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Abstract: We propose a simple yet efficient method for generating abruptly 

autofocusing optical beams with arbitrary caustics. In addition we introduce a family 

of abruptly autodefocusing beams whose maximum intensity suddenly decreases by 

orders of magnitude right after the target. The method relies on appropriately 

modulating the phase of a circularly symmetric optical wavefront, such as that of a 

Gaussian, and subsequently on Fourier-transforming it by means of a lens. If two such 

beams are superimposed in a Bessel-like standing wave pattern, then a complete 

mirror-symmetric, with respect to the focal plane, caustic surface of revolution is 

formed that can be used as an optical bottle. We also show how the same method can 

be used to produce accelerating 1D or 2D optical beams with arbitrary convex 

caustics. 

  



1. Introduction 

Recently, a family of optical waves was introduced with abruptly autofocusing (AAF) 

properties [1]. The new waves (also termed circular Airy beams - CAB) have a 

circularly symmetric initial amplitude that oscillates outward of a dark disk like an 

exponentially truncated Airy function. By virtue of the two outstanding features of 

finite-power Airy beams [2,3], namely their self acceleration and their resistance to 

diffraction, this eventually results in light beams, that can propagate over several 

Rayleigh lengths with minimum shape distortion and almost constant maximum 

intensity, until an abrupt focusing takes place right before a target, where the intensity 

is suddenly enhanced by orders of magnitude. These theoretical predictions were 

subsequently verified by experimental observations [4,5]. These observations also 

demonstrated that AAF beams could outperform standard Gaussian beams, especially 

in settings where high intensity contrasts must be delivered under conditions 

involving long focal-distance-to-aperture ratios (f-numbers) [4]. In addition, this 

“silent” or low intensity mode, at which AAF waves approach their target, makes 

them ideal candidates for medical laser applications where collateral tissue damage is 

supposed to be kept at a minimum. Other possible applications include laser 

waveguide writing in bulk glasses and particle trapping and guiding [5]. 

The focusing mechanism of AAF beams is fundamentally different from that 

of Gaussian beams. In the latter case, the wave’s constituent rays form a sharpened 

pencil that converges at a single point, the focus. As the beam’s cross-sectional area 

gradually decreases, the maximum intensity over the transverse plane increases in a 

Lorentzian fashion, centered at the focus. In the case of AAF beams however, the rays 

responsible for focusing are emitted from the exterior of a dark disk on the input plane 

and stay tangent to a convex caustic surface of revolution (SoR) that contracts toward 

the beam axis [1]. By virtue of its Airy transverse amplitude profile, this caustic is 

intrinsically diffraction-resisting, therefore keeping its maximum intensity almost 

constant during propagation and its interior almost void of optical energy. Focusing 

occurs as a result of an on-axis collapse of this SoR and is so abrupt as the transition 

from the dark to the lit side of an optical caustic. At the point of ‘collapse’, the rays 

emitted from a certain circle on the input plane interfere constructively and the 

gradient of the field amplitude is maximized. 



Building on the concept of a collapsing caustic SoR, the AAF wave family 

was recently broadened to include general power-law caustics that evolve from a sub-

linearly chirped input amplitude [6]. In this latter work, we showed that a νth-power 

caustic requires the input amplitude to oscillate with a chirp of the order 12 ,−= −β ν  

which generalizes the case of CABs, whose parabolic trajectory is a result of the 3 / 2  
chirp of the Airy function itself. Although not non-diffracting as ideal CABs, these 

pre-engineered beams were shown to exhibit attractive features, such as enhanced 

focusing abruptness, larger intensity contrasts and suppressed post-focal intensity 

maxima. 

To benefit from the attractive properties of AAF waves, it is crucial to 

generate them efficiently. This is generally a nontrivial task, since these waves evolve 

from initial amplitudes that are not easy to implement directly, such as concentric 

Airy rings. A possible alternative is to generate the Fourier transform (FT) of the 

initial condition first and then inverse-Fourier transform it by means of a lens. A 

similar approach was adopted in the first demonstration of CABs [4], where the initial 

wavefront was produced by encoding both amplitude and phase information on a 

phase-only filter. The FT technique was also employed in [7], where a hologram of 

the FT was produced. In addition in this latter work, the FT of CABs was treated 

analytically and found to behave like a Bessel function whose argument is enhanced 

by a cubic phase term, i.e. a quadratic chirp. By tuning the strength of the chirp 

relative to the lens’ focal distance, it was possible to generate AAF beams with two 

foci, the one being defocusing while the other one focusing, thereby defining the ends 

of an elegant paraboloid optical bottle [7]. 

