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Stability of solitons in parity-time (PT)-symmetric periodic potentials (optical lattices) is analyzed
in both one- and two-dimensional systems. First we show analytically that when the strength of
the gain-loss component in the PT lattice rises above a certain threshold (phase-transition point),
an infinite number of linear Bloch bands turn complex simultaneously. Second, we show that while
stable families of solitons can exist in PT lattices, increasing the gain-loss component has an overall
destabilizing effect on soliton propagation. Specifically, when the gain-loss component increases,
the parameter range of stable solitons shrinks as new regions of instability appear. Thirdly, we
investigate the nonlinear evolution of unstable PT solitons under perturbations, and show that the
energy of perturbed solitons can grow unbounded even though the PT lattice is below the phase
transition point.

PACS numbers: 42.65.Tg, 05.45.Yv

I. INTRODUCTION

Recent interest in study of parity-time (PT) symmetric
optical potentials has its roots in quantum mechanics. In
quantum mechanics, in order for the energy levels to be
real and the theory to be probability conserving, it is usu-
ally assumed that the Hamiltonian (Schrödinger) opera-
tor be Hermitian. However, in the past decade there has
seen considerable attention [1–4] in a weaker version of
the Hermiticity axiom which requires that the Hamilto-
nian instead only exhibit space-time reflection symmetry
(PT symmetry). While there has been much theoreti-
cal success in developing a non-Hermitian quantum field
theory, the phenomena unique to this class of pseudo-
Hermitian systems have not yet been observed experi-
mentally.
The same Schrödinger equation from quantum me-

chanics applies also to optics. Motivated by this con-
nection, optical systems which have PT-symmetric po-
tentials have been formulated [5]. A PT-symmetric op-
tical potential V (x) is realizable by the careful distri-
bution of gain and loss in the media so that it satisfies
the PT symmetry V (x) = V ∗(−x), where x is the spa-
tial coordinate and ‘∗’ stands for complex conjugation.
That is, the refractive-index profile of the media is even
and gain-loss profile is odd. Such optical PT media have
been created experimentally [6, 7]. These linear PT me-
dia undergo phase transition as the gain-loss component
crosses a certain threshold [1, 6–8]. Below this threshold,
all eigenvalues of the PT potential are real; but above
this threshold, complex eigenvalues appear, hence the in-
tensity of a light beam grows exponentially during linear
propagation. The nature of this phase transition (es-
pecially for periodic PT potentials) has not been fully
understood yet.
These phenomena may also be studied in a nonlinear
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context by considering the existence of localized modes
called solitons [8, 9]. When a system contains gain and
loss, solitons generally exist only at special values of
the propagation constant [10]. However, since PT po-
tentials can admit all-real linear spectra, solitons could
exist at continuous ranges of the propagation constant,
which is quite remarkable. So far, soliton families in PT-
symmetric periodic potentials with defects and in PT-
symmetric nonlinear potentials have been investigated
[11–14]. Solitons in an analogous PT system, namely the
dual-core waveguide with Kerr nonlinearity and balanced
gain and loss, have also been studied [15]. But stability
properties of these PT solitons (especially in periodic PT
potentials) have not been carefully examined.
In this paper, we investigate linear phase transition

and stability of (nonlinear) solitons in PT-symmetric pe-
riodic potentials (optical lattices) in both one and two
spatial dimensions. Our mathematical model is the non-
linear Schrödinger (NLS) equation with a PT lattice po-
tential,

iUz + Uxx + Uyy + V (x, y)U + σ|U |2U = 0, (1.1)

where σ = ±1 denotes the focusing and defocusing non-
linearity, and the potential V (x, y) is periodic in x and
y and satisfies the PT symmetry V (x, y) = V ∗(−x,−y).
For simplicity, we take this PT lattice potential to be

V (x) = V0
[
cos2(x) + iW0 sin(2x)

]
(1.2)

in one dimension (1D) and

V (x, y) = V0
{
cos2(x) + cos2(y) + iW0 [sin(2x) + sin(2y)]

}

(1.3)
in two dimensions. Here V0 (> 0) is the depth of the real
component of the potential,W0 is the relative magnitude
of the imaginary component, and the period of this PT
lattice is π. For this system, we first show analytically
that when the strength of the gain-loss component (the
imaginary part of V (x, y)) in the PT lattice rises above
a certain threshold (phase-transition point), an infinite
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number of linear Bloch bands turn complex simultane-
ously. This simultaneous bifurcation of an infinite num-
ber of complex eigenvalues at the phase transition point
has never been reported before for any PT-symmetric po-
tentials to our best knowledge [1, 9]. Second, we show
that while stable families of solitons can exist in PT lat-
tices (below the phase transition point), increasing the
gain-loss component has an overall destabilizing effect on
soliton propagation. Specifically, when the gain-loss com-
ponent increases, the parameter range of stable solitons
shrinks as new regions of instability appear. Thirdly, we
investigate the evolution of unstable PT solitons under
perturbations, and show that the energy of these per-
turbed solitons can grow unbounded even if the PT lat-
tice is below the phase transition point.

