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We study the decay of superflow of a one-dimensional (1D) superfluid in the presence of a periodic
potential. In 1D, superflow at zero temperature can decay via quantum nucleation of phase slips even
when the flow velocity is much smaller than the critical velocity predicted by mean-field theories.
Applying the instanton method to the O(2) quantum rotor model, we calculate the nucleation rate
of quantum phase slips Γ. When the flow momentum p is small, we find that the nucleation rate
per unit length increases algebraically with p as Γ/L ∝ p2K−2, where L is the system size and K
is the Tomonaga-Luttinger parameter. Based on the relation between the nucleation rate and the
quantum superfluid-insulator transition, we present a unified explanation on the scaling formulae
of the nucleation rate for periodic, disorder, and single-barrier potentials. Using the time-evolving
block decimation method, we compute the exact quantum dynamics of the superflow decay in the
1D Bose-Hubbard model at unit filling. From the numerical analyses, we show that the scaling
formula is valid for the case of the Bose-Hubbard model, which can quantitatively describe Bose
gases in optical lattices.

PACS numbers: 03.65.Xp,03.75.Kk, 03.75.Lm

I. INTRODUCTION

Recently, superfluidity and superconductivity in one
dimension (1D) have been experimentally studied in var-
ious systems, including superconducting nanowires [1–5],
liquid helium in nanopores [6, 7], and ultracold bosonic
atoms in optical lattices [8–11]. A common property
found in these different systems is that the transport in
1D is significantly suppressed compared to that in higher
dimensions. This suppression of the transport might be
interpreted as a consequence of stronger effects of thermal
and quantum fluctuations in 1D. At temperatures higher
than a certain characteristic value, thermal fluctuations
allow the amplitude of the superfluid order parameter
to vanish and its phase to unwind, leading to the de-
cay of superflow [12–14]. Such a process is often referred
to as a phase slip. When the temperature is sufficiently
low, thermal fluctuations are suppressed and the nucle-
ation of phase slips due to quantum tunneling provides
dominant contributions to the superflow decay [15–23].
Indeed some of the experiments with superconducting
nanowires have observed the crossover from the regime
of the thermal activation to the quantum regime [1–5].
Moreover, the experiments studying the transport of 1D
Bose gases in optical lattices [9] showed a good agreement
with the theoretical analyses at zero temperature by the
time-evolving block decimation (TEBD) method [24, 25]
that accurately takes into account the effects of quantum
fluctuations. In light of this agreement, it is highly likely
that the quantum regime has been achieved also in cold
atom systems. Therefore, it is important to accurately
calculate the nucleation rate of quantum phase slips for
1D superfluid.

In particular, the decay of 1D superflow in a periodic
potential have attracted much interest because the trans-
port of 1D atomic Bose gases has been studied in the

presence of an optical lattice. In addition, in the exper-
iments of liquid helium absorbed in nanopores, an inert
layer of solid helium covering the wall of the pores acts as
an external potential for 1D liquid helium [7], which may
be regarded as a periodic potential [26]. Having in mind
ultracold atom experiments, most of previous theoretical
studies have analyzed transport properties in the pres-
ence of a parabolic trapping potential in addition to pe-
riodic potentials by means of various numerical methods
beyond mean-field approximations, such as exact diago-
nalization [27], truncated Wigner approximation [28, 29],
fermionization method [30, 31], and TEBD (or equiv-
alently time-dependent density-matrix renormalization
group) [24, 25, 32]. They have not explicitly related
the 1D transport at zero temperature to quantum phase
slips. In contrast, in Ref. [22] the authors have pointed
out the connection with phase slips and used the instan-
ton method to analytically calculate the nucleation rate
in a homogeneous lattice system. However, their instan-
ton analyses in 1D have been restricted to the parameter
regions far from the Mott transition and close to the su-
perfluid critical velocity predicted by mean-field theory.

In the present paper, we investigate quantum phase
slips in 1D superfluids in the presence of a periodic po-
tential. Applying the instanton techniques to the O(2)
quantum rotor model, we calculate the nucleation rate
Γ as a function of the flow (quasi-)momentum p. Since
we treat the phase degrees of freedom on all the sites as
independent variables in contrast to previous work that
uses a single-collective-variable approximation [22], we
can analyze the entire region of the momentum. Espe-
cially, when the momentum is much smaller than the
critical value pc, we find that the nucleation rate per
site obeys Γ/L ∝ (p/pc)

2K−2, where L is the number
of lattice sites and K is the Tomonaga-Luttinger pa-
rameter. This power-law behavior with respect to the
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momentum means that the lifetime of superflow can be
practically infinitely long if p ≪ pc, namely the presence
of superfluidity in 1D. It should be noted that a similar
power-law behavior of the nucleation rate has been pre-
viously found in the case of 1D superfluid in the presence
of a single-barrier potential [18, 19] or a disorder poten-
tial [21], i.e. Γ ∝ (p/pc)

2K−1 for a single barrier and
Γ/L ∝ (p/pc)