From the above it is clear that producing AAF beams can be equally difficult, 

either in the real or in the Fourier space, since, in both cases, a complicated initial 

condition, varying both in phase and in amplitude, must be produced. However, when 

the requirement for the exact generation of a specific AAF wave can be relaxed, the 

implementation procedure can be significantly simplified. Indeed, having explained 

the AAF mechanism through both ray and wave optics [1,6], one realizes that the 

critical phenomenon is the formation of the caustic and depends primarily on the 

phase modulation of the input wavefront and secondarily on the envelope of its 

amplitude. This fact has already facilitated the generation of arbitrary convex 1D or 

2D beams, by applying the appropriate 1D or 2D phase mask on a plane wave [9] or 



on a Gaussian beam [10]. This is perhaps the most obvious way to directly produce 

accelerating 1D or 2D caustics. However, in some applications, it could be more 

advantageous to apply the same concept in the Fourier space. A major reason is that 

the FT lens provides an additional degree of freedom for easily targeting and sizing 

the generated beam [7]. Indeed, as noted in the latter paper, the optical bottles 

produced with the FT method can be arbitrarily scaled without losing their symmetry 

or having to modify the input condition, by simply changing the lens’ focal distance. 

This is a true advantage of the FT approach compared to the direct (real-space) 

approach, which requires that all beam characteristics must be prescribed on the phase 

mask, while even a simple scaling of the beam requires to redesign the phase 

modulation. In addition, the lens offers a physical 2f separation between object and 

image planes, which could be useful in applications when the phase mask cannot be 

positioned very close to the target. 

In this work, we present a simple yet general method for generating in the 

Fourier space AAF or abruptly autodefocusing (AADF) optical beams with pre-

engineered caustic SoR. From a certain viewpoint, this generalizes our previous work 

on CABs and their parabolic caustics [7] to AAF waves with arbitrary convex 

caustics. We hereby show that such beams can be produced efficiently by simple 

means of a circularly symmetric phase mask and a FT lens, acting successively on an 

optical wavefront with no particular amplitude information. The required phase is the 

sum of a linear and a nonlinear term. The linear term is responsible for creating an 

annular focusing pattern on the image plane, while the nonlinear term is responsible 

for transforming this pattern into an Airy pattern thus determining the shape of the 

caustic produced before or after that plane. Special attention is paid to the case of 

power-law caustics, for which analytical results are readily obtained and reported. In 

particular, we find that a νth-power caustic requires a nth-power phase with the orders 

being related as ( ) ( )2 1 / 1 .n = ν − ν − Counter-intuitively, for a given ν, the stronger 

the nonlinear phase the weaker is the acceleration of the caustic, hence the longer is 

the distance from the image plane to the target. The linear phase and the lens’ focal 

plane determine the size of the produced AAF beam in terms of its width at the image 

plane, and also in terms of the distance from that plane to the target. 

In Section 2, we describe the proposed method analytically and subsequently, 

in Section 3, we support it with numerical calculations that demonstrate the 



generation of AAF and AADF beams and also that of optical bottles with sinusoidal 

shape. Although our focus is on AAF waves, we complete this paper by showing that 

the same method can actually be used to produce accelerating 1D or 2D beams with 

arbitrary convex trajectories. 

 

2. Engineering AAF/AADF waves in the Fourier space 

To begin, consider the amplitude of a phase-modulated circularly symmetric 

wavefront 

( ) ( ) ( )[ ] ( ) ( )[ ]0 exp exp ,u r A r i r A r iar iq r= Φ = +  (1) 

where r is the polar distance normalized by an arbitrary length, say 0,x ( )A r  is a real 

envelope and ( )rΦ  is the phase consisting of a linear term with slope 0a >  and a 

nonlinear (e.g. power-law) term ( ).q r  Such an initial condition can be easily realized 

by reflecting a plane wave or a collimated Gaussian beam on the face of a spatial light 

modulator (SLM) programmed with a phase ( ).rΦ  Subsequently, let us examine the 

evolution of this wave through the single-lens FT system of Fig. 1 under the validity 

of the paraxial approximation 22 z tu i u,= ∇  where subscript t stands for transverse and 

z is the propagation distance normalized by 2
02 / ,xπ λ  λ being the optical wavelength. 

