 + σ
µj

01 )], (2)

describes the interaction of the driving fields with the
atoms, and

H1 =

2
∑

j=1

Nj
∑

µj=1

~σ
µj

10 (g
(j)
− aje

−i∆
(j)
− t+g

(j)
+ aj+1e

−i∆
(j)
+ t)+H.c.,

(3)
represents the interaction of the cavity fields with atoms.
Here H.c. is the Hermitian conjugate. For the µj-th atom,
σ
µj

αβ = |α〉µj
〈β| (α, β = 0, 1) are the atomic spin-flip op-

erators when α 6= β and the projection operators when
α = β. ∆j = ω̄j −ωj is the detuning between the atomic

ensemble j and the driving field j, and ∆
(j)
+ = νj+1 − ωj

(∆
(j)
− = νj − ωj) denotes the detuning between the ap-

plied field j and the higher (lower) sideband. Ωj is the

Rabi frequency and is assumed to be real. g
(j)
+ (g

(j)
− ) is

the coupling strength between the atomic ensemble j and
the higher (lower) sideband. The decay term in Eq. (1)
takes the form Lρ = Laρ+ Lcρ, where

Laρ =

2
∑

j=1

Nj
∑

µj=1

γj
2
D[σ

µj

01 ]ρ, (4)

denotes the atomic relaxation, and

Lcρ =

3
∑

l=1

κl

2
D[al]ρ, (5)
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FIG. 1: (Color online) Possible cavity setsup. Two atomic
ensembles are respectively driven by two strong fields and
three cavity fields a1,2,3 are generated.
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FIG. 2: (Color online) Frequencies of the atoms ω̄1,2, the
applied fields ω1,2, and the cavity fields ν1,2,3.

stands for the cavity loss. We have defined superoperator
D[Q]ρ ≡ [Qρ,Q†] + [Q, ρQ†] for an operator Q. γ’s and
κ’s represent the atomic spontaneous decay rates and the
cavity decay rates, respectively.

It becomes aware that in the presence of only the
atomic ensemble 1, an atom absorbs two photons from
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FIG. 3: (Color online) Atomic transitions due to the driving
fields and the cavity fields (a) for ensemble 1 and (b) for
ensemble 2.
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the driving field 1 and then emits two sideband photons,
as shown in Fig. 3 (a). Through two-photon process,
entanglement is created between the two sidebands a1
and a2. The case is the same for the presence of only
the atomic ensemble 2 (as shown Fig. 3(b)), and a2 and
a3 is entangled with each other. At present, we combine
the above two cases. The field a2 is coupled simultane-
ously to the two atomic ensembles. It is expected that
three cavity fields are correlated via the concurrent in-
teractions.
We diagonalize the Hamiltonian H0 for the interac-

tion of the driving fields with two atomic ensembles to
show the resonant interactions of the cavity fields with
the atoms [41]. For the j-th atomic ensemble, the dressed
states are obtained as

|+〉j = sj |0〉j + cj |1〉j ,
|−〉j = cj |0〉j − sj |1〉j , (6)

where sj =

√

1
2 − δj

2
√

1+δ2
j

, cj =
√

1− s2j , and δj =
∆j

Ωj

are defined as the normalized detunings, j = 1, 2. The

dressed-states |±〉j have eigenvalues λ
(j)
± = 1

2 (∆j ± dj),
where we have used the generalized Rabi frequencies

dj =
√

∆2
j +Ω2

j . Then the free Hamiltonian simpli-

fies to H0 =
∑2

j=1

∑Nj

µj=1 ~(λ
(j)
+ σ

µj

++ + λ
(j)
− σ

µj

−−), where

σ
µj

±± = |±〉µj
〈±|. We assume the driving fields to be

strong (dj ≫ γj) and the cavity fields to be resonant with

the Rabi sidebands ∆
(j)
+ = −∆

(j)
− = dj [42, 43]. After ap-

plying a unitary transformation U = exp(−iH0t/~) and
neglecting the rapidly oscillating factors exp(±idjt) and
exp(±2idjt), we rewrite the Hamiltonian for the interac-
tion of the cavity fields with the two atomic ensembles
as

