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We study the quantum statistical properties of the colleatixcitations of an atomic ensemble inside a high-
finesse cavity. In the large-detuning regime, it is found the virtual photon exchange can induce a long-range
interaction between atoms, which results in correlatedta&iens. In particular, the atomic blockade phe-
nomenon occurs when the induced long-range interacti@ctévely suppresses the double atomic excitation,
when the average photon number takes certain values, whikbsithe two nearest energy levels degenerate. We
also show that quantum phase transitions occur in the icitirnteracting atomic ensemble when the average
photon number reaches several critical points. In thiseseth® quantum statistical properties of the collective
excitations are very sensitive to the change of the averagtp number. Our model exhibits quantum phase
transitions similar to the ones in the Lipkin-Meshkov-@limodel. Our proposal could be implemented in a
variety of systems including cavity QED, Bose-Einsteindmmsates, and circuit QED.

PACS numbers: 42.50.Nn, 42.50.Dv, 73.43.Nq

I. INTRODUCTION blockade &ect using an indirect-interaction coupling, which
is induced by some confined photons in a cavity rather than by

In quantum optics, photon statistics reflect the essentigfliPole-dipole interactions between atoms, as in the Rygiber
properties of the electromagnetic fielt].[ Importantly, cor- blockade. Physical properties of atomic ensembles can also

related photon counting by the second-order correlationfu P& quantified via spin squeezirgf].

tion can characterize the very quantum nature of light, such Specifically, we study the case where an ensemble of two-
as bunching and antibunchinfects p], as well as the pho- level atoms are coupled to a cavity field with a large detuning
ton blockade 3, 4], which is also referred to as optical state frequency. The photons in the cavity can induce excitation
truncation p]. The quantum statistical approach for photon hopping among atoms, which form a collective excited state

counting P] is also applicable to other massive and masslesglescribed by the number of excited atoms. We will consider
bosons 7]. The collective excitations of an atomic ensemblethe case where the number of excited atoms is similar to the

could be regarded as an operational quantum men&9j[ difference between the numbers of excited atoms and unex-
and the ensemble behaves as a boson in the Mrgjmit cited atoms. Also the variation of half of thisi#irence equals

with low excitations L0]. Therefore, it is expected that the the variation of the number of excited atoms.
quantum statistical approach can also work well for atomic Similar to the generic Coulomb interaction for the Rydberg
collective excitations. Moreover, the quantum correlagiof ~ blockade 11-13], the induced interaction by cavity photons
these excitations can also be responsible for doubleagiait  is also a long-range interaction and results in inhomogesieo
effects, such as the Rydberg blockade, where double excitanergy-level spacings. More specifically, the structurthef
tion is strongly suppressed by the dipole-dipole intewacti energy levels depends on the average photon number. We find
between highly excited Rydberg atonis{13]. that there will be two degenerate energy levels at an integra
The atomic blockade is similar to the Coulomb blockade, anultiple of 1/2 for the average photon number. If the average
typical mesoscopic phenomenon where a single electron prgghoton number slightly deviates from an odd multiple ¢2,1
vents an electric current from crossing some confined nanoghese two degenerate levels will become nearly degenarate b
tructure [L4-17]. Similar blockade fects have been predicted far away from other energy levels. Hence, it ifiidult for the
and also observed in quantum optical system for pho@®#§|[ atomic ensemble to transit from the nearly-degeneratdseve
and cold atomsJ1-13, 18]. Recently, also phonon blockade to other levels. This shows that the double excitation neui
has been studiedlf]. The blockade iect, whereby a sin- higher energy, which isfb-resonant to two single excitations.
gle particle prevents the flow8] 4, 14-16, 18] or excitation ~ Therefore, the atomic blockadéect could occur. If we fur-
of many particles, provides a mechanism for the precise mather change the average photon number, the pair of nearly-
nipulation of quantum states of microscopic quantum objectdegenerate energy levels shifts far away from each other, bu
at the level of a single particle. In this sense, it is esaénti one of them could end up closer to a neighboring energy level
for the implementation of single-particle-based quantuem d which was far away from this pair before changing the aver-
vices. The photon blockaddfect may have applications in age photon number. Thus, the occurrence of atomic blockade
single-photon sources, needed for the physical implement&an be controlled by the average photon number in the cavity.
tion of quantum cryptography protoco(]. Meanwhile, a quantum phase transition (QPA2-24] oc-
In this paper we consider quantum correlatidfeets for  curs when the average photon number is a half-integer, for
an atomic system. One of the correlatidffieets studied is negative detuning (the fierence between the atomic energy-
the Rydberg blockadeffiect. We consider a similar atomic level spacing and the frequency of the cavity field). This



(b) the atomic ensemble, and the ground state is analyzed for dif
ferent APNs. In Sec. lll we then coherently drive the atomic
|e> ensemble and derive th&ective Hamiltonian near two criti-
B cal pointsn§ = 1/2 andng = j — 1/2. In Sec. IV, we introduce
[ A & R the generalized second-order coherence function and-calcu
‘ o, i late the statistical properties of the excitations of treat
@ : :A Ewd ensemble in the cases with and without dissipation. We dis-
v v ¥ cuss the atomic blockadéfect and sensitivity of the QPT to
W the photon number in Secs. V and VI, respectively. Finally,
we present our conclusions in Sec. VII. The explicit form of
the parameters used in Secs. IV and VI are given in the Ap-

pendix.

II. QUANTUM CRITICALITY OF AN ATOMIC
ENSEMBLE STRONGLY COUPLED TO A CAVITY FIELD
v
A. Mode and Hamiltonian

As shown in Fig.1, the system we consider consists of an
ensemble of atoms confined to a single-mode cavity of fre-
guencyw. The cavity field is described by the annihilation
(creation) operatoa (a'). This model can be implemented in