II. SIMULTANEOUS COMPLEX-EIGENVALUE

BIFURCATION AT THE PHASE TRANSITION

POINT

We begin by investigating the bifurcation of the con-
tinuous spectrum (Bloch bands) of the linear Schrödinger
operator in Eq. (1.1) at the phase transition point.
The phase transition point is a point above which the
spectrum is no longer purely real as the strength of
the imaginary (gain-loss) contribution relative to the
real (refractive-index) contribution in the potential is in-
creased. We will show that at the phase transition point,
an infinite number of Bloch bands turn complex simulta-
neously.
We first consider this bifurcation in one dimension. In

this case, the linear Schrödinger equation is

iUz + Uxx + V (x)U = 0, (2.1)

where the PT lattice potential V (x) is given in Eq. (1.2).
The continuous spectrum of this Schrödinger equation
consists of Bloch modes of the form

U(x, z) = p(x; k)eikx−iµz , (2.2)

where p(x; k) is a π-periodic function in x, k is the
wavenumber in the irreducible Brillouin zone −1 ≤ k ≤
1, and µ is the propagation constant. The values of µ
and k are related. The relation µ = µ(k) is called the
diffraction relation, and all admissible values of µ form
the continuous spectrum of Eq. (2.1).
For the PT lattice (1.2), the phase transition point is

known to be W0 = 0.5 [8]. Below this phase transition
point (W0 < 0.5), the continuous spectrum is all real
and comprises an infinite number of segments (known as
Bloch bands). The gaps between these Bloch bands are
called bandgaps; the largest, which contains everything
to the left of the continuous spectrum, is the semi-infinite
gap and further gaps are numbered (in our case from left
to right). As an example, at W0 = 0.4 and V0 = 6,
the diffraction relation is shown in Fig. 1 and the Bloch
bands and bandgaps are shown in Fig. 2.

As W0 increases, bandgaps shrink (see Fig. 2). At the
phase transition point (W0 = 0.5), all Bloch bands merge
(see Figs. 1 and 2). Above the phase transition point
(W0 > 0.5), complex eigenvalues appear in the Bloch
bands. This phase transition has been reported before
[8]. For example, the diffraction relation at W0 = 0.6
and V0 = 6 is displayed in Fig. 1. It is seen that complex
eigenvalues µ arise in the Bloch bands near edges k = ±1
of the Brillouin zone.
What was not known about this phase transition, how-

ever, is that right above this phase transition point,
complex eigenvalues appear simultaneously in an infinite
number of Bloch bands. To demonstrate, the dependence
of eigenvalues µ on W0 at Brillouin-zone edge k = 1 is
shown in Fig. 2. We can see that at the phase transi-
tion point W0 = 0.5, complex eigenvalues µ bifurcate out
simultaneously from point A where the first and second
Bloch bands merge, and from point C where the third
and fourth Bloch bands merge, with both band-mergings
occurring at the Brillouin-zone edges k = ±1 (this bifur-
cation of complex eigenvalues does not occur from point
B where the second and third Bloch bands merge at the
Brillouin-zone center k = 0).
Below, we show analytically that at the phase tran-

sition point, an infinite number of complex eigenvalues
bifurcate out simultaneously from an infinite number of
Bloch bands. In particular, bifurcations of these complex
eigenvalues occur at points where the (2n−1)-th and the
2n-th Bloch bands merge (at k = ±1), but not at points
where the 2n-th and the (2n+ 1)-th Bloch bands merge
(at k = 0), for all positive integers n = 1, 2, 3, · · · (see
Figs. 1 and 2).
We look for solutions to Eq. (2.1) of the form U =

u(x)e−iµz , where u satisfies the equation

µu+ uxx + V0
(
cos2 x+ iW0 sin 2x

)
u = 0. (2.3)

At the phase transition pointW0 = 0.5, Eq. (2.3) reduces
to

(
µ+

V0
2

)
u+ uxx +

V0
2

(
e2ix
)
u = 0. (2.4)

Under the variable transformation ξ = i
√
V0/2 eix, this

equation becomes Bessel’s equation,

ξ2uξξ + ξuξ +

(
ξ2 − µ−

V0
2

)
u = 0, (2.5)

thus it has exact solutions in terms of Bessel functions
[16]

u(x) = Jk

(
i

√
V0
2

eix

)
, (2.6)

where k = ±
√
µ+ V0

2 , or

µ = −
V0
2

+ k2. (2.7)
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This is the exact diffraction relation at the phase tran-
sition point, as can be seen by utilizing the power-series
expansion of the Bessel function to expand the above
Bloch solution (2.6) into a Fourier series

Jk

(
i

√
V0
2
eix

)
=

∞∑

m=0

(V0/8)
m

m!Γ(m+ k + 1)
ei(2m+k)x

≡ eikxρ(e2imx), (2.8)

where k is seen to be the wavenumber and ρ(e2imx) is a
π-periodic function. By factoring out the π-periodic term
e2inx from eikx (for a certain integer n) and combining
it with ρ(e2imx), one can restrict the wavenumber k to
be in the Brillouin zone −1 ≤ k ≤ 1, as is customary in
the Bloch theory (see Fig. 1). The diffraction relation
(2.7) shows that the continuous spectrum at the phase
transition point W0 = 0.5 is −V0/2 ≤ µ < ∞ and is
entirely real. When k = n is an integer, the two Bessel
solutions J±k(x) in (2.6) are linearly dependent. This
corresponds to the points where different Bloch bands
merge (see points A, B, C, ... in Fig. 2), and the associ-
ated µ values are

µ = −
V0
2

+ n2, n = 0, 1, 2, · · · . (2.9)

These µ values are located at either k = 0 or k = ±1 of
the Brillouin zone on the diffraction curves, depending
on whether n is even or odd (see Fig. 1), and their Bloch
functions are π-periodic for even n and 2π-periodic for
odd n.
We now consider the case where W0 is near the phase

transition point 0.5, i.e., V0(W0 − 0.5) ≡ ǫ ≪ 1. In this
case, Eq. (2.3) becomes