H1 =
2

∑

j=1

Nj
∑

µj=1

~σ
µj

+−(g
(j)
− c2jaj − g

(j)
+ s2ja

†
j+1) + H.c.. (7)

Correspondingly, the atomic damping term becomes

Laρ =

2
∑

j=1

Nj
∑

µj=1

γj
2
{c4jD[σ

µj

−+]ρ+ s4jD[σ
µj

+−]ρ

+c2js
2
jD[σ

µj

++ − σ
µj

−−]ρ}. (8)

We assume that the cavity relaxation times κ−1
l (l =

1, 2, 3) are much larger than the atomic relaxation times
γ−1
j (j = 1, 2). Then we can work in the adiabatic

approximation and eliminate the atomic variables from
the coupled system [40]. In the linear theory [40, 43],
the cavity fields do not change the atomic popula-
tions. The equation for the dressed populations P±

j =

(1/Nj)
∑Nj

µj=1〈σ
µj

±±〉 is derived as

Ṗ+
j = γjs

4
jP

−
j − γjc

4
jP

+
j , (9)

together with the closure relation P+
j + P−

j = 1. At the
steady state we have the dressed populations

P+
j =

s4j
c4j + s4j

, P−
j =

c4j
c4j + s4j

. (10)

Finally the master equation for the cavity fields is ob-
tained as

ρ̇ =
1

2

3
∑

l=1

{λl[a
†
l ρ, al] + (ξl + κl)[alρ, a

†
l ]}

−1

2

2
∑

j=1

{χj,j+1([ajρ, aj+1] + [aj , ρaj+1])

+χj+1,j([aj+1ρ, aj ] + [aj+1, ρaj])} +H.c., (11)

where the λl (l = 1, 2, 3) terms together with their Her-
mitian conjugates indicate the gain to the cavity mode
al due to the medium, the ξl terms together with their
Hermitian conjugates represent the absorption, and the
χj,j+1 and χj+1,j (j = 1, 2) terms together with their
Hermitian conjugates describe the crossing couplings be-
tween the cavity fields j and j + 1. These parameters
read as λ1 = c41A

−
1 P

+
1 , λ2 = s41A

+
1 P

−
1 + c42A

−
2 P

+
2 , λ3 =

s42A
+
2 P

−
2 , ξ1 = c41A

−
1 P

−
1 , ξ2 = s41A

+
1 P

+
1 + c42A

−
2 P

−
2 , ξ3 =

s42A
+
2 P

+
2 , χ12 = c21s

2
1B1P

−
1 , χ21 = c21s

2
1B1P

+
1 , χ23 =

2c22s
2
2B2P

−
2 , χ32 = c22s

2
2B2P

+
2 , A±

j = 2|g(j)± |2NjΓ
−1
j ,

Bj = 2g
(j)
+ g

(j)
− NjΓ

−1
j , and Γj = γj(

1
2 + c2js

2
j). In what

follows we will show that the cross coupling terms are
responsible for tripartite entanglement.

III. FIELD CORRELATIONS AND

INSEPARABILITY

Here we will demonstrate genuine tripartite entangle-
ment in our system. To do this we follow the standard
techniques [44] and calculate the correlation of the gen-

erated fields. Choosing the normal order a†1, a
†
2, a

†
3, a1,

a2, a3, using the generalized P representation [45], and

defining the corresponding c-number variables α†
1, α

†
2, α

†
3,

α1, α2, α3, we derive the Langevin equations from the
master equation (11) as

α̇1 = λ̃1α1 + χ̃12α
†
2 + Fα1 ,

α̇2 = λ̃2α2 − χ̃12α
†
1 + χ̃23α

†
3 + Fα2 , (12)

α̇3 = λ̃3α3 − χ̃23α
†
2 + Fα3 ,

together with those equations for α†
1, α

†
2 and α†

3. Here we

have used the parameters λ̃l =
1
2 (λl − ξl − κl) and χ̃jk =

1
2 (χjk − χkj) for conciseness, l, j, k = 1, 2, 3, j < k. The
fluctuating terms have the vanishing means 〈Fx(t)〉 = 0
and the white noise correlations 〈Fx(t)Fy(t