(a) a variety of systems including cavity QEBRJ], Bose-Einstein
condensatessfl], and circuit QED B5|.
FIG. 1: (Color online) & Schematic of a cavity field of frequency Our model is described by the Dicke Hamiltoni&9][32,
w coupled to an atomic gas consisting ftwo-level atoms with ~ 39-40] (hereafter, we také = 1),
energy-lev_el spa_cing)A. A driving field of str_engtth and fre- on N % N o o
uencywyq is applied to the atomsb) The coupling diagram of one _ af (6) T (L 03
gf the %/wg-lev;%toms in the cavits.xHerA,is tk’?e dgetun?ng between Hi = waia+ 2 ; Tz W ; (a o tao, ) » (@)
the atomic level spacin@s and the cavity field frequenay, namely, N
A = wa — w. And wy is the frequency of the drive. under the rotating-wave approximation. Here, we use the
Pauli matricesarg’) = |e)jj(el — 19y, 09) = |e)jj{gl, and
o = |9);i(€l to describe the atomic transition of tljiga atom
is partially due to the energy-level crossing under the abovwith energy-level spacinga, wherele); and|g); are the ex-
conditions. The ground state changes drastically arouad thcited and ground states of thy#in atom, respectively.
critical points characterized by the average photon number For an atomic gas with size smaller than the wave-
This QPT behavior is similar to that of the Lipkin-Meshkov- length R9, 31], we assume that all the atoms are located
Glick (LMG) model [25], which was studied in the quantum- near the origin and interact with the cavity field at the ho-
information-process context in, e.g., Re26]. In this sense, mogeneous coupling raig/ VN. Here, the factoryN in
we can regard our system as a modification of the LMGthe denominator of the coupling strength originates froen th
model. However, the critical points in our system are averag fact that the coupling strength is inversely proportionatte
photon-number-dependent. This provides a controllable wasquare root of the volume of the cavity field ¢V. The vol-
to manipulate the system betweeffelient phases. umeV is approximately equal to the total volume occupied
To characterize various correlation phenomena of théyy the atoms, which i®l times the volume of a single atom.
atomic collective excitation, such as the atomic blockattt a Hence we can write the factoyN explicitly in the coupling
sensitivity of the QPT 27-31], we introduce a generalized strength.
second-order coherence function by replacing the antitiila ~ We would like to point out that, the superradiant phase tran-
(creation)a (@) operator of photons in the usual second-ordersition based on the Dicke model in a real atomic system does
coherence function of photons with the lowering (raisidg) not exist due to the inclusion of electromagnetic vector po-
(J:) operator of the collective atomic excitations. We provetential A2 term [29, 37, 41, 42]. However, the following ar-
that the antibunchingftect occurs near odd multiples of 2 guments about QPT is based on the LMG mo@é],[which
for the photon number, which implies that the double atomiayill be derived from the above Dicke model, even including
excitation is suppressed. We also find significantlyedent  the A2 term. The similarA2 term (V2 term) in circuit QED

behaviors on either side of the critical points. system will not influence the Hamiltonian significantly, ex-
This paper is organized as follows. In Sec. I, we describecept for just a little shift of the critical poing).
the system based on the Dicke mod29,[32]. The dfective The atoms we consider are largely detuned from the fre-

Hamiltonian is given in terms of the collective excitatioh o quencyw of the cavity field; namely, the detuning(= wa —
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w) is much larger than the corresponding coupling strengttit follows from Eq. ©) that, the ladder operatodks describe
do/ VN, i.e., |A] > |g0/ \/N| In this case, one can use the the action of pumping one mord.( or less (_) atom from
Frohlich-Nakajima transformatiod, 45 (or adiabatic elim-  the ground staté) to the excited statge). Accordingly, the
ination method), to obtain theffective Hamiltonian magnetic quantum numbaer increases or decreases by one.
Therefore, when the ladder operafqracts on the collective-

N N L : .
P . excitation states (0 < s < N) times, there will bes atoms
_ f (0) Py(] . . . o
Hi = wa'a+ 5 (wa+W) Z oz * WZ aar; being excited, and the magnetic quantum nuntheill in-
| =1 =1 crease bys accordingly: namelyj, m) — |j,m+ s), which is
1 implied in Eq. ). As for the ladder operatal_, the dfect
(&) (&) (&) (t2)
oW Z (0—+1 oF o Yoy ) (2)  isinverse. Therefore, the variance of the magnetic quantum

o=l numberm represents the variance of the atomic-collective-

whereW = gg/(NA) is the strength of thefiective interac- excitation number. . I
tion among the atoms, which is induced by the virtual photon In terms of th_e above collective operators, the Hamiltonian
exchanges. The form of the Hamiltonian is very similar to(2) Can be rewritten as

the dipole-dipole interaction of atoms in free space. Wenot
that the Frohlich-Nakajima transformation is equivaterthe
approach based on the adiabatical elimination and some p
turbation theories46]. Furthermore, the photon numbaia
becomes a conserved number.

Hy = wa'a+(wa + W) Jz+zwa"an+V7V (J,J-+J3.3,). (7)

8K the interaction picture defined with respect to the free
Hamiltonian, Hyee = wa'a + (wa + W)J,, the Hamiltonian
reads

M _ . (f w

B. Symmetric Hilbert Space and the LM G model H = e () o+ 2 (Jd- +3-3.). ®
whereri, = a'a ande (Ny) = 2Wh,. The dfective Hamilto-

We now describe the Hilbert space of the symmetric excinian @) is photon-number dependent. This is a special case
tation. The Hilbert space dfl two-level atoms is spanned by of the LMG model R5 with V = 0. The LMG model can
2N basis vectorglg), |@)} with | = 1,2,--- ,N. In the present  also be implemented using superconducting circdits 4.
case, all the atoms have identical transition frequenaiels a Through the relations)(J_ + J_J,)/2 = J2 + Jyz, the Hamil-
coupling constants with the cavity field. Here, we considertonian can be expressed as
the symmetric collective excitation subspadd of dimen- ) 2 o 1
sion (N + 1). We now introduce the collective operators Hy' = _W[(JZ — )" =Py = J ] : 9)

N N As is well known, the LMG model possesses a critical point,

J, = fo(f): J, = }Zgg’), (3) atwhich a QPT occurs. On either side of the critical point,

- H 24 the number of excited atoms of the ground states dferdnt;

) ) ~ thus the ground states are essentiallifedent P8, 49, 50].
which obey the following angular momentum commutation|n our system, a similar critical point also exists. To ses th
relations, effect explicitly, we calculate the ground state for the above

Hamiltonian in the next section.