2K−1 in the case of disorder. We emphasize
that in the case of periodic potentials the exponent takes
a different value. We discuss this difference from a view-
point of the relation between the nucleation rate and the
quantum superfluid-insulator transition. Moreover, we
investigate the real-time dynamics of the superflow de-
cay via quantum phase slips in the 1D Bose-Hubbard
model (BHM) at unit filling by means of the quasi-exact
numerical method of TEBD [33, 34]. From the TEBD
calculations, we confirm the validity of the scaling for-
mula in the model that is quantitatively relevant to ex-
periments with ultracold Bose gases confined in optical
lattices.
The remainder of the paper is organized as follows. In

Sec. II, we introduce BHM describing 1D bosons in a
periodic potential and briefly review a derivation of the
O(2) quantum rotor model from BHM. In Sec. III, we
calculate the nucleation rate of quantum phase slips us-
ing the instanton techniques and find a scaling formula
of the nucleation rate with respect to the momentum. In
Sec. IV, we discuss a physical interpretation of the scal-
ing formula from a viewpoint of the relation between the
phase-slip nucleation and the superfluid-insulator transi-
tion. In Sec. V, applying TEBD to BHM at unit filling,
we compute the quantum dynamics of superflow, which
exponentially decays in time. We numerically extract
the nucleation rate of quantum phase slips and compare
it with the scaling formula. In Sec. VI, we summarize
our results and describe possible future work.

II. O(2) QUANTUM ROTOR MODEL

We consider a system of 1D lattice bosons in a ring-
shaped geometry, i.e. with a periodic boundary. To study
such a system, one often uses BHM that especially allows
for a quantitative description of Bose gases confined in
optical lattices. The quantitative validity of BHM has
been confirmed for both equilibrium and dynamical prop-
erties through the thorough comparisons between exper-
iments on Bose gases in optical lattices and exact numer-
ical analyses on the Bose-Hubbard model [35–38]. How-
ever, before directly analyzing BHM, in order to gain
analytical insights we use the O(2) quantum rotor model
that can be derived from BHM under a certain condition.
The formulation of the instanton method is much simpler
for the quantum rotor model [22, 39]. In this section, we
review a derivation of the quantum rotor model.
We start with the grand canonical partition function,

Z =

∫

Db∗Db exp

{

−S[b∗, b]

~

}

, (1)

where the action S[b∗, b] for the BHM is given by

S[b∗, b] =

L
∑

j=1

∫
~β
2

−
~β
2

dτ

×
[

b∗j (τ)~
∂

∂τ
bj(τ) − J

(

b∗j(τ)bj+1(τ) + b∗j+1(τ)bj(τ)
)

+
U

2
b∗j (τ)b

∗
j (τ)bj(τ)bj(τ) − µb∗j (τ)bj(τ)

]

, (2)

where U is the onsite interaction, J the hopping energy,
and L the number of lattice sites. Here, µ ≈ Uν is the
chemical potential and ν is the filling factor. For con-
venience we introduce finite small temperature T corre-
sponding to the inverse temperature β ≡ (kBT )

−1. In
the end of calculations we will take the limit of T → 0.
Inserting bj =

√
nje

iθj , the action is rewritten as

S[n, θ] =

L
∑

j=1

∫
~β
2

−
~β
2

dτ

[

~nj

(

i
∂θj
∂τ

+
1

2nj

∂nj

∂τ

)

−2
√
njnj+1J cos (θj+1 − θj) +

U

2
(nj − ν)2

]

.(3)

We split the number of particles per site into its aver-
age and fluctuation as nj = ν + δnj , and assume that
Uν ≫ J and ν ≫ δnj . Then, we find that the action is
approximated as

S[n, θ] =

L
∑

j=1

∫
~β
2

−
~β
2

dτ

[

i~ (ν + δnj)
∂θj
∂τ

−2νJ cos (θj+1 − θj) +
U

2
δn2

j

]

. (4)

Since Eq. (4) contains only the linear and quadratic terms
with respect to number fluctuations δnj , these degrees
of freedom can be integrated out. Then, the action is
described in terms of the phases as

S[θ] =

L
∑

j=1

∫
~β
2

−
~β
2

dτ

[

i~ν
∂θj
∂τ

+
~
2

2U

(

∂θj
∂τ

)2

−2νJ cos (θj+1 − θj)] . (5)

When the filling factor is irrational, the first term makes
the net contribution of the instanton or bounce solutions
to the partition function to be zero [40]. When the filling
factor is integer (commensurate filling), the first term is
necessarily equal to ~×2πl, where l is an integer, and its
contribution to the partition function is unity regardless
of the trajectory of θj . In the latter case, the effective
action takes the form of the quantum rotor model,

S[θ]=

L
∑

j=1

∫
~β
2

−
~β
2

dτ

[

~
2

2U

(

∂θj
∂τ

)2

− 2νJ cos (θj+1 − θj)

]

.(6)

Introducing the dimensionless parameterK ≡ π
√

2νJ/U

and the sound velocity u ≡ d
√
2νJU/~, the action can



3

be rewritten as

S[θ]=
~K

2π

L
∑

j=1

∫
~β
2

−
~β
2

dτ

[

d

u

(

∂θj
∂τ

)2

− 2
u

d
cos (θj+1−θj)