Propagating the waves before and after the lens according to the Fresnel diffraction 

integral [6], and taking into account the quadratic phase 2exp( / 2 )ir f−  imprinted on 

the wave transmitted through the lens, it can be shown that the optical field on the 

image plane ( 2 ,z f=  where f is the focal length) reads 

( ) ( ) ( )0, 2 / / ,u r z f i f U r f= = −  (2) 

where 

( ) ( ) ( )0 0 00
U k u J k d

∞
= ρ ρ ρ ρ∫  (3) 

is the Hankel transform of the object wavefunction ( )0 .u ρ  Obviously, Eq. (2) 

expresses the FT property of the lens. Substituting Eq. (3) into Eq. (2) and using the 

familiar integral representation of Bessel function 



( ) ( )
2

0
0

1 exp cos ,
2

J x ix d
π

= − ϕ ϕ
π ∫  (4) 

we obtain 

 ( ) ( ) ( )
2

0 0
, 2 exp cos ,

2
i ru r z f ia iq i d d
f f

∞ π ρ⎛ ⎞= = − Α ρ ρ + ρ − ϕ ρ ρ ϕ⎜ ⎟π ⎝ ⎠∫ ∫  (5) 

where 0u  was substituted from Eq. (1). Even in its simplified form of Eq. (3), this 

integral cannot be evaluated analytically for a general function ( ).q ρ  Hence it is 

reasonable to resort to a stationary-phase (SP) computation, which is justified by the 

oscillatory nature of the integrand. Assuming that ( ) 0q′ ρ >  for all 0,ρ >  where the 

prime denotes the derivative with respect to the argument, it is readily seen that there 

is only one stationary point ( ) ( )0, ,0 ,s s rρ ϕ =  where 0r  is the solution of equation 

 ( )0a q r r / f .′+ =  (6) 

After some algebra, the result of integration in the neighbourhood of ( ),s sρ ϕ  is  

( ) ( ) ( ) ( )0 0
0 0 0

0
, 2 exp .SP r r ru r z f r iar iq r i

fq r r f
⎛ ⎞= = Α + −⎜ ⎟′′ ⎝ ⎠

 (7) 

The last two equations lead to two important conclusions: First, Eq. (6) implies 

r af ,>  which means in essence that only points on the image plane lying outside that 

disk plane have appreciable amplitude. Secondly, since 0r  is a function of the 

observation point r, Eq. (7) shows that the wave amplitude on the image plane is also 

nonlinearly phase-modulated. Differentiating the phase of Eq. (7) with respect to r 

and using Eq. (6), one obtains 0 / 0,r f− <  i.e. the phase modulation is of converging 

nature. Therefore, the wave on the image plane satisfies the preconditions for 

evolving into an AAF wave. If the phase of Eq. (7) is properly designed, then an 

inward bending caustic SoR with initial width 2af  will be formed and eventually 

focus abruptly somewhere in the half-space 2z f .>  

Further understanding of this process can be gained through a ray optics 

interpretation of the propagation dynamics. Referring to Fig. 1, let us follow the path 

of the ray starting from point ( )0 0r ,  on the input plane. According to Eq. (1), this ray 



travels at an angle 0θ  with the z-axis and reaches the surface of the lens (which is 

assumed to be infinitesimally thin) at ( )1r , f ,−  where 1 0 0r r fs= +  and 

( )0 0 0tans r′= Φ� θ  (8) 

is the corresponding slope. Passing through the lens, the ray deflects inwards and 

emerges from point ( )1r , f ,+  with a modified slope 1 1 0 1tan / .s s r f= −� θ  The 

transmitted ray crosses the image plane at 2 1 1r r fs= +  with a slope 2 2 1tan .s sθ =�  

Combining the above we obtain the equations 

2 0 2 0r fs , s r / f ,= = −  (9) 

connecting the exit position and slope of a ray ( )2 2r ,s  to the input values ( )0 0r ,s . 

Equations (9) are equivalent to the conclusions reached previously, noting that the 

point here named 2r  is the observation point r  of Eqs. (6) and (7). As ( )( )0 0 0r ,s r  

vary continuously along the input plane, the transmitted rays form a caustic that is 

expressed with coordinates ( )c cr , ,ξ  where cr  is the radial distance, 2c z fξ = −  is the 

distance from the image plane and ( )c cr ,ξ  is interpreted as the point at which ray 

( )2 2r ,s  touches the caustic. From Fig. 1 obvious are also the equations 

( )2 2 2, .c c c cs r r r sξ ξ′= = +  (10) 

Differentiating the second of Eqs. (10) with respect to cξ  and using Eqs. (9), it can be 

shown that the caustic is expressed in terms of the input ray characteristics as 

( ) ( ) ( ) ( )( )2
0 0 0 0 0 0 0, , ,c cr fs r fr s r f s r′ ′= −ξ  (11) 

where 0r  serves as a parameter and ( )0 0s r  is given by Eq. (8). Equations (8) and (11) 

provide the means for a direct design approach, namely to determine the caustic 

resulting from a given input phase modulation. Alternatively, one could work 

inversely and find the input ray parameters associated with a desired caustic 

( )( )c c cr , .ξ ξ  Again from Eqs. (9) and (10) we obtain directly 



( ) ( ) ( ) ( )0 0
1, ,c c c c c c cr s fr r r
f

⎛ ⎞′ ′= − ⎡ − ⎤⎜ ⎟⎣ ⎦
⎝ ⎠

ξ ξ ξ ξ  (12) 

where the parameter now is .cξ  From Eqs. (12) it is evident that, for ( ) 0c cr ,′′ ξ <  i.e. 