[Jz de] = +de [0 0] =20, (4) The last two terms of Eq8] describe the interaction among
Furthermore, we define the Dicke basis vectgre) (j atoms induce_d _by _ph(_)tons in the cavity. This interaction be-
N/2,m = —j,—j+1,---,j - 1, j), which satisfyJ?|j,m) = tween atoms is intrinsically caused by _the hopping of_phs>ton
i(j + 1), m, and JJj,m = mij,m). One can conclude between d‘ferenF at.oms..And th(_e hopping of photons induces
straightforwardly from Eq. 3) that the magnetic quantum asepond—orde_r indirect interaction among atoms. On.a(rco.un
numberm equals the half dierence between the numbers of Of this interaction, the system shows an obvious nonligari
excited atoms and the ground state atoms. In terms of th&ith respect to the excitation number, as shown by BJ. (
Dicke states, the symmetric excitation subspat8, is

N C. Quantum Phase Transition Behavior of the Ground state

j+m
Za‘f)} G, (5)

=1

my = Nd ™M, =) = Nm

We now analyze the discontinuous change of the ground
state symmetry when varying the photon number. For a

where Nm = (i-mYI@)I(j+m1 and IG) = given Fock state of the fields(Ry) is a definitec number.
91, G2, -+~ . ON)- _ For a general photon stalig) we replaces(fi,) by its mean
According to Eq. 8), we can find value such as ((Aiw)) [or (n.)] when our studies only con-
N cern the atomic ensemble. According to E®), ¢the eigen-
Llj,m = Z(T(f) lj, m) sta}tes of the systgm are the common e|genst§1teszoﬂz}:
= {lj,m;m=—-j,—j+1,...,j—1,j},for j = N/2,i.e.,

= ViEm+([Fmljm=1). (6) HO [, my 1wy = EQ 1), my 1), (10)
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() e Energy level value of the photon numberns varied in the domain of
n=-1, 1 3, 2N -1 0 < ny < j—1/2, the atoms will experienadifferent ground
states, which implies that QPTs occur
E® There are energy-level crossingsat= j —-n/2,(n=1, 3,

5,--+,2j—1). Inthe domairj—(n+2)/2 < ny < j—n/2, the
ground state of the system|S) = |j, j — (n+ 1)/2), where
{ as in the next domaip—-n/2 < ny < j—(n-2)/2, the ground

i ‘ ! . state of the system i€) = |j, ] — (n— 1)/2). If ny increases
n+3 , m+2 ,_ m+l ,_on o n-l fromj — (n+ 2)/2to j — (n— 2)/2, the energy level of the
excited state crosses the energy level of the ground state at
n$ = j—n/2. Atthe level crossing, the excited stéitg — (n—

E® 1)/2) and the ground statg j — (n+ 1)/2) are degenerate. On
B the right side of this critical poing, the original excited state
"= li, j — (n— 1)/2) in the domain of — (N+2)/2 < Na < j —n/2
will become a new ground state for the system in the domain
. L e m of j —n/2 < ng < j — (n—2)/2, which implies that a QPT
;o ; 2 2+ [ Z_ - 2* L,_n ; 2 occurs. In this sense, we can use the average photon number

n, to control the occurrence of the quantum phase transition.
At the critical pointn§ = j — n/2, both|j, j - (n+ 1)/2) and
lj, j — (n—1)/2) are the ground states. Moreover, at this point,
® (ritical point/Degenerate point the ground state is highly degenerate, thus the system is in a
°  Degenerate point symmetric phase.
In other domains, namely, whe < 0 andn, > | — 1/2,
or,A > 0, the ground state |$, j) or|j, —]). In these cases, all
the atoms are fully polarized. As all the two-level atoms can

(b)

|G) 17:0) |]’1> be considered as quasi-spins, the system is ferromagnetic i
¥ ) this domain, and the rotational symmetry is broken. Thus the
0o L system is in a symmetry-broken phase. Notice that in the left

vicinity of the critical pointsng, under the conditiol < 0,

the ground state ig, m = [ny]) and possesses one less atomic
excitation than that in the first excited stafdny] + 1). Itis
clear that|j, [ng]) and|j, [ng] + 1) are nearly degenerate, but
their energies are much less than thatjofna] + 2). Thus,
FIG. 2: (Color online) Diagram of the ground state of atoma-co there exists an energy gap that makes exciting two more atoms
sisting ofN two-level atoms controlled by the cavity photon number dificult, but easy for exciting one more atom. We call this
whenA < 0. (a) Diagram of the energy levels versus the magnetic@ﬁrect “atomic blockade”.

guantum numbem. The upper figure ing) shows: the ground state

located am = n, = j — (n+ 1)/2; The lower figure in&) shows: the

two degenerate ground states locatehat j—(n+1)/2, j—(n-1)/2, 1. DRIVEN ATOMIC ENSEMBLE

respectively, whilen, = j — n/2; (b) Diagram of the ground states

corresponding to dierent average photon numbers in the cavity.

As there exists a level crossing for the photon-dressed
atomic ensemble at, = ng, we apply a weak classical driv-
ing to the atomic ensemble. The interaction is described by

with eigenenergies the Hamiltonian

. N
EQ = -W[(m-n’-nZ-j(i+D]=wm (1) Ho= Q) (08t 4 gVeont) (13)
=1

Clearly, the ground state is photon-number dependent, i.e.
whereQ is the Rabi frequency andy is the driving frequency

li.[nal),  O<ma<j-3 A<O, of the drive. The total HamiltoniaH = H; + H, becomes
IG) = .“’ J.>’ M=z J_%’ A<Q, (12) R m
=D orli.pp,  na=0, A>0, HO = HY + (oA +W-wd) 1+ Q- +3)  (14)
|j,_j>1 na>01 A>Oy

in a rotating frame with rotation exigfuqJ; + wa'a)t]. In this
where fi] denotes the (half) integer nearestrio This fact  driven case, the photon numbaia still is a conserved num-
means that thground state symmetry changes suddenly wheiber. Therefore the photon number does not change in the dy-
the photon number is variefdom one domain to another. namical evolution even though we apply a classical driving
In the following discussions, we restrict the analysis ® th field. As a result, we can treat the photon number as an in-
negative detuning\ < 0. As shown in Fig.2, when the dependent external parameter, which is decoupled from the