]

.(7)

If one takes the continuum limit of d → 0 and L →
∞ while fixing the value of Ld, the action of Eq. (7)
coincides with that for the spinless Tomonaga-Luttinger
(TL) liquid [41, 42],

S[θ] =
~K

2π

∫ Ld

0

dx

∫
~β
2

−
~β
2

dτ

[

1

u

(

∂θ

∂τ

)2

+ u

(

∂θ

∂x

)2
]

.(8)

where it is obvious that K is the TL parameter. Notice,
however, that the values of K and u in Eq. (8) are renor-
malized due to the effects of high-energy modes and Umk-
lapp scattering and that the original relations of those pa-
rameters with U/J and ν no longer hold. The TL liquid
model generally describes low-energy physics of a mass-
less one-dimensional system. This indicates that while
we analyze the discrete quantum rotor model of Eq. (7),
low-energy properties found in our analyses should be
general in the spinless TL liquid.
It is convenient to express the imaginary time in units

of the Josephson plasma time ~/EJ as

τ =
~

EJ
τ̃ , (9)

where EJ ≡ ~u/(
√
2d) is the Josephson plasma energy.

Inserting Eq. (9) into Eq. (7), we obtain

S = ~
K√
2π

s̃, (10)

where s̃ is the dimensionless action

s̃ =

∫
β̃
2

−
β̃
2

dτ̃

[

1

2

∂~θ

∂τ̃
· ∂

~θ

∂τ̃
+ V (~θ)

]

. (11)

In order to express the action compactly, we introduced

in Eq. (11) an L-dimensional vector ~θ defined as

~θ = (θ1(τ̃ ), . . . , θj(τ̃ ), . . . , θL(τ̃ ))
t

(12)

and the potential,

V (~θ) =

L
∑

j=1

Vj(θj+1, θj)

=

L
∑

j=1

−2 cos (θj+1 − θj) . (13)

and β̃ = βEJ. From Eqs. (1) and (10) we clearly see that

he ≡
√
2π/K plays the role of the effective dimensionless

Planck’s constant for this problem. The limit of he →
0 corresponds to the classical (Gross-Pitaevskii) regime,
while at he & 1 quantum fluctuations become significant
and can even drive the system to a different insulating
phase.

III. QUANTUM NUCLEATION RATE FOR THE

PHASE SLIPS

Extremizing the action by imposing δs̃ = 0, we obtain
the classical equations of motion for the phases θj ,

∂2θj
∂τ̃2

= −2 sin (θj+1 − θj) + 2 sin (θj − θj−1) . (14)

There are two types of stationary solution of Eq. (14).
The first one describing a state carrying a homogeneous
superflow with the winding-number n is

θMn,j =
2πn

L
(j − 1), (15)

This state possesses the (quasi-)momentum p =
2π~n/(Ld). The other is a saddle-point solution with a
phase kink separating two states with different winding
numbers:

θSn,j =
αn

2
+ ϕn(j − 1), (16)

where

αn = −π
L− 1 + 2n

L− 2
mod 2π, (17)

and

ϕn =
2πn− αn

L− 1
. (18)

The value of ϕn defines the momentum in the system and
αn is the phase difference between the 1st and L-th sites,
the location of the phase kink. The magnitude of this
kink αn is defined within the interval [−2π, 0]. In the
limit of the large number of sites L ≫ n the expression
for αn simplifies:

αn ≈ −π

(

1 +
1 + 2n

L

)

mod 2π. (19)

For small winding numbers n ≪ L the phase kink is
approximately equal to π.
We consider that a metastable flowing state with the

winding number n is prepared at the initial time t = 0.
The flow momentum is assumed to be smaller than the
critical value pc = ~π/(2d), above which the uniform
flowing solutions become unstable. In the classical limit
(he → 0) and at zero temperature the system remains
in the initial state for an infinitely long time, i.e. the
superflow is persistent. In contrast, when quantum fluc-
tuations are strong enough, the metastable state decays
into states with smaller momenta through quantum nu-
cleation of phase slips and the lifetime of the superflow
is finite. The decay rate of the metastable state, i.e. the
nucleation rate of the quantum phase slip, can be calcu-
lated using the celebrated instanton formula [43–47]:

~Γ ≃ EJLA

√

s̃B
2πhe

exp

(

− s̃B
he

)

. (20)
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Here s̃B is the action for the bounce solution ~θ(τ̃ ) =
~θB(τ̃ ) of Eq. (14), and the prefactor A is given by

A =

∣

∣

∣

∣

∣

∏

m λ
(0)
m

∏

m 6=0 λm

∣

∣

∣

∣

∣

1/2

, (21)

where λm’s and λ
(0)
m ’s are the solutions of the following

eigenvalue equations:

M̂~ξm(τ̃ ) = λm
~ξm(τ̃ ), (22)

and

M̂(0)~ξ(0)m (τ̃ ) = λ(0)
m

~ξ(0)m (τ̃ ). (23)