(
µ+

V0
2

)
u+ uxx +

V0
2

(
e2ix
)
u+ ǫi sin(2x) = 0, (2.10)

whose solutions and the corresponding diffraction re-
lation µ = µ(k) can be derived by the perturbation
method. For simplicity, we only derive its solutions u(x)
which are π- or 2π-periodic (these Bloch solutions are
degenerate). The corresponding µ values are then those
with k = 0 or k = ±1 on the diffraction curves (see Fig.
1). These solutions and the associated µ values can be
expanded as power series in ǫ1/2,

µ = −
V0
2

+ n20 + ǫ1/2n1 + ǫn2 + ǫ3/2n3 + . . . ,

(2.11a)

u(x) = u0 + ǫ1/2u1 + ǫu2 + ǫ3/2u1 + . . . , (2.11b)

where n0 = 0, 1, 2, · · · , and coefficients n1, n2, n3, · · · in
(2.11a) are certain constants. Details of this perturbation
calculation are presented in Appendix 1. The main re-
sults for these coefficients n1, n2, · · · at various n0 values
are summarized in the following table.
We see from this table that when n0 = 1, 3, which cor-

respond to points A, C in Fig. 2, the coefficient n1 or

n3 is imaginary, thus complex eigenvalues bifurcate out
simultaneously above the phase transition point (ǫ > 0).
In addition, the imaginary part of these complex eigen-
values at n0 = 3 is much smaller than that at n0 = 1
since the former is of order ǫ3/2 while the latter is of or-
der ǫ1/2. However, no complex eigenvalues appear when
n0 = 0, 2 (the latter corresponds to the point B in Fig.
2). All these analytical results are in complete qualitative
and quantitative agreement with Fig. 2 as we have care-
fully checked. Continuing these calculations to higher n0
values, we have found that the coefficient n2m+1 is al-
ways imaginary for n0 = 2m+ 1, where m = 0, 1, 2, · · · .
Thus complex eigenvalues bifurcate out simultaneously
from all odd values of n0 at the phase transition point
W0 = 0.5.
The above table also shows that below the phase tran-

sition point (W0 < 0.5, or ǫ < 0), the eigenvalue µ from
the expansion (2.11a) is always real for all integers n0.
In addition, a gap opens at the corresponding µ values of
−V0/2 + n20. Furthermore, the width of the nth gap is of
order ǫn/2. Above the phase transition point, the even-
numbered bandgaps reopen, whereas the odd-numbered
bandgaps close and complex eigenvalues bifurcate out.
All these analytical conclusions match perfectly with Fig.
2 as well.
Now we consider eigenvalue bifurcations in two dimen-

sions. In this case, the 2D linear Schrödinger equation
(1.1) is

iUz + Uxx + Uyy + V (x, y)U = 0, (2.12)

where the PT lattice potential V (x, y) is given in Eq.
(1.3). This 2D potential is separable, thus the Bloch
modes of Eq. (2.12) are [17]

U(x, y, z) = eik1x+ik2y−iµzp(x; k1)p(y; k2), (2.13)

where p(x; k) is the 1D π-periodic function as given in
(2.2),

µ = µ̂(k1) + µ̂(k2) (2.14)

is the 2D diffraction relation, k1, k2 are Bloch wavenum-
bers in x and y directions and are located inside the irre-
ducible Brillouin zone −1 ≤ k1, k2 ≤ 1, and the function
µ̂(k) is the diffraction relation of the 1D equation (2.1).
This diffraction relation (2.14) shows that complex eigen-
values appear in this 2D PT lattice if and only if com-
plex eigenvalues appear in the 1D PT lattice (1.2). Thus
all eigenvalues in the 2D system (2.12) are real when
W0 ≤ 0.5, and a phase transition occurs at W0 = 0.5
above which complex eigenvalues arise. In addition, an
infinite number of Bloch bands turn complex simultane-
ously right above this phase transition point.

III. STABILITY OF PT SOLITONS IN ONE

DIMENSION

In the presence of cubic nonlinearity, the mathematical
model becomes the NLS equation (1.1) with a PT lattice
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potential. In this case, light can self-localize and form
solitons. In this section, we study these PT solitons and
their linear-stability behaviors in one dimension.
In one dimension, the NLS equation (1.1) becomes

iUz + Uxx + V (x)U + σ|U |2U = 0. (3.1)

Here the PT lattice V (x) is taken as (1.2) with V0 = 6,
and σ = ±1. Solitons in this model are sought of the
form

U(x, z) = e−iµzu(x), (3.2)

where u(x) is a localized function, and µ is a real propaga-
tion constant. These solitons can be computed by either
the squared operator iteration method or the Newton-
conjugate-gradient method applied to the normal equa-
tion [17]. They exist when µ lies inside bandgaps of
the linear system for W0 both below and above the
phase transition point. Above the phase transition point
(W0 > 0.5), linear waves amplify exponentially during
propagation, thus any solitons would also be unstable to
perturbations. So we only need to consider W0 ≤ 0.5
below.
To determine the linear stability of these PT solitons,

we perturb them as

U = e−iµz
[
u(x) + ũ(x) eλz + w̃∗(x) eλ

∗z
]
, (3.3)

where |ũ|, |w̃| ≪ |u|. After substitution into equation
(3.1) and linearizing, we arrive at the eigenvalue problem

iL

(
ũ
w̃

)
= λ

(
ũ
w̃

)
, (3.4)

where

L =

(
L11 L12

L21 L22

)
,

L11 = µ+ ∂xx + V (x) + 2σ|u|2,

L12 = σu2,

L21 = −σ
(
u2
)∗
,

L22 = −
(
µ+ ∂xx + V ∗(x) + 2σ|u|2

)
.