′)〉 = Dxyδ(t−
t′). The nonvanishing diffusion coefficients are Dα†

1α1
=

λ1, Dα†
2α2

= λ2, Dα†
3α3

= λ3, Dα1α2 = 1
2 (χ12+χ21), and
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Dα2α3 = 1
2 (χ23 + χ32), and Dxy = Dyx, Dy†x† = D†

xy.
Arranging the field variables together in the vector R =

(α1, α2, α3, α
†
1, α

†
2, α

†
3)

T and writing δR = R − 〈R〉, we
obtain the linearized Langevin equations as

d

dt
δR(t) = −GδR(t) + F (t), (13)

where the drift matrix G can easily be obtained from
Eq. (12). The correlation matrix for the noise term
〈F (t)FT (t′)〉 = Dδ(t − t′) is easily obtained from
the above diffusion coefficients. The system reaches
its steady state and is stable when all of the eigen-
values of G have positive real parts. The linearised
Langevin equations (13) can be rewritten in terms
of frequency spectrum, which is defined by δR(ω) =
1√
2π

∫

dte−iωtδR(t). Thus we can calculate the correla-

tion spectrum 〈δR(ω)δRT (ω′)〉 = S(ω)δ(ω + ω′), where

S(ω) = (G− iωI)−1D(GT + iωI)−1. (14)

Here we are interested in the case where the density
matrix is not separable in any form, i.e., the tripartite
CV GHZ-type states. We use a set of conditions to in-
vestigate the presence of entanglement in this system,
which was put forward by van Loock and Furusawa [37].
The guaranty of any two of the following inequalities is
sufficient to demonstrate true CV tripartite entanglement

Vjk = 〈[δ(Xo
j −Xo

k)]
2〉+ 〈[δ(Y o

j + Y o
k + flY

o
l )]

2〉 < 4,
(15)

where j, k, l = 1, 2, 3, j < k 6= l. We have defined the po-

sition and momentum operators Xo
l = aoutl + a†outl and

Y o
l = −i(aoutl − a†outl ) for the output fields aoutl , which

relate to the intracavity fields al and the input fields ainl
through the relations [44]: ainl + aoutl =

√
κlal. The fac-

tors fl are arbitrary real numbers to minimize the vari-
ances in Eq. (15) and are calculated as

fl = −
〈δY o

j δY
o
l 〉+ 〈δY o

k δY
o
l 〉

〈(δY o
l )

2〉 . (16)

Here we use the vacuum inputs and derive the spectra of
the output fields Vjk(ω). The required auto-correlation
spectra and cross-correlation spectra are, respectively,

〈(δXo
j )

2〉(ω) = 〈(δY o
j )

2〉(ω)
= 1 + κj〈(δXj)

2〉(ω), (17)

and

〈δXo
j δX

o
k〉(ω) = (−1)j−k〈δY o

j δY
o
k 〉(ω)

=
√
κjκk〈δXjδXk〉(ω), (18)

where we have used the expressions 〈(δXo
j )

2〉(ω)δ(ω +
ω′) = 〈δXo

j (ω)δX
o
j (ω

′)〉, 〈δXo
j δX

o
k〉(ω)δ(ω + ω′) =

〈δXo
j (ω)δX

o
k(ω

′)〉 (j, k = 1, 2, 3; j 6= k), and the simi-

lar expressions for the position operators Xj = aj +a†j of
the intracavity fields aj .

So far we get the measurable spectral quantities out-
side the cavity Vjk(ω). In what follows we present the nu-

merical results as follows. We assume that g
(j)
+ = g

(j)
− =

gj (j = 1, 2) and rescale the decay rates in units of γ1.

Cooperativity parameters are defined as Cj =
|gj |2Nj

γ2
1

.