Here the L-dimensional vectors

~ξm = (ξ1,m(τ̃ ), . . . , ξj,m(τ̃ ), . . . , ξL,m(τ̃ ))t , (24)

and

~ξ(0)m =
(

ξ
(0)
1,m(τ̃ ), . . . , ξ

(0)
j,m(τ̃ ), . . . , ξ

(0)
L,m(τ̃ )

)t

. (25)

obey the orthonormalization condition
∫

dτ̃ ~ξl · ~ξm = δl,m,

∫

dτ̃ ~ξ
(0)
l · ~ξ(0)m = δl,m. (26)

The L× L matrices M̂ and M̂(0) are defined as

Mj,k = δj,k

(

− ∂2

∂τ̃2
+

∂2Vj

∂θ2j

∣

∣

∣

∣

∣

~θ=~θB

+
∂2Vj−1

∂θ2j

∣

∣

∣

∣

∣

~θ=~θB

)

+δj,k−1
∂2Vj

∂θj∂θj+1

∣

∣

∣

∣

~θ=~θB

+ δj,k+1
∂2Vj−1

∂θj∂θj−1

∣

∣

∣

∣

~θ=~θB

, (27)

and

M(0)
j,k = δj,k

(

− ∂2

∂τ̃2
+ 2ω2

)

− δj,k−1ω
2 − δj,k+1ω

2,(28)

where ω2 = ∂2
θj
Vj

∣

∣

∣

~θ=~θM
n

. Note that the factor of L in the

right hand side of Eq. (20) reflects the fact that there are
L independent trajectories corresponding to the phase
slip happening at one out of L links [39, 44]. We empha-
size that the use of the quantum rotor model is advan-
tageous in the sense that s̃B and A do not depend on ν
and U/J but depend only on p and L. This means that
~Γ/EJ depends on U , J , and ν only through he.
To obtain the bounce action s̃B and the prefactor A,

we numerically calculate the bounce solution ~θB(τ̃ ). The

bounce solution ~θB(τ̃ ) starts with the metastable state

with the winding number n, i.e. ~θB(−∞) = ~θMn , goes

through the saddle point ~θSn , bounces at the classical
turning point, and returns to the initial state. An ex-
ample of the bounce solution is shown in Fig. 1 for n = 1
and L = 60, where the origin of the time is set such that
the bounce solution reaches the classical turning point

Site j

0

(  )
j

0 10 20 30 40 50 60

0

-8

-16

8

16(a)

-30 -20 -10 0 10 20 30
0

2

L = 60

j = L/2

( 
 )

j

B

(b)

FIG. 1: (Color online) (a) The bounce solution for the initial
state with the winding number n = 1. We take L = 60. It
is clear that the bounce solution forms a pair of a vortex and
an anti-vortex in the (x, τ )-plane. (b) The bounce solution is
shown in section along the lines τ̃ = −30 (black circles), −3.75
(red squares), and 0 (blue diamonds), which correspond to
the metastable state, the vicinity of the saddle point, and the
classical turning point. (c) The bounce solution is shown in
section along the line j = L/2.

at τ̃ = 0. In Fig. 1(a), we see that the bounce solu-
tion for the quantum phase slips forms a pair of a vortex
and an anti-vortex in the (x, τ)-plane. As clearly seen
in Fig. 1(b), the phase kink is not located at a lattice
site, but at a link between two sites (30th and 31st), and
thereby the density nj at any sites does not vanish in
contrast to the phase-slips in continuous systems. This
is consistent with the basic assumption of the quantum
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FIG. 2: (Color online) (a) The bounce action s̃B versus the
system size L. (b) The prefactor A versus the system size
L. The (quasi-)momentum is fixed to be pd/~ = 2π/5. The
red solid line represents the best fit to the data with a fitting
function f(x) = a + bx−c. The blue dashed line represents
the extrapolated value a.

rotor model that the density fluctuation is small com-
pared to the density itself.
Substituting the bounce solution into Eq. (11), we ob-

tain the bounce action. Moreover, solving the eigenvalue
equations Eqs. (22) and (23) with the bounce solution,

we obtain ~ξm and ~ξ
(0)
m . Once ~ξm and ~ξ

(0)
m are obtained,

we can calculate the prefactor A through Eq. (21).
When calculating the bounce solution, one often intro-

duces collective variables to reduce the number of degrees
of freedom [19, 21, 22]. However, the use of such collec-
tive variables restricts the analyses to a small region with
respect to the momentum. In contrast, we deal with all
the phase degrees of freedom, and this unbiased treat-
ment enables us to more accurately obtain the nucleation
rate for the entire region of the momentum.
Let us calculate the bounce action s̃B and the prefactor

A as functions of the momentum p. For a given value
of p, s̃B and A depend on the number of lattice sites
L. A typical example is shown in Fig. 2, where s̃B and
A at pd/~ = 2π/5 are plotted by varying L. When L
increases, these two quantities are converged to certain
asymptotic values. We extract the asymptotic values by
fitting the numerical data to a function f(x) = a+bx−c as
represented by the blue lines in Fig. 2. This way allows us
to obtain the values of s̃B and A for the thermodynamic