atomic dynamics. We tune the frequeneoy to satisfy the

resonance conditioma + W — wg = 0. Then the simplified _— S
Hamiltonian isH® = H{ + H’ with H' = Q (J_ + J,). When J.m) J.m
the optical field is prepared in a coherent stape the Hamil- ) (m#0,1, —j<m< ) _ (m20 L —j<m<j)
tonian, after this averagg = n, = (N,), reads HAC
HO = W[ -2 -m- 32|+ Q-+ 3)),  (15) e e
i PRI "~ i i :' B ____.--F H
. ’ : . " . P | 21)
where(fz) = |a/? forny = 1/2+ 6. Here¢ is the devia- | |7,0) FA) 3 ) ‘
tion from the degenerate (critical) point. To see if the a@tom "o Tt
blockade &ect occurs, we express the above averaged Han @) ®)
tonian in the angular momentum basis as
j
HR® = Z wmlj» MY, m) FIG. 3: (Color online) Energy-level diagram of the= 0, 1 subsys-

tem of the driven atomic ensemblea) (The two nearly-degenerate
i1 energy leveldj,0) and|j, 1) are strongly coupled with each other,
. . when the average photon number in the cavitynjs~ 1/2, but
) Qmia (| m+ 1) (j,m+h.c), (16) weakly coupled with other energy level&) The efective subsystem
m=-] spanned by1o) and|2;) when using the perturbation approach.

m=-]

whereQm = Q+/(j — m+ 1) (j + m). We can then more read-

ily observe the transition frorfj, m) to |j, m+ 2) by exciting  point which makes the pair nearly-degenerate. We first diago
two more atoms around the critical poit nalize the non-perturbative Hamiltoniah7j as,

. . Ho = 40|40} (Aol + A1 [41) (] . (19)
A. Reduced dynamicson the subspacewithm= 0,1
The two eigenstates are
When the photon number, is in the vicinity of 1/2, the

nearly-degenerate energy leveis= 0, 1 (j, 0y and|j, 1)) will Ay = A& L0+, D], r=0,1, (20)
be strongly coupled with each other as a result of the driving
but weakly coupled with other energy levels. Then the two
energy levelsh = 0, 1) form a relatively stable subsystem. . . . .
Hence we can treat the transitions from the subsystem to oth&/ith corresponding eigenenergies
levels by a perturbative approach. In terms of the statds wit

o 2 1
definite quantum numben, the HamiltoniarH® = Hg + H, A= W W W6+ (=1)p, (21)
can be decomposed in two parts, the non-perturbative Hamil-
tonian whereA, = 4/|&12 + 1 are normalization constants with
Ho = wolj, 0)(], Ol + walj, 1)(], 1| + Qv/j(j + 1)}, 1)(}, O] + h.c. WS+ (-1)p (22)
(17) §r = T ————F——
and the perturbation Qyii+1)
. . . . and
Hi = Qalj, 2)(j, 1| + Qol j, 0)(j, 1]
j - 2 1102 4 202
£ ) wmlim(om p= Wes? + j2 + 202 (23)

m=—j,m#0,1
-1
> Qualim+1(,m+hc. (18)

m=—j,m#-1,0,1

We note thatj, mA,) = 0 form # 0,1. Therefore|dp), |11)
and|j, m) (m # 0, 1) form a complete basis of the Hilbert space
for a givenj. In this basisH, can be expressed as,

To see clearly if the atomic blockad&e&ct occurs, namely, Hi = Qa[mlj. 2(lol + 2l 2(Al]

if it is difficult to excite two more atomic excitations, we +Qo [13140) (J, =1 + naldz) (j, = 1]

need to find the transition amplitude for the system inigiall i

prepared in the subspace spanned b)) and|j, 1) to the + Z wm ], my (j, m|

doubly-excited statgj, 2) around the critical point, = 1/2. m=—],m#0,1

To make|j,0) and|j, 1) nearly degenerate, we restrict© j-1

na < 1. We note that we can also choose any other pair + Z Qmetlj,m+1)(j,m+h.c, (24)

of nearly-degenerate states around the correspondincptrit M- jme-1,0,1



where

n = §1R0 o = — §oAr
' &H-&’ 2 &H-&’
Ag A
= 0 = 25
7 éo—&1 " éo—&1 (25)

which satisfy|n:2 + 7212 = 1 and|nzl® + s> = 1. It fol-
lows from Eq. @4) that the transition betweeng) and|1;) is
inhibited, which is shown in Fig3. In order to calculate the
correlation functiorg® with the perturbed Hamiltonian, we
move to the interaction picture by choosing,

j
Hy = A0 lo) (ol + A1 140y Cal+ " wmljm) (j,m (26)

m=—j,m#0,1

as the free Hamiltonian. In the interaction picture, the Ham
tonianH® = H{ + H/, where

j
Hi= > Qmalim+1(m+hc.

m=—j,m#0

(27)

becomes
Vi) = Q21),2) (771 (Aol €229 + 1 (A4 em“t)

+Q0 (173 110) €729 + g | 4g) €741 (1, ]|
-1
> Quallm+1¢m jléemnt 4 he,
m=—j,m#-1,0,1
(28)
which is time-dependent. Here, we have defined
(29)

AHYJ = wyy — A, Wm) = wn - w,

wherem? # 0,1,r = 0,1 andAy is the energy dference

between the diagonalized almost-degenerate energy levels
beled byl4;) (r = 0,1) and the other energy levels labeled by

[j,my (m=0,1).

B. Reduced dynamicson the subspacewithm=j -1, ]

— i — i
;é_ (mj =1 j, —j<msj) _!_‘.(um:&j—l, J» —j<m<j)
. o
i S

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIG. 4: (Color online) Energy-level diagram of the subsysmom-
posed ofm = j — 1, j of the driven atomic ensemblea)(The two
nearly-degenerate energy levglsj — 1) and|j, j) are strongly cou-
pled with each other, when the average photon number in thig/ca
isny ~ j —1/2, but weakly coupled with other energy leveld) (
The dtective subsystem spanned [a) and|A$) by the perturbative
approach.

with the eigenenergies

A& = 27 [—1-2n, + 4j(1 + ng)]W
+271(=1)*1ps, r=0,1, (31)
and eigenvectors,
|y = (AL T - D+ ], r=01 (32

whereAf =
with,

I£62 + 1 (r = 0, 1) are normalization constants

& = [20V2]| (-1 +2j - 2n)W + (-1)p7],  (33)

and

P = \/(1-2j + 2,202 + 8j2. (34)

Similar to the above SubsedllA, we also note that
(,miaS =0form# j—1,j. Therefore.|/l°>, |/l§> and|j, m)

(m=# j—1,j) form a compete basis of the Hilbert space for

Here we consider theffect of the QPT on the higher-order & 9iven]. Interms of|16) and|15), the residual terms of the
quantum coherence around the critical paigt= j — 1/2.  Hamiltonian 6) HS = H® — HS read as
Similar to the previous section, it can be seen that thestate
lj, j — 1) and|j, j) form a relative stable subsystem. We can

also treat the transitions from the subsystem= j — 1, j) to

other energy levels by using a perturbative method. To this
end we diagonalize the Hamiltonian in the subspace spanned

by the two nearly-degenerate energy levglg— 1) and|j, j).
It follows from Eg. (L6) that, the non-perturbative Hamilto-
nian is,

HE = Qi a|(n§]a5) +n§]5)) i - 2+ hec]

j-2

+ > wmljm) (j,m
m=—j
-3

+ 2, Qmalim+D(m+hc). (35

m=—]
HS a)J“’J)(J’”"'(,()],l“’J—1><J,J_1|
+Qj 1), ) (j. ] -1+ h.c.