This eigenvalue problem can be computed by the Fourier
collocation method (for the full spectrum) or the Newton-
conjugate-gradient method (for individual discrete eigen-
values) [17]. If eigenvalues with positive real parts exist,
the soliton is linearly unstable; otherwise it is linearly
stable.
We first consider PT solitons in the semi-infinite gap

under focusing nonlinearity (σ = 1). For W0 = 0.45,
two families of PT solitons are obtained and their power
curves are displayed in Fig. 3 (left). Here the power of a
soliton is defined as

P (µ) =

∫ ∞

−∞

|u(x;µ)|2dx. (3.5)

In this figure, the lower power curve is for the funda-
mental solitons which exhibit the same PT symmetry
u∗(x) = u(−x) and whose real parts possess a single dom-
inant peak. The profile of such a soliton at µ = −3.5 is
displayed in Fig. 3 (right). This soliton family bifurcates
out of the first Bloch band, and the solitons near this
Bloch band are low-amplitude Bloch-wave packets. We
have found that the entire branch of this fundamental-
soliton family is linearly stable, which is indicated by
solid lines of its power curve in Fig. 3 (left). The up-
per power curve in Fig. 3 is for the dipole solitons.
This power curve features double branches which ter-
minate before reaching the first Bloch band (a similar
phenomenon occurs in purely real lattices [17, 18]). Pro-
files of three such solitons on the lower power branch
are displayed in Fig. 4 (top). It is seen that the real
parts of these dipole solitons possess two dominant peaks
of opposite phase (which is why they are termed dipole
solitons). Unlike the fundamental solitons, these dipole
solitons are linearly stable only in a certain portion of
their existence region. Specifically, only dipole solitons
on the lower branch and with µ ≤ µa ≈ −3.8 are stable
(see Fig. 3 (left)). For dipole solitons in this region, their
spectra are entirely imaginary (see Fig. 4 (bottom left)).
At µ = µa, stability switching occurs where a quadruple
of complex eigenvalues bifurcate off of the edge of the con-
tinuous spectrum (see Fig. 4 (bottom center)). Within
the unstable region, there is a second eigenvalue bifurca-
tion at µ ≈ −3.4 of the lower branch (near and on the left
side of the power minimum) where a pair of real eigenval-
ues bifurcate from zero (see Fig. 4 (bottom right)). Some
of these stability behaviors on dipole solitons are similar
to those in the purely real potential (W0 = 0) [17]. A no-
table difference is that for real potentials real eigenvalues
bifurcate out of the origin exactly at the minimum of the
power curve [17], whereas here this real-eigenvalue bifur-
cation occurs not at the power minimum. An analytical
explanation for this new phenomanon will be given in
Appendix 2.

Next we consider PT solitons in the first gap under
defocusing nonlinearity (σ = −1). Again, for W0 = 0.45,
two families of PT solitons are obtained and their power
curves are displayed in Fig. 5 (left) with stability re-
sults indicated. The lower curve is for fundamental soli-
tons whose profiles at two µ values are depicted in Fig.
5 (top right panel), while the upper curve is for dipole
solitons, whose profiles are similar to those in Fig. 6
(middle panel) below. The fundamental-soliton family
bifurcates out of the first Bloch band, whereas the dipole
family does not. We have found that all solitons in this
dipole family are linearly unstable (see Fig. 5 (left)).
The fundamental-soliton family, however, is linearly sta-
ble when µ ≤ µb ≈ −1.77. At µ = µb, stability switching
occurs where a pair of real eigenvalues bifurcate out from
zero (see Fig. 5). Notice that unlike in real potentials
[17], this zero-eigenvalue bifurcation does not occur at a
power extremum since the potential here is complex. An
explanation for this will be presented in Appendix 2.
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The stability results of PT solitons in Figs. 3 to 5 were
obtained for a specific W0 value of 0.45. Now we discuss
how these stability results change when W0 steadily in-
creases from 0 to 0.5. First we consider PT solitons in
the semi-infinite gap under focusing nonlinearity. We find
that when 0 ≤ W0 < 0.5, the entire fundamental-soliton
family remains stable. The dipole family, however, is
stable only on the left side of its lower branch (see Fig.
3), and this stable region shrinks as W0 increases. Next
we consider PT solitons in the first gap under defocusing
nonlinearity. When W0 = 0 (i.e., the lattice is real), the
fundamental-soliton family is stable in the entire first gap
[17]. As W0 rises above approximately 0.3, an unstable
region grows off the edge of the second band. At the sta-
bility switching point a pair of real eigenvalues bifurcate
from zero as illustrated in Fig. 5. Regarding the dipole-
soliton family, its entire upper branch is unstable for all
W0 values. Its entire lower branch is also unstable when
W0 > Wa ≈ 0.44. For W0 < Wa, a certain portion of its
lower branch is stable; but asW0 increases, this stable re-
gion shrinks and then totally disappears whenW0 > Wa.
To demonstrate this reduced stability of dipole solitons
with increasingW0, the power curves of these dipole soli-
tons at twoW0 values of 0.35 and 0.4 are shown in Fig. 6
(top panel) with stability results indicated. The soliton
profiles at µ = −2 are also shown in the middle panel
of the same figure. It is seen that the stable region of
dipole solitons at W0 = 0.4 is much shorter than that at
W0 = 0.35. Notice also that asW0 increases the width of
the first gap decreases which is often a sign of decreased
stability. The unstable region on the lower branch is
largely located near the edge of the second Bloch band,
and the instability in this region is caused by a quadruple
of complex eigenvalues (see Fig. 6 (bottom panel)).
The above stability results of PT solitons show that as

W0 increases (but still below the phase transition point),
the stable regions of PT solitons generally shrink (see Fig.
6). The only exception is the fundamental-soliton fam-
ily in the semi-infinite gap under focusing nonlinearity,
which remains entirely stable up to the phase transition
point. Overall, the inclusion of the gain-loss component
in the PT lattice has a destabilizing effect on solitons.