FIG. 3: (Color online) (a) The bounce action s̃B as a function
of the (quasi-)momentum p. The red squares represent s̃B
obtained by the extrapolation shown in Fig. 2, while the blue
circles represent s̃B for the system size L = 2π~/(pd), where
the winding number is n = 1. The red solid line represents
s̃B = 7.26(π/2 − pd/~)5/2. The blue dashed line represents
the best fit to the data for pd/~ ≤ π/18 with a function
f(x) = a log(x) + b, where the fitting parameters turn out to
be a = −9.04 ± 0.05 and b = 3.84 ± 0.04. (b) Magnified view
of (a) that focuses on the region near the critical momentum
pd/~ = π/2.

limit (L → ∞). In Figs. 3 and 4, the bounce action
s̃B and the prefactor A versus the momentum p for the
thermodynamic limit are plotted by the red squares.

While the extrapolation to the thermodynamic limit
is applicable for a region of relatively large momenta
(pd/~ ≥ π/10 in Figs. 3 and 4), it is practically difficult
for very small momenta because the calculations for very
large systems are required. For this reason, in the region
of small momenta we calculate s̃B and A only by taking
the system size L = 2π~/(pd), i.e. the winding number
n = 1. For instance, we take L = 40 for pd/~ = π/20.
In Figs. 3 and 4, s̃B and A for n = 1 are plotted by the
blue circles. Although the values of s̃B and A are a little
overestimated without the extrapolation, the system size
for a small momentum is so large that the deviation from
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FIG. 4: (Color online) The prefactor A as a function of the
(quasi-)momentum p is plotted in a log-log scale. The red
squares represent A obtained by the extrapolation shown in
Fig. 2, while the blue circles represent A for the system size
L = 2π~/(pd), where the winding number is n = 1. The

red solid line represents A = 0.867(π/2 − pd/~)1/2. The blue
dashed line represents the best fit to the data for pd/~ ≤

π/18 with a fitting function f(x) = axb, where the fitting
parameters turn out to be (a, b) = (1.68±0.01,−1.87±0.01).

the values in the thermodynamic limit is fairly small as
already seen in the data points at pd/~ = π/10 (L = 20)
in Figs. 3 and 4.
In the vicinity of the critical momentum pc = ~π/(2d),

it has been predicted by previous work [22] that the
bounce action scales as s̃B = Cs(π/2 − pd/~)5/2. In a
similar way, the scaling formula for the prefactor can be
obtained asA = CA(π/2−pd/~)1/2. Inserting the numer-
ical data of s̃B and A for pd/~ = 8π/17 into these formu-
lae, we obtain the coefficients Cs = 7.26 and CA = 0.867.
As shown in Figs. 3 and 4, the formulae with these val-
ues of the coefficients agree well with the numerical data
(red squares) for the momentum close to pc. Surprisingly,
we find that the agreement in s̃B is almost perfect until
pd/~ ≃ π/6 which is far away from pc. Note that while
the previous work has predicted Cs = 7.1 that is indeed
close to our prediction, it is a little less accurate than
ours because of the use of a variational ansatz [22].
For small momenta, p ≪ ~/d, we numerically find that

the bounce action exhibits a logarithmic dependence as

s̃B = as log(pd/~) + bs, (29)

and that the prefactor obeys a power law as

A = aA(pd/~)
bA . (30)

We extract the coefficients as = −9.04, bs = 3.84, aA =
1.68, and bA = −1.87 by fitting these formulae to the
numerical data of s̃B and A for n = 1 represented by
blue circles in Figs. 3 and 4. Since the formula is valid
for small momenta, we used the data in the region of
pd/~ ≤ π/18 for the fitting. Substituting Eqs (29) and

(30) into Eq. (20), the scaling formula for the decay rate

is derived as ~Γ/(LEJ) ∝ (pd/~)2.03K−1.87. From this
numerical result, we argue that the nucleation rate obeys
the following power law,

~Γ

LEJ
= CΓ

(

pd

~

)2K−2

, (31)

where the coefficient CΓ is independent of the momen-
tum p. The same scaling formula has been derived for 1D
homogeneous superconductor with energy dissipation at
the phase-slip centers [15]. We emphasize that this agree-
ment is not trivial because the model used in Ref. 15 is
qualitatively different from ours in the sense that our
model explicitly includes the lattice and does not in-
clude energy dissipation. As explained in Sec. IV, this
agreement is rooted in the fact that both models exhibit
the Berezinskii-Kosteritz-Thouless (BKT) transition at
K = 2.
Since the resistance R is related to the nucleation rate

as R ∝ Γ/p [13], Eq. (31) indicates that a 1D Bose
fluid can flow with almost no resistance in a periodic
potential as long as the flow velocity is sufficiently small.
This is consistent with the previous numerical result that
the dipole oscillations of 1D lattice bosons confined in a
parabolic potential are hardly damped when the flow ve-
locity is more than one order of magnitude smaller than
the mean-field critical velocity [24].
Note that in deriving Eq. (31) we ignored the loga-

rithmic correction stemming from the factor
√
s̃B. The

formula of Eq. (31) has been found through the numerical
analyses on the discrete quantum rotor model Eq. (10).
However, it is very likely that this formula is generally
valid for the spinless TL liquid in a periodic potential
because it is a low-energy property.