for a convex caustic, we have ( )0 0,cr ξ′ >  which ensures that the rays touching the 

caustic at different points do not overlap on the input plane. This allows us to invert 

function ( )0 cr ξ  and determine the phase ( )0rΦ  associated with ray characteristics 

( )0 0, .r s Integrating Eq. (8) by introducing the new variable cξ  one gets 

( ) ( )
( )

( ) ( ) ( ) ( )
( )0 0

0 0 0
0 0

c cr r

c c cr s r d r r r d′ ′ ′′Φ = = −⎡ ⎤⎣ ⎦∫ ∫
ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ  (13) 

where ( )0c rξ  is the inverse of function ( )0 ,cr ξ  and functions ( ) ( )0 0,s rξ ξ  were 

obtained from Eqs. (12) by substituting ξ  for .cξ  Using Eq. (13), one can determine 

the phase ( )0rΦ  that must be programmed into the SLM to produce the desired 

caustic SoR ( ).c cr ξ  

A characteristic case is that of a power-law phase ( )q r  which leads to a 

power-law caustic also. Setting ( ) nq r br=  and eliminating 0r  from Eqs. (11), the 

equation of the caustic ( )c cr ξ  reads 

( )2/ ,
v

c cr f a d f⎡ ⎤= − ξ⎢ ⎥⎣ ⎦
 (14) 

where ( )[ ]1 11 ,d n n b− −ν= ν −  ( ) ( )1 / 2n nν = − −   and 0.cξ >  For 2,n >  we have 

1,ν >  and hence a convex caustic SoR with a waist that starts from a maximum 2af  

at 0cξ =  to vanish on axis at ( )1/2 / .c f a d Lνξ = �  As was shown in [6], the point 

,c Lξ =  at which the caustic collapses, is an inflection point for the wave amplitude, 

i.e. a point where the amplitude gradient along the beam axis has a local maximum. 

Being very close to the focus, this point also determines approximately the distance 

between the image plane and the target. Therefore the range of the beam and its 

maximum waist size can be adjusted through the lens’ focal length f , which is one of 



the advantages of the FT approach, as mentioned in the introduction. Equation (14) 

also shows that, for a given power ν, a larger b, i.e. a stronger nonlinear phase 

modulation, results in a smaller d, i.e. a weaker accelerating caustic. This is a rather 

counter-intuitive property stemming from the FT relation between object and image 

waves. Also counter-intuitively, the order of the caustic v is a decreasing function of 

the order n of the nonlinear phase term; as a result, the required phase for higher-

power caustics ( )3,4,5,...ν =  is of sub-cubic order ( )5 / 2,7 / 3,9 / 4,... .n =  

Here we would like to comment on the role of the linear phase component in 

Eq. (1). As indicated by Eqs. (6) and (14), this term is responsible for the formation of 

the dark disk on the image plane. Indeed, in the absence of ( ) ,q r  the problem reduces 

to Fourier-transforming a wave with a linear radial phase, a situation encountered 

when, for example, working with Bessel beams. In this case, no caustic is formed, but 

rather all rays leave the object plane in parallel and are focused by the lens on a circle 

on the image plane where a thin bright annulus appears (a circle for idealized Bessel 

beams). The inclusion of the nonlinear phase component subtly disturbs this perfect 

ray focusing, in such a way that a smooth convex caustic is formed and the AAF 

phenomenon is generated. The single bright annulus on the image plane then 

transforms to the pattern of concentric Airy rings. In conclusion, the linear term is 

needed to obtain a circular focusing pattern which the disturbance of the nonlinear 

phase transforms to a CAB-like pattern that evolves into an AAF wave. A closed-

form approximation of the beam amplitude close and exactly on the caustic SoR can 

be obtained by a SP computation of the Fresnel integral of Eq. (7). As happens in 

other families of AAF waves [6], the field near the caustic is contributed by two close 

stationary points on the input plane ( )0z ,=  which collapse into a single second-order 

stationary point when the field is observed exactly on the caustic. The result is an Airy 

amplitude profile. The same method can be used to find the field at the focus, which is 

now contributed by a continuum of points lying on a circle on the input plane. In the 

Appendix an outline is given of how analytical expressions for the field in different 

regions can be obtained. 