A6 15) (48] + 45 145) {ag]

where we used the expressions

(30) 1i. 0y =n§|ag) + mg]as) . 1i. i — 1 = n§|ag) + ng|a5). (36)
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with codficients defined by (b'by < N [29]. Specifically, in this condition, one can ex-
EAS £AC pand the square ter/N — b'b on the order ofli§'b)/N and
s = 2 ns=-——21 keeps to the zeroth order bfb/N. Then it is straightforward
g£-¢& 7 g-& - b N
1~ % 17 ¢ to see thatl, ~ b" VN andJ_. ~ VNb[29. Then we can
¢ A ¢ A define a generalized second-order coherence function
M3 = = c’ M ="% c’ (37)
‘fo - 61 ‘fO - fl

(I () I (t+7) I (t+7) I (1))
(34 (1) I (1)) Ut + 1) - (t + 7))

for the symmetric collective excitations of the atomic en-
semble, which can be regarded as a normalized correlation
function. Please note that this definition is in normal order
) on the angular momentum operataks and J_, which sat-
HE = 26128V (] + 26 1ac) (¢ + wmli.m G.ml (38 isfy that the average of any analytical function &fJ_ in
0 Ol 0>< Ol ll 1>< 1l Z ml] : (38) normal order over the ground stdte—j) equals zero, i.e.,

g? @y =

(43)

which satistyle|” + 5" = 1, [ + [ng° = 1. It follows
from Eq. 35) that, there is no transition betwebh@) and|/1§>,

which is shown in Fig4. In order to change to the interaction
picture, we choose the diagonalized terms

! Gy =J1: £(3:32) 1 1), —)) = 0. Herej is a conserved quantity.
as the free Hamiltonian, and the corresponding interactioiThis property satisfies the conventional normal order defini
Hamiltonian tion about the bosonic operata)® : f(b'b) : |0) = 0 in the

-2 second coherence function. This coherence funai8(r, t)
o _ ; ; is proportional to the joint probability of observing one-ex
| n;j Qmi1 (Ij,m+ 1) (j,m +h.c). (39) cited atom at timé and another one at tinte- 7. To study the
generalized second-order coherence functi8i{r, t) in the
Finally, we obtain the interaction Hamiltonian stationary state, below we consider it in a unitary evolutio
. - case (without dissipation) and also in a dissipation casatbu
VP = Qi1 (n§[ag)e ™o +nglag) e ') (), j - 2 a steady state.
-3
+ ) Qmealjm+1)(j,meemmt 1 he  (40)
m=—j A. Thecasewithout dissipation

in the interaction picture where . ) )
Firstly, we consider the case where the system is free of

A = o = A, wm = o - w, (41)  dissipation. In this casg,--) in Eq. 43) for g@(z, t) denotes

) ) ) the average of an observable over the initial pure state
form’ # j—1j,r =0,1andA;,, is the energy dierence

between the diagonalized almost degenerate energy levels | j
beled by]A%) (r = 0,1) and the other energy levels labeled by ly (0)) = Z Cmlj, M), (44)
) (m= j -1, ). m=—j

Note that Figs3 and4 show transitions between three level
systems, where some of the transitions are turned on ind Owherezj el = 1.
Indeed, it is also possible to turn on anfl ransitions be- )

. e We next calculate the generalized second-order coherence
tween three energy levels using artificial atoms made of SUsinction around the poing = 0 (ie. n, = 1/2). Since
perconducting qubitssfl]. oA '

U(7) = Uo(7)U, (1), whereUo(r) = exp(-iHgr) andU(7) =
Texp[-i fOTV| (r')d7’] are the free evolution and the dy-
IV. STATISTICAL PROPERTIESOF THE ATOMIC namics due to the interaction, respectively. We note that
EXCITATIONS US(T)J_,.J_U()(T) = J,J_ is useful in the following calcula-
tions. Using this result, the generalized second-ordeeicoh
SinceJ_ (J,) can decrease (increase) a single excitation&Nce functiorg® (z, 0) becomes
their roles are similar to the actions of the annihilatiore¢c : )
ation) operator of photores(a’) for the usual bosonic system. 4@(r.0) = W 0)U| (7). I_U; (1)’ (0))
Using the Holstein-Primakbtransformation $2), the angu- ’ <¢’(0)IW'(0))($(0)IU?'(T)J+~LU|(T)Iw(O))’
lar momentum operators can be expressed in terms of a single
bosonic mode, where [’(0)) = J_[¢(0)). We will calculate analytically
. N the generalized second-order coherence function by apply-
J, =b"VN-b'b, J = (VN - b"'b) b, J,=b'b- > ing standard perturbation theory, wih(t) as a perturbation.
(42) Let us first consider the conditions where the perturbatmn a
proach is valid. If we tune the atom-field detuningand the

The angular momentum operators will becomes bosonic opRabi frequency? of the driving field to be suitable and place
erators in the limit of largeN and low excitations, namely, an appropriate number of atoms in the cavity, we can make

(45)



the perturbation theory valid, i.e., far = 2,-1,r =0, 1, and
m# —1, 0, 1 this conditions explicitly are