IV. QUALITATIVE DISCUSSIONS ON THE

SCALING FORMULA

In this section, we qualitatively explain a reason
why the decay rate should obey the scaling formula of
Eq. (31). Our explanation is twofold. First, the term
2K in the exponent 2K − 2 can be understood as the
contribution from the bounce action, whose analytical
expression can be obtained by using the analogy with
the classical 2D XY model. Secondly, the term −2 in the
exponent can be determined by considering the relation
between the quantum nucleation of phase slips and the
quantum phase transition between the superfluid and the
Mott insulator.
Let us explain the first item. It is well known that

taking the continuum limit and regarding uτ as an-
other spatial variable y, the 1D quantum rotor action
of Eq. (10) is equivalent to the energy of the classi-
cal 2D XY model. In this mapping, the bounce solu-
tion corresponds to a vortex-antivortex pair. This anal-
ogy allows one to express the bounce action in terms
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FIG. 5: The size of a vortex-antivortex pair τ̃B versus the
inverse (quasi-)momentum ~/(pd). The blue line represents
the best fit to the data for pd/~ ≤ π/18 with a function
f(x) = ax + b, where the fitting parameters turn out to be
a = 0.753 and b = 0.412. Notice that the definition of τ̃B is
depicted in Fig. 1(b).

of the distance between the vortex and antivortex τ̃B.
When τ̃B is sufficiently large compared to the size of
vortex cores, the bounce action is well approximated as
SB/~ = 2K log τ̃B+sv, where sv is the contribution from
the vortex cores and independent of τ̃B [48]. In order
to find the p-dependence of SB, we numerically calculate
τ̃B versus the inverse momentum ~/(pd) for the winding
number n = 1 as shown in Fig. 5. There we observe that
when pd/~ ≪ 1, τ̃B linearly increases with ~/(pd). Using
this relation, we obtain the p-dependence of the bounce
action as SB/~ = −2K log(pd/~) + Const, and thereby
e−SB/~ ∝ (pd/~)2K . Hence, it is natural to anticipate
Γ ∝ L(pd/~)2K+X , where X is a constant that will be
determined to be X = −2 in the following.

In order to corroborate X = −2, we focus on the nu-
cleation rate from the state with a certain fixed wind-
ing number n, which is given by Γn→n−1 ∝ L−2K−X+1.
We discuss the relation between the nucleation rate and
the quantum superfluid-insulator transition. It is impor-
tant to remind us that the instanton formula is derived
within the dilute gas approximation (DGA), in which
the bounces are assumed to be well separated from each
other [43–47]. This means that when DGA breaks down,
many vortices are created in the space-time coordinate so
that they destroy the long-range phase coherence, leading
to the quantum phase transition to an insulating phase.
In other words, the breakdown of DGA signals the Mott
transition [49]. In general, DGA is valid when the size of
a bounce in the imaginary-time axis τB is much smaller
than the nucleation time 1/Γ [46, 47]. In the present
case, the bounce time is inversely proportional to the
momentum as shown in Fig. 5, which means τB ∝ L, and
thereby τBΓn→n−1 ∝ L−2K−X+2. This means that when
−2K −X + 2 < 0, DGA is valid in the thermodynamic

limit, i.e. the system is in the superfluid phase. There-
fore, the condition −2K−X+2 = 0 has to be fulfilled at
the Mott transition point. From a different point of view,
the renormalization group analyses have shown that the
transition of the BKT type occurs at K = 2 in the pres-
ence of a periodic potential [41, 42]. Thus, we reach the
conclusion that X = −2. Notice that X = −2 can be
derived in the same way also in the model of diffusive
1D superconductors studied in Ref. 15 from the fact that
there exists the BKT transition at K = 2 as well.
The explanation based on the relation between DGA

and the superfluid-insulator transition is applicable also
to the cases of a disorder potential and a single bar-
rier. For the disorder case, Khlebnikov and Pryadko have
found that the nucleation rate scales as Γ ∝ L(p/pc)

2K−1.
Anticipating Γ ∝ L(p/pc)

2K+X , let us corroborate that
X = −1 along the procedure introduced above. Since
τB ∝ L as in the case of a periodic potential, the onset of
the DGA breakdown, i.e. the transition point to an insu-
lating phase, is given by −2K −X + 2 = 0. Meanwhile,
it is known from renormalization group analyses that
K = 3/2 at the transition to the Bose glass phase [50].
Therefore, a simple algebra leads to X = −1. For the
single-barrier case, it has been shown in Refs. 18, 19 that
Γ ∝ (p/pc)

2K−1. Notice the absence of the factor of L,
which reflects the fact that the phase slips occur only at
the barrier potential. Anticipating Γ ∝ (p/pc)