Returning to Eq. (14), it interesting to note that AAF beams with parabolic 

caustics ( )2ν =  require the input wavefront to be modulated with a cubic phase 

( )3 .n =  This is not a surprise if one takes into account our recent analytical results on 

the FT of CABs [7]. In this work, the FT (expressed as a Hankel transform) of the 



CAB ( ) ,Ai R r−  was found to behave as ( ) ( )3
0 / 3 ,B k J kR k+  where ( )B k  is a 

complicated super-Gaussian envelope. From the asymptotic behaviour of Bessel 

function, it follows that, for large k, the FT behaves proportionally to 

( )3cos / 3 ,kR k+  i.e. as a real envelope modulated with a cubic phase. Hence, from 

the viewpoint of present work, the parabolic body of a CAB is a by-product of the 

cubic phase modulation of its spectrum, which can be considered as the analogue of 

the same FT property of 1D Airy beams [3].  

The caustic SoR of Eq. (14) develops in the half-space 2z f>  and the 

generated beam is AAF with its focus occurring on axis shortly after 2 .z f L= + This 

is a result of the phase modulation in Eq. (1) being of diverging nature. If instead, the 

complex conjugate initial condition ( )*
0u r  is assumed (converging phase 

modulation), then the entire field in the half-space behind the lens becomes 

( )* 4 ,u f z− −  i.e. it is mirrored with respect to the focal plane and the mirror-

symmetric of Eq. (14) caustic is formed in 2 .f z f< <  Moreover, as a result of the 

converging phase modulation itself, another caustic SoR is formed before the lens 

( ) ,z f<  having the expression ( ).cr z dz a−ν= −  This caustic is asymptotic (varies 

as 1z −ν ) to the input plane and, after passing through the lens, it experiences an 

inward slope discontinuity and transforms into a power-law caustic. If additionally the 

beam parameters are chosen so that ,L f d af ν< ⇔ >  then the transmitted power-

law caustic collapses at 2 ,z f L= −  a point of maximum but negative amplitude 

gradient, thus imparting to the transmitted beam a AADF character. In the spirit of our 

previous work [7], we term this condition as the weak-chirp regime. On the other 

hand, when ,L f d af ν> ⇔ < the chirp is strong enough to make the caustic collapse 

before the lens at ( )1//z d a ν=  and no focus occurs after the lens. 

As shown in [7], if the input amplitude is properly engineered, the generated 

CAB can have two foci, the first being AADF and the second AAF. As a result, an 

elegant, perfectly mirror-symmetric optical bottle is formed between the two foci 

which can be used as an optical trap. Optical bottles can also be built by the approach 

presented here, however with some additional effort by letting the input beams ( )0u r  



and ( )0u r*  interfere in a standing wave pattern of the form ( ) ( )[ ]cos .A r rΦ  In that 

case each of the two components creates half of the full caustic. The parameters 

should, of course, be tuned in the weak-chirp regime, so that the bottle lies entirely 

behind the lens. An illustrative example is given in the next Section for an optical 

bottle with sinusoidal shape. 

 

3. Numerical Examples 

To illustrate our analytical arguments, we devote this Section to numerical 

simulations. Note that, in all of the following figures, the spatial coordinates are 

normalized. To give a sense of the beam’s actual extent, typical values for the length 

scales can be 0 50x mμ=  in the transverse and 2
02 /x cmπ λ π=  in the longitudinal 

direction, at a wavelength around 500 .nm=λ   

Let us first demonstrate the AAF and AADF mechanisms through the ray 

optics picture. Figure 2(a) presents the results of ray tracing for a wave with the phase 

modulation of Eq. (1) and the parameters 3,n =  1,a =  1 / 3000,b =  being Fourier-

transformed by a lens with 10f =  (also in 2
02 /xπ λ  units). The chirp parameter has 

been chosen to satisfy ( )31 / 3 ,b f=  resulting in the formation of the parabolic 

caustic 210 / 4,c cr = − ξ  (indicated with a dashed curve) which is familiar from 1D 

Airy beams [3]. In Fig. 2(b), the corresponding ray pattern is depicted for a beam with 

the same parameters but with the complex conjugate input amplitude. Note how the 

exactly symmetric caustic now develops in 2 ,f z f< <  and also the caustic 

( )2250 1cr z z−= −  developing in 0 .z f< <  The two curves meet at the lens’ plane 

with different slopes, as a result of the lens’ focusing action.  