IV. STABILITY OF PT SOLITONS IN TWO

DIMENSIONS

In this section we analyze the linear stability of solitons
in a two-dimensional PT lattice. We will show that the
destabilizing effect of the gain-loss component is more
prominent in this case, even for fundamental solitons in
the semi-infinite gap.
In two dimensions, the mathematical model is Eq.

(1.1), or

iUz + Uxx + Uyy + V (x, y)U + σ|U |2U = 0, (4.1)

where the PT lattice V (x, y) is taken as (1.3) with V0 = 6.

Solitons in this model are sought of the form

U(x, y, z) = e−iµzu(x, y), (4.2)

where u(x, y) is a localized function, and µ is a real prop-
agation constant. These solitons as well as their linear-
stability spectra can be obtained by numerical methods
similar to the 1D case. The phase transition point in
this 2D model is also W0 = 0.5, above which all solitons
are linearly unstable. Thus we only consider W0 < 0.5
below.
For simplicity we only consider 2D fundamental PT

solitons in the semi-infinite gap under focusing nonlin-
earity (σ = 1). These fundamental solitons possess the
PT symmetry u∗(x, y) = u(−x,−y), and their real parts
have a single dominant peak. Profiles of such solitons can
be found in Fig. 8 (upper panel) later. We find that these
fundamental solitons are stable only on a finite µ-interval
even for small values of W0. In addition, this stable re-
gion shrinks asW0 increases and totally disappears when
W0 > Wb ≈ 0.47. To demonstrate, power curves of these
solitons as well as their stability regions at two W0 val-
ues of 0.2 and 0.3 are displayed in Fig. 7. It is seen that
the stable region is finite even though the existence re-
gion of solitons is infinite. In addition, as W0 increases
from 0.2 to 0.3, the stable region has shortened by sev-
eral times. For each W0, there are two unstable regions,
one located at large negative µ values, and the other one
located near the first Bloch band. For large negative val-
ues of µ the instability is due to a quadruple of complex
eigenvalues, whereas for µ values near the first band, the
instability is due to a pair of real eigenvalues. Examples
of the spectrum in each region are shown in Fig. 8 with
W0 = 0.3. We see that in this 2D case, even the funda-
mental solitons in the semi-infinite gap are destabilized
by the addition of the gain-loss component in the lattice.

V. NONLINEAR EVOLUTION OF PT

SOLITONS UNDER PERTURBATIONS

In this section, we examine the nonlinear evolution
of PT solitons under weak perturbations. We find that
when a PT soliton is linearly stable, then it is also non-
linearly stable and propagates robustly against perturba-
tions. If the soliton is linearly unstable, then it breaks up
under perturbations, and its amplitude and energy can
grow unbounded over distance.
First we consider the 1D fundamental soliton shown

in Fig. 3, which resides in the semi-infinite gap under
focusing nonlinearity and is linearly stable. We perturb
it by 5% random noise perturbations and then simulate
its evolution in Eq. (3.1). The simulation result is shown
in Fig. 9 (left). We can see that even after z = 100 units
of propagation, this soliton remains robust and does not
break up. Thus this soliton is also nonlinearly stable.
Next we consider the 1D fundamental soliton shown in
Fig. 5, which resides in the first gap under defocusing
nonlinearity and is linearly unstable. When this soliton
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is perturbed by 5% random noise perturbations, its evolu-
tion is shown in Fig. 9 (right). It is seen that this soliton
quickly blows up and spreads out, thus is obviously non-
linearly unstable. Notice that the peak amplitude and
energy of this perturbed soliton steadily increase with-
out bound over distance. This indicates that the gain-
loss component of the PT lattice steadily feeds energy
into the solution. Recall that the W0 value in this case is
below the phase transition point, thus linear waves do not
grow. Consequently the energy growth in this evolution
is solely due to the nonlinear effects.
Lastly we consider the 2D fundamental soliton shown

in Fig. 8 (left panel), which resides in the semi-infinite
gap under focusing nonlinearity and is linearly unstable.
When this soliton is perturbed by 5% random noise per-
turbations, its evolution is shown in Fig. 10. It is seen
that the power (and peak amplitude) of this perturbed
soliton also grows oscillatorily without bound, thus this
soliton is nonlinearly unstable. This oscillatory growth
occurs since the unstable eigenvalues of this soliton are
complex (see Fig. 8 (lower left panel)).