2K+X , one
can easily show that X = −1 as follows. The onset of
the DGA breakdown is given by −2K −X +1 = 0 while
renormalization group analyses have shown that a tran-
sition to an insulating phase pinned by the barrier occurs
at K = 1 [51]. Hence, X = −1.
Furthermore, we briefly discuss the effects of finite

temperatures on our results. For the scaling formula
of Eq. (31) to be valid, the bounce time τB has to be
sufficiently small compared to the inverse temperature
~/(kBT ). Since τ̃B ∼ ~/(pd) as shown in Fig. 5, this con-
dition turns out to be kBT ≪ EJpd/~. In the interme-
diate temperature region, namely EJpd/~ ≪ kBT ≪ EJ,
the bounce time is bounded by the inverse temperature
as τ̃B ∼ EJ/(kBT ). In this case, the nucleation of phase
slips occurs due to the thermally assisted quantum tun-
neling [52], and the nucleation rate is given by

Γ ∝ L
pd

~

(

kBT

EJ

)2K−c

, (32)

where the constant c has been determined to be c =
3 in previous work [53]. Notice that scaling formulae
similar to Eq. (32) have been found also in the cases of a
disorder potential [21] and a single-barrier potential [18,
19]. Equation (32) means that the transport is ohmic,
but that the resistance can be very small when K ≫ 1.
This ensures the presence of superfluidity in the practical
sense even at small finite temperatures [18]. When the
temperature is as high as kBT ≫ EJ, the phase slips
can not be nucleated in the space-time coordinate and
the thermal activation process becomes dominant to the
superflow decay.



8

            

FIG. 6: (Color online) The red solid line represents the time
evolution of the flow velocity v(t) in the dynamics of the 1D
BHM, where L = 160, ν = 1, U/J = 3, and n = 4. The
blue dashed line represents the flow velocity at the winding
number n = 3.

FIG. 7: (Color online) The red solid line represents the time
evolution of the persistence probability P (t) in the dynamics
of the 1D BHM, where L = 160, ν = 1, U/J = 3, and n = 4.
The longitudinal axis is shown in a logarithmic scale. In the
region sandwiched between the two green dotted lines, P (t)
decays exponentially. The blue dashed line represents the best
fit with a function of Eq. (35) to the data in the exponentially
decaying region.

Since the Josephson plasma energy EJ separates the
quantum-tunneling regime from the thermal-activation
regime, it is important to provide an estimate of EJ for
present typical experiments. Taking the experiment of
Ref. 9 for example, EJ/kB ∼ 30nK because the sound
velocity is u ≃ 2.1mm/s and the lattice spacing is
d = 405nm. Given the fact that recent experiments have
lowered the temperature as low as 5nK [36, 54], it is very
likely that the regime of kBT ≪ EJ is experimentally ac-
cessible so that one can observe the superflow decay via
quantum nucleation of phase slips.

V. TEBD ANALYSES OF THE

BOSE-HUBBARD MODEL

While the scaling formula of Eq. (31) was obtained
from the O(2) quantum rotor model, it is expected to
hold generally for 1D spinless superfluids in a periodic

potential with an integer filling for the following two rea-
sons. First, this formula is a property at small momenta
(p ≪ pc), and such a low-energy property should be valid
commonly in the spinless TL liquid. For example, the
compressibility and the long-range behaviors of correla-
tion functions are expressed in terms of the TL parame-
ter K and the sound velocity u regardless of microscopic
details of the original Hamiltonian [41]. Secondly, as dis-
cussed in the previous section, this formula is closely re-
lated to the Mott transition atK = 2, which is a common
property in the spinless TL liquids with an integer filling
in a periodic potential.

In this section, we study the superflow decay in the
Bose-Hubbard model with unit filling in order to demon-
strate that the applicability of the scaling formula is
not limited to the quantum rotor model. Recall that
the quantum rotor model quantitatively agrees with the
Bose-Hubbard model only in the region of high filling
factors (ν ≫ 1) [39]. It is important to investigate the
unit-filling case also because the superfluid transport of
1D Bose gases in optical lattices has been experimen-
tally studied mainly in the region of low-filling factors
(ν ∼ 1). In the low-filling regime, it has been predicted
within the GP mean field theory that the Landau insta-
bility, which is characterized by the emergence of excita-
tions with negative energies, sets in at momenta smaller
than the critical value for the dynamical instability, i.e.
p = ~π/(2d) [55, 56]. However, this instability can break
down superflow only when the temperature is sufficiently
high so that the thermal fraction is comparable to the
condensate fraction [57–59], and is not relevant in the
regime of our interest in which quantum fluctuations are
dominant over thermal ones.