Qo1 < Az, Qono < Ap,

Qonz < A1, Qoma < A_yg,

Qm1 < Wmiim. (46)
Under the above conditions, we can treat the time-evoluti
operatorU, (r) perturbatively. Whem, is in the vicinity of
the critical pointn§ (form= 0, 1, n§ = 1/2), the energy levels
of |1p) and|1;) are nearly degenerate. The energyedences
Ajj andwmeim (M # —1,0,1) are very large compared witr
the level spacing betweéiy) and|11). Hence, under this con-
straint, the above conditiond) can be satisfied by varying
the Rabi frequencg2. Since the statg, 0) is the ground state
when 0< ny < 1/2, then|j, 1) is the state by exciting one
more atom. Similarly}j, 2) has two more excitations than the
ground state, and has a much higher energy than thatlof
However,|j, 1) is the ground state whery2 < n, < 1, yet

1
N=10
0.9 NG
R Wi IR WP 0 W o NI NiPC e NPT,
0.8f N=4 i
—~
=)
o7
2
(@)
0.6
N=2
0 \f\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
0.4 :
-5 0 5

T

FIG. 5: (Color online) Second-order correlation functigi?(r, 0)
versus the time interval for N = 2 (blue curve)N = 4 (red curve),

j, 0y is an excited state which has one less atomic excitatioW = 6 (cyan curve) andN = 10 (magenta curve), respectively, in
than the ground statg 1). To see if two excitations are sup- the case without dissipation. Recall tig(r, 0) is proportional to

pressed, we choosg = ¢; = 1/ V2 andcy, = 0 (form # 0, 1)
in the initial state,

=
V2

When the average photon number is in the vicinityngf=

1/2, the stategj,0) and|j, 1) are nearly degenerate. No-

the joint probability of observing one excited atom at time 0 and
another one at time. The first-order approximate results are shown
using dashed curves and the exact numerical results arasising
solid curves. The dashed curves overlap with the solid cuvesy
well. Other parameters agy = 100, go/A = -0.1, QN = 0.1]W],

6 = -0.02.

tice that here the average photon number is in the domain of

0 < ng < 1and aroundh§ = 1/2, i.e.,-1/2 < § < 1/2,

prepared in a state with density operabgy the generalized

and|d] is very small. Using first-order perturbation theory, S€cond-order coherence function is written explicitly as

the generalized second-order coherence function in 45). (
is approximately

X
@(7,0) > ———, 48
991,00 > (48)
where
X = Xg+ Xo+ X3+ X4 + Xz,
Y = Yi+Ya+Ys (49)

The parameters,, ({1 = 1,2,---,5) andy,, ({2 = 1,2,3)

have complicated expressions, which are presented in the A
The generalized second-order coherence function

pendix.
given by Eq. 48) is illustrated in Fig5. It is shown that, adl
increases, the value of?(r, 0) approaches unity with some
oscillations. Physically, Eq48) describes the joint probabil-
ity of observing one excited atom at instant 0 and another
after a time intervat. In sectionVv, we use Eq.48) to analyze
the atomic blockadefect.

B. thecasewith dissipation

Tr[J: 3+ (1) I-(7) I-ps(t)]

9900 = 13 T pITL, Jopelt + 71

(50)

According to Eq. 50), we need to calculate the time-
dependent density operatoy(t) of the atoms. In the regime

of weak coupling of the driving fieldd3], which demands the
driving field to only perturbatively change the energy lsyel
and assuming the atomic ensemble to be in a common reser-
e{oir, then the master equation is approximately

dos (t 1
—pgt‘) - Ips®dy - =

i [H®,ps®] +7 5

3306 (t)}] ,

(51)
wherey is the collective decay rate of the atomic ensemble.
Since the photon number is a conserved number, and the fre-
guency of photons is in large detuning, it does not influence
the dynamical evolution of the atoms. Then the influence of
the decay of the photons is negligibly small to the atoms. We
resort to numerical calculations to show the results aldwait t
steady state by plotting@(0,t — o) versuss in Fig. 6 (a)
andg®(r,t — oo) versusr in Figs.6 (b)-(d). By comparing

In this subsection, we consider the system surrounded bthem with the results in Figh, we will discuss them in the
a thermal reservoir at zero temperature. When the system rgext section.



V. DOUBLE EXCITATION EFFECTSI: THE ATOMIC @)
BLOCKADE EFFECT 0 9/?‘~T. _____
. $ ST T e, r e e e, e, —m———-

In this and the next section, we discuss some physical O.BK
fects due to the double collective excitation, accordinidpéor B / ;
guantum statistics characterized by the generalized seci o7 )
order coherence functiogi?(r, t) introduced in the last sec- o N —N=2
tion. We have calculated the generalized second-orderco 0.6/ -=--N=3
ence function in the above section both in the dissipatiee-f K N=5
case and also the case with dissipation. In this section, 0.5 —N=10
discuss the results in both cases according to the above 04— ‘ ‘ ‘ ‘ ‘
culations. We illustrate the analytical resuls8) and com- ' 0 1 2 5 3 4 5 6
pare them with the numerical results by plotting in Fsghe
generalized second-order coherence funcgéltr, 0) versus 1.9F ‘ 1
the time intervakr arounds. = 0, without dissipation. The ' (b) 5=-0.5

generalized second-order coherence function is plotted
N = 2,4, 6,10 atoms, respectively. Itis clear from Figthat,
close to the critical poiné. = 0, our analytical approximate
results 48) (dashed line) agree very well with the numeric
result @3) (solid line). Obviouslyg®(r,0) < 1 at any time
intervalr. This shows that the atomic collective symmetric e
citations obey sub-Poissonian statistics. It can also bado
that asN increasesy®(r, 0) < 1 oscillates slower and slowe
and approaches unity, especially §#(0, 0). That is because
the generalized second-order coherence functien=af is

4

(2 -1—
g7(0,0 =1 N2 oN (52) |
Henceg® (0, 0) increases a8l increases. In the thermody 1.1y (d) 3=j-1.11
namic limitN — oo,
g@(0,0) - 1. (53)

This shows that whei is smaller, the ffect of suppressing
the doubly-excited state is enhanced. , \ \ \ \

Figure 6 shows the results for the dissipative case. F 0 0.2 0.4 0.6 0.8 1
ure 6(a) showsg®(0, ) versus the average photon numbe: !