In Fig. 4 we plot the output zero frequency spectra
Vjk(0) as functions of the normalized detuning δ1 for
(a,b) δ2 = ±0.2, (c,d) δ2 = ±0.5, (e) δ2 = 1, and (f)
δ2 = −2. The other parameters are γ1,2 = 1, κ1,2,3 = 0.1,
C1,2 = 20. We see from this figure that for various val-
ues of the normalized detuning δ2, there are wide ranges
of the normalized detuning δ1 where at least two of the
correlations are below 4. Any two correlations falling be-
low 4 are sufficient for the occurrence of tripartite GHZ
entanglement. Due to the symmetry of the system, if we
exchange δ1 and −δ2, the curves V12 and V23 will inter-
change. In fact V12 = V23 at δ1 = −δ2 is a signature of
this feature.

In Fig. 5 we show the correlation spectra for differ-
ent parameters. For the sake of comparison we have
taken Fig. 4(d) as an example, which is re-plotted in (a).
(b) is for different cooperativity parameters C1 = 10,
C2 = 20, (c) is for the different rates of atomic decay
γ1 = 1, γ2 = 5, and (d) is for different rates of cavity
loss κ1 = 0.1, κ2 = 0.15, κ3 = 0.2. In (b,c,d), the other
parameters are chosen the same as in (a). We clearly see
that the correlation spectra are insensitive to various pa-
rameters. This means that the above GHZ entanglement
is achievable for a wide range of parameters.

From the master equation (11) (or the Langevin equa-
tions Eqs. (12)), we can see that the above nonclassi-
cal correlations are attributed to the crossing couplings
described by the χ terms. These terms that cause the
correlation 〈δα1(ω)δα2(−ω)〉 (〈δα2(ω)δα3(−ω)〉) in Eq.
(18) originates from the absorption of two photons from
the driving fields and the emission of two sideband pho-
tons into the cavity fields. For the atomic ensemble 1, an
atom absorbs two photons from the driving field 1 and
then emits two sideband photons, as shown in Fig. 3
(a). Through two-photon process, entanglement is cre-
ated between the two sidebands a1 and a2. Similarly,
for the atomic ensemble 2 (as shown Fig. 3(b)), a2 and
a3 is entangled with each other. Our case combines the
above two ensembles. The field a2 is coupled simultane-
ously to the two atomic ensembles. This plays a crucial
role in the correlations between the three modes a1,2,3.
By virtue of the connecting action of a2, quantum cor-
relations between the indirect-coupling cavity fields a1
and a3 can also be established (〈δα1(ω)δα

†
3(−ω)〉 6= 0).

This determines the inseparability of the cavity fields a1
and a3. In a word, by the concurrent interactions, three
cavity field become fully inseparable.

It is hard to give the exact conditions for the normal-
ized detunings δ1,2 under which entanglement is existent.
We can make a rough estimate of the parameters for en-
tanglement. First, we note that no entanglement occurs
when δ1 = 0 and/or δ2 = 0, i.e., when either or both
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FIG. 4: (Color online) The output zero frequency spec-
tra Vjk(0) as functions of normalized detuning δ1 for (a,b)
δ2 = ±0.2, (c,d) δ2 = ±0.5, (e) δ2 = 1, and (f) δ2 = −2.
The other parameters are listed in the text. Any two of the
correlations falling below 4 are sufficient to demonstrate that
genuine tripartite entanglement is present.

of the driving fields are resonant with the atoms. When
δj = 0 (j = 1, 2) we have c2j = s2j = 1

2 , P
+
j = P−

j = 1
2 ,

which correspond to λ̃1 = −κ1

2 , χ̃12 = 0 for j = 1 and

λ̃3 = −κ3

2 , χ̃23 = 0 for j = 2. We see from Eq. (12) that
once on resonance, a1 and/or a3 are only damped by the
vacuum reservoir, but not amplified by any mechanism,
let alone the cross coupling between a1 and a2 and/or the
coupling between a2 and a3 [42, 43]. Therefore, tripartite
entanglement appears only when the driving fields are off
resonance with the atomic transitions. Similarly, the de-
tunings are required for the related schemes, such as the
double Lambda schemes [20, 21], where no entanglement
occurs on exact double resonances, as was pointed out in
Ref. [21].