Wave simulations of the two previous configurations are shown in Fig. 3 and 

4, respectively, as obtained by numerically solving the paraxial equation of 

propagation. In both cases the envelope of the input beam has been assumed to be the 

Gaussian ( ) ( )2 2exp / 45 .r rΑ = − The results clearly verify our expectations from the 

ray-optics approach. In Fig. 3(a), the wave initially expands due to the diverging 

phase modulation; however, after passing through the lens, it starts to converge and it 

eventually forms an evident caustic SoR beyond the image plane. The superposed 



analytical curve of Eq. (14), drawn with a dashed line, confirms the expected 

parabolic profile of this caustic. Figure 3(b) depicts the maximum intensity over the 

transverse plane versus the propagation distance in logarithmic scale. The onset of the 

AAF phase is signified by an evident knee in the Imax curve (indicated with an arrow) 

that occurs at 25.8.z �  Shortly after, at 2 26.3z f L= + � , the caustic collapses and 

the wave amplitude ( )1 2/
maxΙ  has an inflection point, i.e. its gradient is maximum. The 

abruptness of focusing can be appreciated by the jump in the rate of increase of 

( )maxlog I  which is averagely 0.22 (per z unit length) before and 2.3 after the knee. A 

reversed, defocusing behavior is obtained in Fig. 4, where the opposite phase 

modulation has been applied on the same Gaussian wavefront. Now the wave before 

the lens converges and forms a caustic that is well fitted by the equation 
2(250 1)cr z z−= − (dashed line), that was predicted by ray-optics. Passing through the 

lens, this caustic experiences an inward slope discontinuity and transforms into the 

part of the parabola 210 / 4c cr = − ξ  for 0.cξ <  As this caustic SoR contracts, Imax, 

shown in Fig. 4(b), exhibits a series of maxima with gradually increasing strength. 

The last maximum, located at 13.4,z �  signifies the onset of the AADF phase that 

continues up 14.2z �  with a large negative slope for ( )maxlog I  around -2.3 in 

average. At this point the Imax curve has a knee (indicated by an arrow), that 

introduces a phase of slow defocusing with a slope -0.22 for ( )maxlog I . Between the 

maximum and the knee, an inflection point occurs at 13.7z �  as a result of the 

collapse of the caustic. The caustic extends up to the focal plane, beyond which the 

wave is completely diffracted.  

As another example, we wish to produce an optical bottle beam with the 

sinusoidal caustic ( )cos .c cr af= κξ  Parameter κ determines the length of the bottle 

along the z axis, i.e. approximately / .π κ  Inserting this equation into Eq. (13) and 

completing the algebra, the required phase is 

( ) ( ) ( )
2 2

2 1 2a fr 2x 1 x 3x 1 x
4

sin ,−κ ⎡ ⎤Φ = + + −⎢ ⎥⎣ ⎦
 (15) 

where ( )2x r af/= κ  is a normalized radius. Expression (15) is valid for 1x ≤ , i.e. for 

points on the input plane with 2 .r af≤ κ Rays emitted from that disk create the half-



period of the sinusoidal caustic ( )/ 2cξ ≤ π κ . For 2,r af> κ  ( )rΦ  is chosen so that 

the caustic is continued smoothly for / 2 .cξ > π κ Among infinite possibilities, we 

here opt for a parabolic continuation, which is expressed by 

( ) ( )2 2 2/ 4 4 .c cr af= π π − κ ξ  Substituting again into Eq. (13), the corresponding 

extension of the phase is found  

( ) ( )
2 2

3a fr 2x 6x 1 x 1
24

, .κ πΦ = + + >  (16) 

Figure 5 shows the simulation results for the parameters / 12,κ = π 1,a = 10.f =  The 

input amplitude is the standing wave ( ) ( ) ( )[ ]2
0 exp[ / 45 ]cosu r r r= − Φ  that is 

needed to form the complete caustic. The results verify the formation of the optical 

bottle with a shape that agrees well with the superposed sinusoidal curve (Fig. 5(a)). 

In the ( )maxI z  curve of Fig. 5(b), the AADF and AAF phases defining the ends of the 

bottle are evident. Notice also in the inset of the same figure the characteristic Airy-

like pattern of concentric rings developing on the image plane. 

We conclude by noting that the proposed FT method is perfectly applicable for 

producing accelerating 1D or 2D beams with pre-engineered trajectories. Indeed, the 

results of Section 2 are valid for (1+1)D beams evolving in Cartesian coordinates x-z 

and being Fourier transformed by a cylindrical lens. Then, in analogy to Eq. (1), the 

1D input condition is ( ) ( ) ( )[ ]0 exp ,u x A x i x= Φ where the phase modulation now 

reads 

( ) ( ) ,x ax q xΦ = +  (17) 

with x running from −∞  to .+∞  For a given function ,q  the equation of the 1D 

caustic is again found from Eq. (11), replacing cr  with cx  and 0r  with 0,x  and 