6 In ste_ady_sta.lte foN = 2,35, 19) atomg, respectlvely. AS FIG. 6: (Color online) Numerical results for the generatizecond-
shown in this figure, the value gf?(0, ) increases aMl in- _order coherence functiagf?(0, o) andg®(r, o) with dissipation in
creases for a larger average photon number. For a definite he steady state. (@f?(0, ) versuss for N = 2 (blue thick solid
and a small value af, g®(0, «) increases as increases. At curve),N = 3 (red dashed curvelN = 5 (cyan dashed-dotted curve)
some intermediate time there is a peakyif(0, ) followed  andN = 10 (black thin solid curve), respectively; (b-gi)(z, o)

by a steady decrease, asymptotically approaching a cdnstaversusr with N = 5 foré = -0.5,6 = 0 ands = j - 1.1, respectively.
value for larges. The smallest value af?(0, o) occurs at ~ Other common parameters aye= 1, go = 100, go/A = -0.1 and

§ = —0.5. This phenomenon is also prominent in Figg)-  @N = 0.1W|.

(d). Figuress(b)-(d) showg®(r, ) versusr for N = 5 and

6 = —-0.5, 0 andj — 1.1, respectively. The antibunchinffect

of collective excitations of an atomic ensemble is observeghown in Fig5, the generalized second-order coherence func-
since the envelop af?(r, o) showsg®(0, ) < g@(r,0)  tion only oscillates with time intervaland does not approach
with some increasingly rapid oscillations dsincreases in 1 as we expect when — oco. In Ref. [54], the photon anti-
Figs.6(b)-(d). Additionally we note thag®(r, ) approaches bunching éect is also obtained in only two interacting atoms.
one, as expected, after some oscillations. This indichies t However, the antibunchingfect we obtain is about atomic
probability of two collective excitations of the atomic ens-  collective excitations, and the photon number is a conserve
ble at the same timer (= 0) is smaller than that at afferent  number. In this sense, we do not need to consider the photon
time (r # 0). Therefore, the resonant excitations from thecorrelation.

ground state to the doubly-excited state are suppresseéd. Th To conclude this section, we give some remarks about the
is aclear signature of the atomic blockad€ompared with  atomic blockade. For applications in quantum information,
Fig. 5, this result is better and closer to physical reality. Asthe atomic blockade provides a novel approach to physical im




plementation of scalable quantum logic gates such as imple
menting a CNOT gate between two ator4f13] and some (@) N=10 - - -0,=1000 | |
kinds of quantum protocol$p-58]. Furthermore, as double ——g,=3000
excitation are inhibited in the Rydberg blockade mechanism
it also supplies a fascinating approach to store quantuon-inf
mation [L1, 12]. However, the dipole-dipole interaction de-
pends on the distance between Rydberg atoms. To achieve
stronger interaction, it requires the atoms to be closepats

or to be excited to higher Rydberg states, in which the prin-
cipal quantum number is very large, but this will not be con-
venient to control the atoms individualll1-13]. Such as
the Rydberg levels = 79 and 90, the corresponding block-
ade shift is 2 x 3 and Z x 9.5 MHz at an inter-atom dis-
tance 1@ um, respectively. To achieve a larger energy-level
shift due to the Rydberg blockade, the distance needs to b
decreased, and thus the coherent manipulation of individua : : : : : : : : :
atoms is dificult. It is this consideration that motivates us | (b) N=20 - -g.=1000]
to find a new mechanism inducing a stronger inter-atom cou- 2.2 0

pling, valid for long distances and controllable to imprde
dipole-dipole interaction. We note that in Re59], the cou- 2r
pling strength between atom and photons can reackh 220 _
MHz in a high-finesse cavity, which leads us to anticipaté tha i 1.8r
the strong atom-photon coupling will induce a strongerrinte & ¥

N

35 36 37 38 39 4 41 42 43 44 45
o)

atom interaction among atoms. In addition, this interarctio “ 16}

can be feasibly controlled by the volume of high-finesse mi-

crocavities. This fact means that to achieve a strong etiem 1.4

interaction among atoms will not take stringent requiretsen

on manipulating atoms individually. Therefore, from thérpio 1.2t

of view of the controllability and strength of the interaxt 85 86 87 88 89 9 91 92 93 94 95
the photon-induced interaction among atoms in our system it )

better than the dipole-dipole interaction inducing the B
blockade. FIG. 7: (Color online) Numerical results for the generadizecond-
order coherence functiogi?(r,0). Here:t = 0, 7 = 3, gy = 1000
(red thick solid curve)gy = 3000 (black thin solid curve), (@) =
VI. DOUBLE EXCITATION EFFECTSII: SENSITIVITY 10,6 = 4, (b)N = 20,6, = 9, other parameters are the same as in
OF THE QUANTUM PHASE TRANSITION Fig. 5.

As the system possesses QPTs, we now analyze how to con-
trol the QPT by photons in the cavity. To show th&eet of
the QPT org? (r, 0) more clearly, we consider thg#? (r, 0)
around the critical point = j — 1/2 at a fixed time interval
7. Then, according to Eq4@) we choosej_; = ¢; = 1/ V2
andcy, = 0 (m=# j — 1, j) in the initial state, namely

Next, we use the perturbation approach to calculate the gen-
eralized second-order coherence function under the follgpw
conditionsfomy = j—-2,r=0,1andm=# j-2,j -1, ],

. C Cc R C C
Qjang < Aj 0 Qjany < Aj 5,

1 1 le < Wm+lm- (56)
Oy = —lj,j =1+ —Ij, ). 54 ! . .
l=(0)) \/5“ I=Db+ \/5“ D (54) Up to first order inV{ (7), we obtain
With the relationsU (r) = US(r)Uf(r) for US(x) = 7
exp(HS7), US(r) = Texpli [ Ve(x')de'], it follows from 92 (,0) ~ 21 % i (57)
Eq. 43 that Gi-D(Zfaye)

cf c
Uo (1)3:-3-Ug(7) where the parameters (61 = 1,2,---,7) andy; (£ =

= i), j = DA =15, D4, 1 - 1) 1,2, 3,4) have very long expressions, so we give these in the
+BMO) (1, § = DX, J1+ 1, 145 1= 10) Appendix.
+yOU, DG il =i i = DG, = 1) We also numerically calculate the generalized secondrorde

1.3 (55) coherence function in Eq48), and then plog(_z)(_r, 0) ver-
T susé§ in Fig. 7. As Fig. 7 indicates, the statistical coher-