Second, the entanglement criteria are well satisfied for
the present scheme when the two normalized detunings
δ1,2 have the oppositive signs. This is referred to as a
characteristic feature as above. In order to show this
feature clearly, we plot the output zero frequency spectra
V12(0), V23(0), and V13(0) in Fig. 6 for various ratios
of the normalized detunings: (a) δ2 = − 1

3δ1, (b) δ2 =

− 1
2δ1, (c) δ2 = −δ1, (d) δ2 = −2δ1, (e) δ2 = −3δ1, (f)

δ2 = −4δ1. Let us examine first the right wing (δ1 >
0). Any two of these three curves dropping below 4 are
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FIG. 6: (Color online) The output zero frequency spectra
Vjk(0) as functions of normalized detuning δ1 for (a) δ2 =
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FIG. 7: (Color online) The output zero frequency spectra
Vjk(0) as functions of normalized detuning δ1 for (a) δ2 = 1

3
δ1,

(b) δ2 = 1

2
δ1, (c) δ2 = δ1, (d) δ2 = 2δ1, (e) δ2 = 3δ1, (f)

δ2 = 4δ1.

sufficient for tripartite GHZ entanglement. Indeed, for
various cases, there is a range where there are at least
two curves falling below 4. For δ2 = −δ1, the curves V12

and V23 coincide and both fall below 4 when δ1 > 0.1. As
the ratio δ2

δ1
deviates from −1, the minimal value of δ1 for

two correlations less than 4 rises slightly. For δ2 = − 1
2δ1,

both V13 and V23 are less than 4 when δ1 > 0.5, and for
δ2 = − 1

3δ1, both V12 and V23 are reduced below 4 when
δ1 > 1.16. For δ2 = −2δ1, both V12 and V13 descend
below 4 when δ1 > 0.25. For δ2 = −3δ1 and δ2 = −4δ1,
both V12 and V23 are smaller than 4 when δ1 > 0.38 and
δ1 > 0.55, respectively. For various cases, all correlations
approach 4 when δ1 be large, i.e., when δ1 approaches
4. This is because the atom-field interactions become
so weak for the large detunings. Roughly, we have the
range of the normalized detunings for entanglement in
the δ1 > 0 wing

−3 .
δ2
δ1

. −1

3
, z1 . (δ1,−δ2) . 4, (19)

where 0.1 . z1 . 1.16, and the parameter z1 has the
minimal value 0.1 for δ2

δ1
= −1, and becomes large as

δ2
δ1

deviates from −1. Then let us turn to the left wing

(δ1 < 0). We can see a limited range where the curves
V12 and V23 fall below 4. For δ2

δ1
= −1, the curves V12

and V23 are identical and fall below 4 in the range of

δ1 ∼ (−1,−0.1). As the ratio δ2
δ1

deviates from −1, the
range of δ1 for entanglement becomes narrow. For δ2 =
− 1

2δ1 and δ2 = −2δ1, both V12 and V23 are less than 4
in the regions of δ1 ∼ (−0.95,−0.21) and (−0.47,−0.11),
respectively. Roughly, we have the limited range of the
normalized detunings for entanglement in the δ1 < 0 wing

−2 .
δ2
δ1

. −1

2
, z2 . (δ1,−δ2) . z3, (20)

where −1 . z2 . 0.47, −0.21 . z3 . −0.1, and the pa-
rameter z2 (z3) has minimal (maximal) value −1 (−0.1)
when δ2

δ1
= −1 and rises (falls) as δ2

δ1
deviates from −1.