VI. SUMMARY

In summary, we have analyzed the linear phase tran-
sition and nonlinear solitons in PT-symmetric photonic
lattices. We have shown that at the phase transition
point, an infinite number of linear Bloch bands turn com-
plex simultaneously. We have also shown that while con-
tinuous ranges of stable solitons can exist in PT lattices,
increasing the gain-loss component of the lattice has an
overall destabilizing effect on soliton propagation. In ad-
dition, we have shown that when unstable PT solitons
are perturbed, the energy of the solution can grow un-
bounded even though the PT lattice is below the phase
transition point.
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Appendix 1: Calculation of eigenvalue bifurcations

at the phase transition point

In this appendix, we calculate eigenvalue bifurcations
at the phase transition point in Eq. (2.10) by pertur-
bation methods. The solution u(x) to this equation is
required to be π- or 2π-periodic, and perturbation ex-
pansions for u(x) and eigenvalue µ are as given in Eq.
(2.11).

Let us define the operator

L = ∂xx + n20 +
V0
2
e2ix. (A.1)

After substituting expansions (2.11) into Eq. (2.10) and
collecting terms of the same order in ǫ1/2 we arrive at the
following system of linear equations

Lu0 = 0, (A.2a)

Lu1 = −n1u0, (A.2b)

Lum = −i sin(2x)um−2 −
m∑

j=1

njum−j (A.2c)

for m = 2, 3, 4, · · · . The solution u0 is

u0(x) =

∞∑

m=−∞

amei(2m+n0)x, (A.3)

where

am =
(V0/8)

m

m!(m+ n0)!
, for m ≥ 0, (A.4)

and am = 0 for m < 0. This solution comes directly
from (2.8) by replacing the wavenumber k with the inte-
ger n0. The remaining linear inhomogeneous equations
(A.2b)-(A.2c) for u1, u2, . . . will be solved by first im-
posing the solvability condition due to the Fredholm Al-
ternative Theorem and then expanding the solution in
terms of Fourier series.
The adjoint operator of L is

LA = ∂xx + n20 +
V0
2
e−2ix, (A.5)

and has kernel u∗0 since LAu∗0 = 0. The Fredholm Alter-
native Theorem requires that the forcing terms in equa-
tions (A.2) be orthogonal to u∗0. As we have mentioned
earlier, we are concerned with π- and 2π-periodic solu-
tions here and thus define the inner product as

〈f(x), g(x)〉 =
1

2π

∫ π

−π

f(x)g∗(x)dx. (A.6)

Using the fact that 〈eipx, eiqx〉 = δp,q for integers p, q, we
obtain the inner product

〈u0, u
∗

0〉 =

{
a20, n0 = 0,
0, n0 = 1, 2, 3, · · · .

(A.7)

Eq. (A.2b) for u1 has the solvability condition

0 = −n1〈u0, u
∗

0〉. (A.8)

Thus, when n0 = 0 then n1 = 0. For other n0 this
solvability condition is satisfied automatically and the
solution u1 may be formally written as

u1 = −n1L
−1u0. (A.9)



7

Expanding L−1u0 into Fourier series

L−1u0 =

∞∑

m=−∞

bmei(2m+n0)x (A.10)

and substituting it into L
[
L−1u0

]
= u0 we find that the

coefficients bm satisfy the recursion relation

−4
(
m2 +mn0

)
bm +

V0
2
bm−1 = am (A.11)

for all integers m. The relevant coefficients are

b−1 =
2

V0
a0 (A.12a)

b−2 = −
16

V 2
0

(n0 − 1)a0 (A.12b)

...

b−n0
=

(−1)n0−1

4
(n0 − 1)!2

(
8

V0

)n0

a0 (A.12c)

bm = 0, for m < −n0. (A.12d)

Notice that this series also terminates in the negative m
direction at m = −n0.
The equation (A.2c) for u2 is

Lu2 = −i sin(2x)u0 − n1u1 − n2u0. (A.13)

When n0 = 0 (hence n1 = u1 = 0), its solvability condi-
tion is

n2 = −
〈i sin(2x)u0, u

∗
0〉

〈u0, u∗0〉
, (A.14)

which gives n2 = V0/8. For n0 ≥ 1, after substituting in
the solution (A.9)-(A.10) for u1, the solvability condition
of (A.13) gives

n21 =
〈i sin(2x)u0, u

∗
0〉

〈L−1u0, u∗0〉
. (A.15)

By rewriting i sin(2x) = 1
2

(
ei2x − e−i2x

)
we may again

use the orthogonality of the Fourier modes to work out
the inner products explicitly,

〈i sin(2x)u0, u
∗

0〉 = −
1

2
a20, for n0 = 1, (A.16a)

〈i sin(2x)u0, u
∗

0〉 = 0, for n0 = 2, 3, 4 . . . ,
(A.16b)

〈L−1u0, u
∗

0〉 = b−n0
a0, for n0 = 1, 2, 3 . . . .

(A.16c)

Thus,

n1 = ±i
V

1/2
0

2
, for n0 = 1, (A.17)

and n1 = 0 for n0 > 1. This means if n0 = 1 then n1 is an
imaginary number and, returning to the expansion for µ

in equation (2.11a), that µ is a complex number for W0

above the phase transition point, ǫ > 0, and real below,
ǫ < 0. This is the bifurcation that occurs at edge of the
Brillouin zone where the first and second bands merge
(see Figs. 1 and 2).
For n0 = 1, we can proceed to solve Eq. (A.13) for u2

by Fourier expansion. Then from the solvability condi-
tion for the u3 equation we can find that

n2 =
V0
32
, for n0 = 1.

Subsequently we can solve the u3 equation by Fourier
expansion, and from the solvability condition of the u4
equation we further get

n3 = ±i

(
V

−1/2
0

4
+
V

3/2
0

29

)
, for n0 = 1.