We describe 1D lattice bosons in a ring-shaped geom-
etry with the following BHM with a phase twist:

Ĥ= −J
L
∑

j=1

(

e−iθ b̂†j b̂j+1 + h.c.
)

+
U

2

L
∑

j=1

n̂j(n̂j − 1),(33)

where b̂L+1 ≡ b̂1, reflecting the nature of the ring-shaped
geometry. In Eq. (33), we include the phase twist e−iθ in
the hopping term in order to control the winding num-
ber of states. To deal with the quantum dynamics of
superflow of the 1D BHM Eq. (33), we use the TEBD
method [33] for a periodic boundary condition [34], which
allows us to accurately compute the time evolution of
many-body wave functions in 1D quantum lattice sys-
tems. It has been shown in our previous work that TEBD
is applicable to the problem of superflow dynamics associ-
ated with quantum phase slips [39]. We first calculate the
ground state of Eq. (33) with the phase twist θ = 2πn/L
via the imaginary time evolution, and thereby a flowing
state with the winding number n that is metastable in
the classical limit is prepared. Taking this state as the
initial state and setting θ = 0 at t = 0, we compute the
real-time evolution.

In Fig. 6, we show the time evolution of the averaged
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FIG. 8: The red circles represent the nucleation rates of quan-
tum phase slips Γ extracted from the real-time dynamics of
the 1D Bose-Hubbard model with L = 160 as functions of the
flow (quasi-)momentum p, where U/J = 2.8 (a), 3 (b), and
3.2 (c). The plots are shown in a log-log scale. In each plot,
the blue solid line represents the scaling formula of Eq. (31)
with the constant CΓ determined such that the line passes on
the data point with the smallest momentum. The TL param-
eters are taken from Ref. 61 as K = 2.52 (a), 2.37 (b), and
2.17 (c).

flow velocity,

v =
Jd

i~N

∑

j

〈b̂†j b̂j+1 − h.c.〉, (34)

for L = 160, U/J = 3, and n = 4. We see that the
flow velocity decreases in time, clearly exhibiting the su-
perflow decay due to quantum tunneling. However, the
averaged flow velocity does not exhibit a sudden drop
by a quantized amount, which could be a characteristic
of phase slips, but gradually decreases in time. This is
because the phase slip jump is smoothened out by tak-
ing the quantum average of many events. In each event
a phase slip occurs at a different time. Notice that the

flow velocity is constant in time if one computes classi-
cal dynamics of the Gross-Pitaevskii equation neglecting
quantum fluctuations.
To quantify the tunneling rate from the metastable

state, i.e. the nucleation rate of quantum phase slips, we
calculate the overlap of the wave function with the initial
state P (t) = |〈Ψ(t)|Ψ(0)〉|2, which can be interpreted as
the persistence probability, i.e., the probability that the
state remains in the initial state by the time t. It is ex-
pected from the tunneling theory that when the initial
state is a metastable state, the persistence probability
decays exponentially as P (t) ≃ exp(−Γt) with the nu-
cleation rate Γ [60]. Notice that the ability to calculate
the persistence probability is a clear advantage of TEBD
for a periodic boundary condition over TEBD for infinite
systems that was used in Ref. 23.
In Fig. 7, we show P (t) with the same parameters as

used in Fig. 6. Indeed there is a large region where P (t)
exhibits the exponential decay. We extract the nucleation
rate Γ by fitting the data in the exponentially decaying
region to the following function,

g(t) = D exp(−Γt), (35)

and taking D and Γ as free parameters. In Fig. 8, we plot
the nucleation rates versus the momentum p for three
values of U/J , where L = 160. We also show the scaling
formula of Eq. (31) represented by the (blue) solid lines,
where CΓ is taken such that the line passes on the data
point with the smallest momentum. We use the TL pa-
rameter K numerically extracted from the single-particle

correlation function 〈b̂†r b̂0〉 with the distance 16 ≤ r ≤ 32
in Ref. 61. Notice that the TL parameter K in the
present paper is equivalent to 1/K in the definition of
Ref. 61. We clearly see that the data points approach
the lines when the momentum decreases, thus justifying
the validity of the scaling formula for BHM with unit
filling.

VI. CONCLUSIONS

In summary, we have studied the decay of superflow
via quantum nucleation of phase slips in one-dimensional
(1D) superfluids in the presence of a periodic potential.
Within the quantum rotor regime, we used the instanton
method to obtain the nucleation rate for all the region
of the momentum p. When the momentum is close to
the mean-field critical value pc, we improved the expres-
sion of nucleation rate that was previously obtained in
Ref. 22. For small momenta p ≪ pc, we derived the
scaling formula of the nucleation rate with respect to p,
which is expressed in Eq. (31). We discussed the relation
between the dilute gas approximation and the quantum
superfluid-insulator transition in order to gain a unified
physical interpretation of the scaling formulae for peri-
odic, disorder, and single-barrier potentials. Applying
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the time-evolving block decimation method to the 1D
Bose-Hubbard model with unit filling, we analyzed the
quantum dynamics of the superflow decay and confirmed
the validity of the scaling formula of Eq. (31).
While we have calculated the nucleation rate of quan-

tum phase slips in order to characterize the superflow
decay, it still remains ambiguous how the nucleation rate
is related to the transport of 1D Bose gases in the pres-
ence of a trapping potential that has been studied in cold
atom experiments [8–11]. Since the damping rate of the
dipole oscillations has been often used to quantify the
transport of trapped atomic gases, in our future work we
will clarify direct connections of the nucleation rate with

the damping rate.
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