Thirdly, as a comparison, we find that the entangle-
ment criteria are not well satisfied when the normalized
detunings δ1,2 have the same signs. In this case, we show
the output zero frequency correlations in Fig. 7 for (a)
δ2 = 1

3δ1, (b) δ2 = 1
2δ1, (c) δ2 = δ1, (d) δ2 = 2δ1, (e)

δ2 = 3δ1, (f) δ2 = 4δ1. This figure shows that when
0 < δ2

δ1
< 1, there is a narrow region in the left wing,

where both V12 and V23 are below 4. Such a narrow re-
gion is transferred to the right wing when δ2

δ1
> 1. In both

cases, however, either V23 or V12 is just a little slightly be-
low 4. This indicates that the entanglement criteria are
not so well satisfied even in such a narrow region when
the normalized detunings have the same signs. The re-
markable difference has its physical origin. We see from
the middle equation of Eq. (12) that the modes a1,3 are
coupled to the mode a2 through the cross coupling coef-
ficients −χ̃12 and χ̃23, respectively, where the minus sign
means an extra phase difference π. When δ1,2 have the
same signs, so do χ̃12 and χ̃23. This determines that the
interactions of a1,3 with a2 have the opposite roles. It is
not difficult to understand that the detunings of the same
signs are not so suitable for creating entanglement. The
case is reversed for the detunings of the opposite signs.
When δ1,2 have the opposite signs, so do χ̃12 and χ̃23,
which instead indicates that the fields a1,3 are coupled
to a2 with the same phase. By comparison, as a rough
estimate, Eqs. (19,20) turn out to be good conditions for
tripartite GHZ entanglement in the present scheme.

IV. REALISTIC CONSIDERATIONS

So far we have shown the quantum correlations by
considering zero-temperature environment and neglect-
ing the driving field linewidths. At nonzero tempera-
ture the bath has nonzero thermal photons. Then we
should include the effects of thermal photons [46]. The
average number of thermal photons of frequency ωT is
n̄(ωT ) = [exp(~ωT /kT ) − 1]−1, where k is the Boltz-
mann constant and T is the thermal bath tempera-
ture. At room temperature (T = 300 K), λ ≈ 50 µm,
ωT ≈ 6 × 1012 Hz correspond to ~ωT /kT = 1. For
ωT ≫ 6 × 1012 Hz, n̄(ωT ) → 0. For example, λ = 620.1
nm, ωT = 2π × 4.838 × 1014 Hz, we have ~ωT ≈ 2 eV,
which is much larger than the room temperature energy,
kT ≈ 1

40 eV. This corresponds to a negligible average
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number of thermal photons n̄ ≈ e−80 ≈ 0. In this case
the thermal reservoir has a negligible effect. If ωT is
comparable to 6 × 1012 Hz, for example, λ = 2 × 104

nm, ωT = 2π × 1.5× 1013 Hz, we have the average ther-
mal photon number of n̄ = 0.1. In such a situation, the
thermal reservoir effect has to be included. According to
the standard reservoir theory [46], we add to Eq. (5) the
additional term
On the other hand, the applied driving fields usually

have the fluctuating phases, which correspond to finite
bandwidths [40]. We assume Φj(t) to be the fluctuating
phases associated with Rabi frequencies Ωj . These fluc-

tuations are characterized by the random forces Φ̇j(t) =
χj(t) with zero averages and the white noise correlations
[46]: 〈χj(t)〉 = 0 and 〈χj(t)χj(t

′)〉 = γDj
δ(t − t′), where

γDj
are the linewidths of the laser fields Ωj . In this case

we add to Eq. (4) an additional atomic damping term

L′
aρ =

2
∑

j=1

Nj
∑

µj=1

γDj

4
D[σ

µj

11 − σ
µj

00 ]ρ. (21)

Using the unitary transformations in Eq. (6), we rewrite
the additional term as

L′
aρ =

2
∑

j=1

Nj
∑

µj=1

γDj

4
{4c2js2j(D[σ

µj

+−]ρ+D[σ
µj

−+]ρ)

+(c2j − s2j)
2D[σ

µj

++ − σ
µj

−−]ρ}. (22)

The equation for the dressed populations P±
j is changed

as

Ṗ+
j = γjs

4
jP

−
j − γjc

4
jP

+
j + 2γDj

c2js
2
j(P

−
j − P+

j ), (23)

together with the closure relation P+
j + P−

j = 1. At the
steady state we obtain the dressed populations

P+
j =

γjs
4
j + 2γDj

c2js
2
j

γj(c4j + s4j) + 4γDj
c2js

2
j

,

P−
j =

γjc
4
j + 2γDj

c2js
2
j

γj(c4j + s4j) + 4γDj
c2js

2
j

. (24)