( ) ( )0 0 0s x x′= Φ  in analogy to Eq. (8). Inversely, for a desired caustic ( ) ,c cx ξ the 

required phase is found from Eq. (13) with the same substitutions. For example, one 

finds that, in order to produce the power-law caustic of Eq. (14), the nonlinear phase 

term should be ( ) ( ) ,nq x sgn x b x=  where ( )sgn x  is the sign function. The linear 

term ( )ax  can now be freely tuned, and even be negative or zero, to shift the beam 



laterally. An example is shown in Fig. 6(b) for a configuration with the parameters 

5 / 2,n =  0,a =  b 0.00253,=  10f =  and the Gaussian envelope 

( ) ( )2exp[ / 45 ].x xΑ = −  The resulting 1D beam trajectory agrees very well with the 

superposed third-order caustic 3 / 27c cr = −ξ . Note also in the corresponding ray 

tracing result of Fig. 6(b) that the two symmetric parts of the caustic, before and after 

the image plane, are formed by rays emitted from half-planes 0x <  and 0x >  of the 

input wavefront, respectively. 

Using separation of variables, the above can be readily generalized in 2D 

beams. For example, the beam with input amplitude 

( ) ( ) ( ) ( ) ( )[ ]0 , exp ,u x y A x A y i x i y= Φ + Φ  will produce a caustic that accelerates 

along the x y=  direction. An example is shown in Fig. 7, for the envelope and phase 

functions of the previous example. 

 

 

4. Conclusions 

We have proposed a simple yet general method for producing in the Fourier space 

AAF and AADF optical beams with arbitrary convex caustic SoR. The method 

involves the radial modulation of a simple optical wavefront with an appropriately 

designed nonlinear phase structure and subsequently a FT operation by means of a 

lens. The required phase is the sum of a linear and a nonlinear term, with the second 

being responsible for the shape of the caustic. Through both wave and ray optics we 

showed how arbitrary power-law caustics can result from a power-law nonlinear 

phase component. In particular for second-order caustics, we realized that the 

parabolic shape is a result of the cubic phase modulation of the beam’s spectrum, a 

conclusion that we have previously reached specifically for CABs.  

The FT method proposed here is expected to offer certain advantages over the 

direct generation of AAF beams using phase masks only, such as the ability to easily 

control the size and range of the produced beams through the lens’ focal strength. In 

addition perfectly symmetric optical bottles can be created and scaled at will. Our 

procedure can also be used for producing 1D or 2D beams with arbitrary convex 

caustics, thus providing a versatile tool for all kinds of accelerating waves. 
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6. Appendix 

Here we briefly outline how the field amplitude of the AAF wave can be 

approximately derived in analytic form. Referring to Fig. 2(a), the field beyond the 

image plane ( )0ξ >  is written  

( ) ( )
2 2

0
0

1, , 0 exp ,
2

r ru r u i J d
i

+∞ ρ + ρ⎛ ⎞ ⎛ ⎞ξ = ρ ξ = ρ ρ⎜ ⎟ ⎜ ⎟ξ ξ ξ⎝ ⎠⎝ ⎠∫  (A1) 

where the field on the image plane is given by Eq. (2). As implied by Eq. (7), the 

latter field can be expressed as an envelope modulated with a nonlinear phase 

( ) ( ) ( )[ ], 0 exp ,u iQρ ξ = = Β ρ − ρ  (A2) 

with the negative sign of the phase indicating focusing. For AAF waves with power-

law caustics, the phase is of the form ( ) ( )Q af βρ ∝ ρ − , with 1 2,< β <  as can be 

deduced from Eq. (7). Since the above integral cannot be computed analytically, a SP 

approximation is usually employed. From the ray tracing result of Fig. 2(a) it can be 

shown that one must distinguish between four regions which are defined from the 

caustic SoR and the cylinder r af .=  The regions are shown in Fig. 8. In region #1, 

which lies in r af>  and outside the caustic SoR, the field at each point is contributed 

by a single ray. In region #2, which lies in r af<  and outside the caustic SoR, two 

rays meet at each point. In region #3, which lies in r af>  and inside the caustic SoR, 

three rays meet at each point (one coming from the right and two from the left half-

plane). Finally, in region #4, lying in r af<  and inside the caustic SoR, four rays 

(two from either side) contribute to the field observed at each point. The above are 

valid off axis. On axis a continuum of rays, emerging from a circle (on focus) or two 



circles (off focus), intersect at each point and a different approach is applicable, as 

explained in the following. 