For n0 ≥ 2 we formally write the solution u2 as

u2 = −L−1 [i sin(2x)u0]− n2L
−1u0 (A.18)

since we know that L−1[i sin(2x)u0] is well defined in view
of the orthogonality (A.16b). Expanding it into a Fourier
series

L−1 [i sin(2x)u0] =
∞∑

m=−∞

cmei(2m+n0)x, (A.19)

it is easy to find that the coefficients cm satisfy the re-
cursion relation

−4
(
m2 +mn0

)
cm +

V0
2
cm−1 =

1

2
(am−1 − am+1) ,

(A.20)
and

c−1 = −
1

8(n0 + 1)
a0, c−2 = −

2

(1 + n0)V0
a0.

Again there are only a finite number of terms in the neg-
ative m direction, i.e. cm = 0 for m < −n0.
For n0 ≥ 2 (hence n1 = u1 = 0), Eq. (A.2c) for u3 is

Lu3 = −n3u0, (A.21)

thus

u3 = −n3L
−1u0, (A.22)

and Eq. (A.2c) for u4 is

Lu4 = −i sin(2x)u2 − n2u2 − n4u0. (A.23)

After substituting in (A.18) for u2 the solvability condi-
tion is

0 = n22〈L
−1u0, u

∗

0〉

+ 2n2〈L
−1i sin(2x)u0, u

∗

0〉

+ 〈i sin(2x)L−1i sin(2x)u0, u
∗

0〉, (A.24)
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with coefficients given by

〈L−1u0, u
∗

0〉 = b−n0
a0, (A.25a)

〈L−1i sin(2x)u0, u
∗

0〉 = c−n0
a0, (A.25b)

〈i sin(2x)L−1i sin(2x)u0, u
∗

0〉 = −
1

2
(c−n0

a1 + c−n0+1a0) .

(A.25c)

For n0 = 2 this gives n2 = V0/24, −5V0/24. For n0 ≥ 3
we find that n2 is a double root,

n2 = −
V0
8

1

n20 − 1
. (A.26)

At these n2 values, the solution u4 is well defined and is
given by

u4 = −L−1 [i sin(2x)u2 + n2u2]− n4L
−1u0. (A.27)

For n0 ≥ 2, Eq. (A.2c) for u5 is

Lu5 = −i sin(2x)u3 − n3u2 − n2u3 − n5u0. (A.28)

After substituting in equations (A.18) and (A.22) the
solvability condition for this u5 equation reduces down
to

0 = n3
[
n2〈L

−1u0, u
∗

0〉+ 〈L−1i sin(2x)u0, u
∗

0〉
]
. (A.29)

Thus, for n0 = 2 we must have n3 = 0; and for n0 ≥ 3
this condition is satisfied automatically since n2 from Eq.
(A.26) is a double root of Eq. (A.24).
For n0 ≥ 3, Eq. (A.2c) for u6 is

Lu6 = −i sin(2x)u4−n2u4−n3u3−n4u2−n6u0. (A.30)

Substituting in Eq. (A.22) and noting that 〈u2, u
∗
0〉 = 0

(in view of (A.29)) we are left with the solvability condi-
tion

n23 =
〈u4(n2 + i sin(2x)), u∗0〉

〈L−1u0, u∗0〉
. (A.31)

This condition may be further simplified,

〈u4(n2 + i sin(2x)), u∗0〉

= 〈u4, (n2 − i sin(2x))u∗0〉

= −〈i sin(2x)u2 + n2u2 − n4u0, u
∗

2〉

= −〈i sin(2x)u2, u
∗

2〉.

Thus for n0 = 3, we get

n3 = ±i
V

3/2
0

29
, (A.32)

and for n0 > 3, we get n3 = 0. This shows that there
is another bifurcation point of complex eigenvalues at
n0 = 3, where the third bandgap closes (see Figs. 1 and
2).
The results of the above perturbation calculations are

summarized in Table 1 of the main text. Continuing
these calculations to higher n0 values, we have found that
the coefficient n2m+1 is always imaginary for n0 = 2m+1,
where m = 0, 1, 2, · · · . Thus complex eigenvalues bifur-
cate out simultaneously from n0 = 1, 3, 5, · · · at the phase
transition point W0 = 0.5.

Appendix 2: Analytical criterion for zero-eigenvalue

bifurcation of solitons in complex potentials

In real potentials (such as when W0 = 0 in (1.2)), the
power curve does more than just a convenient way to cat-
alogue and parameterize a continuous family of solitons
for various values of the propagation constant µ. Specifi-
cally, whenever the power curve has a local extremum the
zero eigenvalue in the linear-stability spectrum of solitons
then bifurcates out along the real and imaginary axes on
the two sides of the power extremum respectively, lead-
ing to a change of stability at the power extremum (if no
other unstable eigenvalues exist) [17]. In this appendix
we consider the extension of this concept to general com-
plex potentials (which include PT-symmetric lattices as
special cases). The resulting analytical criterion for zero-
eigenvalue bifurcation will explain the stability switch-
ings in Fig. 5 and Fig. 7 (right side), as well as the onset
of real eigenvalues in Fig. 4 (right panel).
Let us begin with the eigenvalue problem (3.4) derived

in the main text,

iL

(
ũ
w̃

)
= λ

(
ũ
w̃

)
, (A.33)

where we know that λ = 0 is always an eigenvalue with
algebraic multiplicity of at least two due to phase invari-
ance of Eq. (1.1). The eigenfunction and generalized
eigenfunction of this zero eigenvalue associated with the
phase invariance can be written explicitly in terms of the
soliton u(x),

L

(
u

−u∗

)
= 0 and L

(
uµ
u∗µ

)
=

(
u

−u∗

)
.