L′
cρ =

3
∑

l=1

κln̄l

2
(D[al]ρ+D[a†l ]ρ). (25)

Taking into account the change in the dressed pop-
ulations and changing the parameters in Eq. (11) as
λl → λl + κln̄l, ξl → ξl + κln̄l (l = 1, 2, 3) together
with Γj → Γj + γDj

(c4j + s4j) (j = 1, 2), we obtain the
master equation for the cavity fields. Again we can fol-
low the same steps as above to give the correlations. For
simplicity, we assume that the al modes have the same
average thermal photons numbers n̄l = n̄, and that the
driving fields have the same linewidths γDj

= γD. The
effects of the realistic factors on the quantum correla-
tions are presented in Fig. 8 and Fig. 9. Figure 8 shows
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FIG. 8: (Color online) The output zero frequency spectra
Vjk(0) as functions of normalized detuning δ1 for different
numbers of the thermal photons: (a) n̄ = 0.0, (b) n̄ = 0.05,
(c) n̄ = 0.1, and (d) n̄ = 0.2. The other parameters are
γD = 0 and those as in Fig. 4(d).

the effects of the thermal photons. The parameters are
(a) n̄ = 0, (b) n̄ = 0.05, (c) n̄ = 0.1, and (d) n̄ = 0.2.
The other parameters are γD = 0 and those as in Fig.
4(d). It is clear that the thermal photons lead to signif-
icant reduction of correlation. With increasing numbers
of the thermal photons, the correlation spectra are fur-
ther suppressed. However, even for n̄ = 0.2, we have
good entanglement. In figure 9 we show the effects of the
driving field linewidths for (a) γD = 0, (b) γD = 0.25,
(c) γD = 0.5, and (d) γD = 1. The other parameters are
n̄ = 0 and those as in Fig. 4(d). Although the linewidth
varies from γD = 0 to γD = 1, the correlation spectra
are not significantly changed. It shows clearly that the
present scheme is robust against the thermal fluctuations
and the laser linewidths.

For the experimental realization, the present scheme
is accessible in alkali atomic systems. In order to avoid
the Doppler effect and to resolve the fine levels we use
two ensembles of cold atoms [38, 39]. As an exam-
ple, we can use Rubidium 87 D2 transition hyperfine
structure for the atomic ensembles. We employ the
|5S1/2, F = 2〉 ↔ |5P3/2, F

′ = 2〉 transition for the
first ensemble, and the second one uses the |5S1/2, F =
2〉 ↔ |5P3/2, F

′ = 3〉 transition. Two transitions are
separated from each other by 267 MHz. Two hyperfine
levels |5P3/2, F

′ = 1〉 and |5P3/2, F
′ = 0〉 lies below the

lower excited state by 157 MHz and 229 MHz, respec-
tively. When ∆1 is far less than 157 MHz, the two adja-
cent levels are far off resonances and the additional Stark
shifts are negligibly small. Since |5S1/2, F = 1〉 is below
|5S1/2, F = 2〉 by 6.8 GHz and |5P3/2, F

′ = 3〉 is 267
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FIG. 9: (Color online) The output zero frequency spectra
Vjk(0) as functions of normalized detuning δ1 for different
driving field linewidths: (a) γD = 0, (b) γD = 0.25, (c) γD =
0.5, and (d) γD = 1. The other parameters are n̄ = 0 and
those as in Fig. 4(d).

MHz above |5P3/2, F
′ = 2〉, we can use the transition

|5S1/2, F = 1〉 ↔ |5P3/2, F
′ = 0〉 as a repumping transi-

tion.