Now let us see what is the appropriate numerical treatment for each region. In 

regions #1, #3 where r af ,> the argument of 0J  in Eq. (A1) is large enough to yield 

oscillations. Then one substitutes Eq. (4) into Eq. (A1), also using also used Eq. (A2), 

to obtain the double integral  

( ) ( ) ( )
2 22

0 0

1 2 cos, exp ,
2 2

r ru r i iQ d d
i

+∞ π ρ + − ρ ϕ⎛ ⎞ξ = Β ρ − ρ ρ ρ ϕ⎜ ⎟πξ ξ⎝ ⎠∫ ∫  (A3) 

which is subsequently treated with the SP method for two variables. The stationarity 

conditions ( ) ( ) / ,Q r′ ρ = ρ ξ∓  and 0, ,ϕ = π  have one solution ( )1 0,ρ  in region #1 and 

three solutions ( ) ( )1 2 30 ,, , ,ρ ρ π  in region #3. 

The above approach can also be applied in regions #2 and #4, provided that 

the point is not too close to the axis. Note also that, in region #2, as the caustic is 

approached before its collapse, the two first-order stationary points merge to a 

second-order one and a third-order expansion of the phase leads to the familiar Airy 

dependence of the field amplitude (the ‘fold’ using terminology of catastrophe 

theory). Note that such an expansion is always possible since ( ) ( ) 3Q af β−′′′ ρ ∝ ρ −  

with 2,β <  hence the third derivative of the phase is never zero. 

Finally, for points near and exactly on axis, the Bessel function factor in Eq. 

(A1) varies slowly and can be absorbed in the envelope. Then one can apply the 

standard SP method to the integral 

( ) ( ) ( )
2 2

0
0

1, exp ,
2

r ru r J i iQ d
i

+∞ ρ ρ +⎛ ⎞⎛ ⎞ξ = Β ρ − ρ ρ ρ⎜ ⎟⎜ ⎟ξ ξ ξ⎝ ⎠ ⎝ ⎠∫  (A4) 

as was done in [6]. The stationarity condition ( ) /Q′ ρ = ρ ξ   yields two first-order 

stationary points which merge into a second-order one as the collapse point (the 

caustic) is approached from above. By third-order expanding the phase, one again 

finds that the on-axis amplitude near the focus is proportional to an Airy function. 
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Figures 

 

 

 

Figure 1: (Color online) Schematic of a ray travelling through a single-lens FT 

system. The lens is positioned at .z f= The red (convex) curve indicates the caustic 

formed beyond 2 .z f=  
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Figure 2: (Color online) Ray patterns on a vertical plane for a beam with input phase: 

a) nr brα +  and b) ,nr brα− −  with parameters 3,n =  1,a =  1 / 3000,b =  and a lens 

with 10.f =  The red curves (ray envelopes) are the caustics, while the dashed 

horizontal lines indicate the lens’ plane ( )z f=  and the image plane ( )2 .z f=  

 

  



 

Figure 3: (Color online) (a) Amplitude evolution of a beam with Gaussian input 

envelope with e-1 radius 45w �  and the phase modulation parameters of Fig. 2(a). 

The dashed curves are the caustics of Eq. (11). (b) Maximum intensity versus 

propagation distance. The arrow indicates the point where the AAF starts. The dashed 

vertical lines indicate planes z f=  and 2 .z f=  
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Figure 4: (Color online) (a) Amplitude evolution of a beam with the same parameters 

with Fig. 3 but with the complex conjugate input amplitude. The dashed curves 

indicate the caustics. (b) Maximum intensity versus propagation distance. The arrow 

indicates the point where the AADF ends. The dashed vertical lines indicate planes 

z f=  and 2 .z f=  
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Figure 5: (Color online) (a) Amplitude evolution of a beam with input amplitude 

( ) ( )[ ]2exp[ / 45 ]cos ,r r− Φ  where Φ  is given by Eqs. (14),(15) for / 12,κ = π 1,a =

10.f =  The dashed curves indicate the sinusoidal part of the caustic. (b) Maximum 

intensity versus propagation distance. The dashed vertical lines indicate planes z f=  

and 2 .z f=  The inset shows the amplitude distribution on the image plane. 
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Figure 6: (Color online) (a) Amplitude evolution of a 1D beam with parameters 

5 / 2,n =  0,a =  0.00253,b =  a Gaussian input envelope with e-1 width 90 and a lens 

with 10.f =  The envelope curve is the caustic, while the dashed horizontal lines 

indicate the lens and image planes. (b) Corresponding ray pattern. 
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Figure 7: (Color online) Transverse amplitude at different z-planes of an accelerating 

2D beam produced by Fourier-transforming the input wavefront 

( ) ( ) ( ) ( ) ( )[ ]0 , exp ,u x y A x A y i x i y= Φ + Φ  with ( ) ( )2exp[ / 45 ]u uΑ = −  and 

( ) ( ) 5/20.00253 .u sgn u uΦ =  (a) z=20, (b) z=23, (c) z=26. The lens has 10.f =  
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Figure 8: Regions for ray optics computations of the field of an AAF wave. The 

regions are characterized by the number of rays contributing to the field at any point.  

 

 

 