Thus, for nonzero eigenvalues to bifurcate out from the
origin, λ = 0 must have algebraic multiplicity of at least
3 at that point. A sufficient condition for this to occur is
that there be a second generalized eigenfunction ψ which
solves

Lψ =

(
uµ
u∗µ

)
. (A.34)

We now use the Fredholm Alternative Theorem to derive
the solvability condition for Eq. (A.34). Let us denote
the kernel of the adjoint operator LA as φ(A), i.e.,

LAφ(A) = 0, (A.35)

where the adjoint operator is

LA = L∗T . (A.36)

Here the superscript “T ” stands for transpose of a ma-
trix. Then the solvability condition of Eq. (A.34) is

〈(
uµ
u∗µ

)
, φ(A)

〉
= 0, (A.37)
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which is a sufficient condition (criterion) for zero-
eigenvalue bifurcation in general complex potentials.
For real potentials, it is easy to see that

φ(A) =

(
u(x)
u∗(x)

)
, (A.38)

thus the above criterion reduces to P ′(µ) = 0, i.e., the

extremum of the power curve [17]. For general complex
potentials, however, φ(A) is not equal to the above ex-
pression, thus stability switching will no longer occur at
a power extremum. An example of this has been seen in
Fig. 5.
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FIG. 1: (Color online) Diffraction relations of PT lattices
(1.2) for three W0 values 0.4, 0.5 (upper panel) and 0.6 (lower
panel) at V0 = 6. The inset in the lower right panel is ampli-
fication of the small boxed region near k = 1 and Im[µ] = 0
of the same panel.
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FIG. 2: (Color online) Bandgap structure of the PT lat-
tice (1.2) as W0 crosses the phase transition point 0.5 (with
V0 = 6). Above this phase transition point, complex eigen-
values µ bifurcate out simultaneously from points A, C, ...
where Bloch bands merge (see the upper panel). The real
and imaginary parts of these complex eigenvalues versus W0

at the Brillouin edge k = 1 are plotted in the upper and lower
panels respectively.
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FIG. 3: (Color online) One-dimensional PT solitons in the
semi-infinite gap under focusing nonlinearity (σ = 1) for V0 =
6 and W0 = 0.45. (left) Power curves of these solitons; the
lower curve is for fundamental solitons and the upper curve
for dipole solitons; solid blue and dashed red lines represent
stable and unstable solitons respectively (the same holds for
all other figures); the shaded region is the first Bloch band.
(right) Profile u(x) of a fundamental soliton at µ = −3.5
(marked by a dot on the lower curve of the left panel); the
solid blue line is for the real part and dashed pink line for the
imaginary part.

−10 0 10
−1

0

1

µ = −4

x

R
e(

u
)

an
d

Im
(u

)

−10 0 10
−1

0

1

µ = −3.5

x
−10 0 10

−1

0

1

µ = −3.33

x

−0.2 0 0.2

−2

0

2

Re(λ)

Im
(λ

)

−0.2 0 0.2

−2

0

2

Re(λ)
−0.2 0 0.2

−2

0

2

Re(λ)
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in Fig. 3, and the locations of these solitons are marked by
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FIG. 5: (Color online) One-dimensional PT solitons in the
first gap under defocusing nonlinearity (σ = −1) for V0 = 6
and W0 = 0.45. (left) Power curves of these solitons; the
lower curve is for fundamental solitons and the upper curve
for dipole solitons; (top right) two fundamental solitons at
µ = −2 and −1.7 (marked by dots in the left panel); (bottom
right) linear-stability spectra of these solitons.
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(with V0 = 6). (top) Power curves; (middle) soliton profiles
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stability spectra of the solitons in the middle panel.



11

−15 −10
0

2

4

6

8

10

12
W0 = 0.2

µ

P

−15 −10
0

2

4

6

8

10

12
W0 = 0.2

µ

P

−15 −10
0

2

4

6

8

10

12
W0 = 0.3

µ

P

−7.7 −7.2
1

2
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inset in the right panel is amplification of the power curve
near the first Bloch band in the same panel.
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FIG. 8: (Color online) Fundamental 2D solitons (|u(x, y)|)
(top) and their linear-stability spectra (bottom) for three µ
values in the semi-infinite gap with σ = 1, V0 = 6 and W0 =
0.3. The power curve of these solitons is shown in Fig. 7
(right panel).
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FIG. 9: (Color online) (left) Nonlinear evolution of the stable
1D soliton in Fig. 3 under 5% random noise perturbations;
(right) Nonlinear evolution of the unstable 1D soliton in Fig.
5 (with µ = −1.7) under 5% random noise perturbations.
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FIG. 10: (Color online) Nonlinear evolution of the unsta-
ble 2D soliton in Fig. 8 (with µ = −10) under 5% random
noise perturbations. (left) Power evolution versus distance z;
(right) Solution profiles at two distances z = 6.6 and 7.3.

Tables

TABLE I: Coefficients in the µ expansion (2.11a).

n0 n1 n2 n3

0 0 V0/8 0

1 ±i
V

1/2
0

2
V0/32 ±i

(

V
−1/2
0

4
+

V
3/2
0

29

)

2 0 −
5V0

48
,
V0

48
0

3 0 −V0/64 ±i
V

3/2
0

29

N 0 −
V0

8

1

N2 − 1
0