The explicit expressions of the déieientse (t), £(t) andy (t) ence of atomic excitations is very sensitive to the critprziht

are given in the Appendix. ng = j — 1/2. The probability of double atomic excitation is
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above the dotted straight line in the left-hand-side of ttite ¢ induced second-order interaction between atoms is vathtein

ical point, while it is below this curve in the right-handdsi  long range and can be strengthened by a high-finesse micro-
of the critical point. Furthermore the envelope expondgtia cavity with a very small #ective mode volume. Furthermore,
decays. When the average photon number is in the domaine find that the double atomic excitation will be suppressed
ofj—-1<ny,<j-1/2(j—-3/2<6<j-1),theenergylevel whenthe average photon numberin the cavity is in the viginit
of |}, j) is higher thanj, j — 1) but lower tharij, j — 2); while  of some special points (degenerate points). We have alde stu
in the domain of j — 1/2, j], the energy level dfj, j) is lower ied the critical behavior of this statistical property obwtic

than both|j, j — 1) and|j, j — 2), and the order of the energy excitations around the critical point at which the QPT oscur

levels iswj < wj1 < wjp < ---- < W We also note  To characterize the statistical property of atomic excita-
that, as the coupling strenggh increasesg®(r, 0) oscillates  tions, we define a generalized second-order coherence func-
faster with respect t6. In addition, aN increases, the value tjon similar to the second-order coherence function for-pho
of g@(z, 0) increases. tons. Furthermore, in the limit & —  and low excitations,
Above, we gave a qualitative analysis of the generaljt pecomes the conventional one. We have demonstrated the
ized second-order coherence function based on perturbantibunching &ect for atomic excitations near the degener-
tion theory. According to our calculations, there is a largeate points and the characteristic of sub-Poissonian titatis
discrepancy between the theoretical analysis and the eXghich implies the existence of the atomic excitation blatga
act numerical result. The reason may be as follows. Assince this system possesses several critical points, e als
seen in the definition of the generalized second-order costudy the critical behavior of the generalized second-orde
herence function, i.e., Eq48), this is determined by two coherence function of atomic excitations around the aitic
correlation functions, i.e{y’(0)Uf" ()3, J_U(x)ly'(0)) and  points. Our results show the sensitivity of the system dynam
WOV (1) I I_US(r)lw(0). As far as the latter is con- ics with the average photon number in the cavity.
cerned, we calculate it in the interaction picture. Here, we
approximate the time-dependent wave functitfitr)|y(0)) to
first-order by perturbation theory. Since the operatod_
gives two large and markedlyférent eigenvalues to the com- Acknowledgments
ponentsj, jy and|j, j—1), the originally small deviation in the
approximate wave function with respect to the exact one will
be enlarged.
However, when we come to the case with= 0 and 1,
the situation turns out to be totallyftirent. First of all, let
us turn to the Hamiltoniaidl = Hp + H, given in Eqgs. 17)
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two relevant states, in the system which is initially in ana&lq
superposition ofj, 0) and|j, 1), the approximate correlation
fUﬂCtiOﬂ<lﬁ(0)lU|T(T)J+J,U|(T)llﬁ(O)) is expected to be quite
close to the exact one. This situation will not take place for
the case withm = j and|j — 1, since the relevant eigenvalues
of the operatod, J_ are remarkably dierent from each other. In this Appendix, we present the expressions for the param-
A similar analysis can be applied to the numerator in the geneters used in the Eqst§) and §7) respectively.

eralized second-order coherence function. Consequdindly, Form = 0,1, the parameters @f?(r, 0) given by Eq. 48)
generalized second-order coherence function obtained fro gre
the perturbation theory will coincide with the exact one for
the case witlm = 0 and 1, while there is an obviousfiir- . 2 ) 2
ence between the results from these two methods for the case Vo(i — 1)%(j + 2)%cal |77177302,02+ n1214024|"
with m = j andj — 1. Therefore, we only give the numerical . . n374

results in Fig7. Xo = V;(j+ 1} lcol” (m)

Appendix: Explicit expressionsfor the parameters of g

1

0l0-0 1,1|2’

2
VoCo (7747710i1,1 - 7737720i1,0)

11213 — 11174

PG+ 17

VIlI. CONCLUSION AND REMARKS X3 TG

El

In this paper, we study the statistical properties of atomic x,
excitations for two cases: with dissipation and withousdis 5
pation. We find that this statistical property can be coterbl Xg = VS(] ~1)(j2-4)(j +3) |Col |1 _ eiw,z,71r|2’ (A.1)
by the average photon number in the cavity. Also, the photon- wﬁzﬁl

i3 + 2)(% - D) o (30-10 + 0-11) + o




and
y1 = (j+1)j
Y2 = Q%(j-1)7%(j+2?
X [n1(Cona + €171) 020 + n2(Cona + 01772)02,1|2,
ys = V(i —1)(j +2)
X |773 (Comz + €1171) O_1,0 + na (Cona + C112) 071,1|2,
(A.2)
where
- - 1 ;
V, =Q+/(j+1)j, Omp= A—(l_ éimm). (A3)
mn

Form= j—1, j, the parameters @f?(z, 0) given by Eq. $7)
are listed as follows,

X§ = 2jlao (7),

XS = 2(2) - 1)lag ()2,
X§ = 3(2j - 2)la ()%,
X5 = 4(2j - 3)las (7)1%,

X = —2a(r)Imlag (7) & (7)],
Xs = 28(r)Relag(r)ay (7)],

X5 = (1) [lao (D)1 - s (D)) (A.4)
and
Yi = ¥3=2j-
Y5 = 3Qi-2)lcl,  y;=8@), (A.5)
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where
ao(r) = nangfe (Olgizo - O(j:iz,l)’
ai(r) = \/]_f (77277(:0(]:*20 Uﬁﬂio?fz,l),
a(t) = 2j-1|1+ f.fhl(r)],
1 - gwiaj-2t
() = 0\3E-DE -9,
Wij-3j-
fChy(7)
Cr) = ————, (A.6)
V22— 1)
and
a(t) = doq*sin@t),
B = aod *(wj-1 - wj) [cos@) - 1],
y(t) = 20007°Q+/2j [cos@t) — 1], (A7)
with
. \/_29(2j
= -2Q+2j(j - flf= ———_—=,
1 — g%t
= o —w)2+8i02 c _-_&™
a0 = ((w1-0)?+8j02 O, = (A9
Here,
hi(r) = Tlgflgojq—z,o - 772’7?1019—2,1’
ho(r) = n5(5 — 13O o0 — ma(ng —13)0] 1. (A.9)
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