Finally, it is interesting to compare the present sys-
tem with the existing multilevel schemes, which are di-
vided into three kinds in the introduction paragraph.
The essence in common is to use the two-photon pro-
cesses. The remarkble difference between them lies in
that the two-photon processes are created in different
circumstances. First, for the correlated emission lasser
schemes [19–21], the two-photon process is established
by combining the EIT and Raman transitions in Lambda
systems to form a loop of transitions. In the loop, two
cavity fields are in the two-photon interactions, which oc-
curs between the resonantly or near-resonantly coupled
atomic levels. By such arrangements, the atomic coher-
ence by the resonant or near-resonant driving is respon-
sible for both the laser gain and the quantum entangle-
ment. Second, for those schemes based on the paramet-
ric interactions [22, 23], the atoms are almost not excited
and the field operators are isolated from the atomic oper-
ators. Through a loop of transitions, the involved cavity
fields can be made to be in a two-photon interaction.
However, the susceptibility is weak due to the fact that
all fields, including the driving and cavity fields, are far
off resonance with the atoms.

Our model belongs to the third kind of schemes,
which are based on the wave-mixing interactions in near-
resonant systems [27–35]. The common physics is to use
the Rabi resonances to create the two-photon interactions
and the quantum correlations between the cavity fields

[42, 43]. The essential difference of the present scheme
from the previous ones lies in the structure of the dressed
states [41]. Our system involves two-level atoms, the
dressed states of which are in an infinite ladder of dou-
blets. The dressed states of the same doublet can be suf-
ficiently separated simply by increasing the driving field
amplitude and/or the atom-field detuning. The most
classical example is the Mollow structure of the resonance
fluorescence spectrum [40–43]. The Rabi resonances are
separated simply by the generalized Rabi frequency. In
sharp comparison, the three- or more-level systems have
an infinite cascade of triplets or more of dressed states.
Within the same multiplets, the dressed states generally
are not equally spaced unless all involved fields are res-
onant with respective transitions. More often than not,
there are two or more that are spaced closely. In this
case, the adjacent Rabi resonances are not easily sepa-
rated from each other. Such examples were verified for
the resonance fluorescence spectrum of an off-resonantly
driven multilevel atom [47–49]. For the close Rabi reso-
nances, it is difficult to choose and control frequencies of
the cavity fields. Once a cavity field is coupled to adja-
cent dressed transitions, different transitions will play op-
posite effects on the quantum correlations. Clearly, this
increases the difficulty in obtaining the desired quantum
correlations. The above comparison shows clearly that
it is advantageous to use a cascade of two-level atomic
ensembles as in our scheme.
Another advantage lies in that the frequencies of

the cavity fields can be controlled independently for
the present two-level scheme but not for the multilevel
schemes. As is well known, varying any driving field in
multilevel systems will modify eigenvalues of all dressed
states. In other words, all Rabi resonances change their
frequencies so long as any driving field is varied. As a
consequence, the frequencies of all the cavity fields from
the Rabi resonances are modified due to the change in
any driving field. However, the case differs completely
for the the present scheme. Different ensembles of atoms
are separated from each other, each of which is driven
by a different driving field. When we change the dressed
states of one atomic ensemble, the dressed states of an-
other atomic ensemble can be kept unchanged. There-
fore, we can first fix the frequencies of the cavity fields
a1,2 as ν1,2 = ω1 ±

√

∆2
1 +Ω2

1 by controlling the first
driving field, and then adjust the frequency of the cavity
field a3 as ν3 = ω2 +

√

∆2
2 +Ω2

2 by varying the second
driving field. This can be generalized to more modes in
the same way.

V. CONCLUSION

In summary, we have presented a scheme for three-
mode interactions and GHZ entanglement. This scheme
involves two atomic ensembles, each of which is driven
by a single driving field. The concurrent interactions
are established since the cavity field of the in-between
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frequency is simultaneously coupled to the higher Rabi
sideband of one ensemble and to the lower Rabi sideband
of the other. It has been shown that GHZ entanglement
is achievable for a wide range of parameters. Such a
scheme is straightforwardly scalable when more atomic
ensembles of close frequencies are included. This device
can be used as a useful multipartite entangled resource
for the CV quantum networks and information.
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