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We theoretically investigate finite-temperature thermodynamics and demagnetization cooling of
two-component Bose-Bose mixtures in a cubic optical lattice, by using bosonic dynamical mean field
theory (BDMFT). We calculate the finite-temperature phase diagram, and remarkably find that the
system can be heated from the superfluid into the Mott insulator at low temperature, analogous
to the Pomeranchuk effect in 3He. This provides a promising many-body cooling technique. We
examine the entropy distribution in the trapped system and discuss its dependence on temperature
and an applied magnetic field gradient. Our numerical simulations quantitatively validate the spin-
gradient demagnetization cooling scheme proposed in recent experiments.
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I. INTRODUCTION

Exploring the thermodynamics of interacting many-
body systems has been arguably one of the most impor-
tant achievements of cold-atomic gases, whether solely
trapped by an external potential or loaded into an optical
lattice. A key experimental requirement is reliable ther-
mometry, with a precision below the degeneracy point
where quantum effects start to dominate. To date, the
temperature of a dilute (bosonic) gas in free space has
been measured by conventional time-of-flight thermome-
try [1] based on absorption imaging of an expanding gas
released from the trap. For a wide range of experiments,
this thermometric approach has been successful. How-
ever it loses its applicability when the bosons are loaded
into an optical lattice, due to the reduced kinetic energy
of the atoms [1, 2]. In a frequently used approximate ap-
proach, the temperature is first measured in the absence
of the optical lattice, which is then ramped up gradu-
ally. One thus determines the final temperature of the
gas under the assumption of ramping up the lattice adi-
abatically, which is a challenging task itself. Therefore
the need for an alternative approach is inevitable and the
search for other thermometers, directly applicable in op-
tical lattices, has been the subject of several theoretical
proposals [1].
One of the ultimate goals of experiments on cold-

atomic gases in optical lattices is to include the spin
degree of freedom and to simulate solid-state phenom-
ena such as high-temperature superconductivity whose
underlying mechanism is still elusive [3, 4]. Recently,
bosons with a spin degree of freedom have been loaded
into optical lattices [2, 5, 6] and significant efforts have
been made to achieve a magnetic phase transition in the
two-component bosonic system which has a rich phase di-
agram [7–10]. However, at present it is still challenging to
observe these quantum magnetic phases in an optical lat-
tice due to the extremely low critical temperature which
is governed by second-order tunneling [11–15]. Differ-
ent cooling schemes have been proposed for lowering the

temperature, such as cooling based on extracting entropy
from the region or species of interests [1, 16–19]. Re-
cently, a cooling approach using spin-gradient adiabatic
demagnetization was proposed in Ketterle’s group [2],
and based on it a temperature of 350 picokelvin has been
achieved for a two-component Mott insulator of 87Rb in
a three-dimensional (3D) lattice [14, 20]. However, this
temperature is still higher than the critical temperature
of the magnetic phase transition [15, 21]. In addition,
direct evidence for the validity of the spin-gradient cool-
ing scheme is still lacking due to severe approximations
in the theoretical discussion [1]. As far as we know, the
only theoretical simulation related to the cooling of a
two-component bosonic lattice gas in the presence of a
magnetic field gradient has been performed by studying
the domain wall dynamics of the Mott insulator via map-
ping it onto a spin model, where a cooling effect is also
observed during adiabatic demagnetization [22].

Due to isolation of the system from the environment,
entropy is more suitable than temperature for charac-
terizing thermodynamical properties. Entropy controls
quantum phase transitions since it is related to the num-
ber of accessible quantum states [1]. Therefore, a cru-
cial issue related to cooling is how entropy is distributed
in the strongly interacting many-body systems in cur-
rent experiments [2, 6, 14, 19] and how the entropy re-
distributes during the adiabatic process of spin-gradient
cooling [14]. These questions motivated our study in
this paper focusing on the thermodynamical properties of
two-component Bose gases in optical lattices in the pres-
ence of an external harmonic trap. While the thermo-
dynamics of strongly interacting two-component Fermi
gases has been investigated in detail [23–33] and the re-
sulting critical entropy per particle s ≈ kB ln 2 at the
fermionic Mott-insulator transition has been achieved
experimentally in a 3D cubic lattice [33, 34], less at-
tention has been paid to the thermodynamics of two-
component bosonic systems [35]. In Ref. [21], the critical
entropy for magnetic ordering of two-component hard-
core bosons has been investigated in a 3D homogeneous
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system, where a critical entropy per particle of 0.35kB
for the XY-ferromagnetic phase and 0.5kB for the Z-Néel
antiferromagnetic phase have been found. Here, we will
focus on the thermodynamical properties of realistic two-
component bosons in a 3D cubic optical lattice in the

presence of an external trap, and investigate the valid-
ity of spin-gradient demagnetization cooling, which is in
principle capable of cooling the system down to the crit-
ical temperature of magnetic order. This system can be
approximately described by a single-band Bose-Hubbard
model and is investigated by bosonic dynamical mean
field theory (BDMFT) [10, 36–38], both in combination
with a local density approximation (LDA) and by its full
real-space implementation [15].
The paper is organized as follows: in section II we give

a detailed description of the model and our approach used
to calculate the entropy in the inhomogeneous system.
In section III we present the finite temperature phase
diagram of a Bose-Bose mixture in an optical lattice. We
then discuss the entropy distribution in the presence of a
harmonic trap without magnetic field gradient. Finally
we give a detailed discussion of the case where a magnetic
field gradient is applied. We conclude in section IV.

II. MODEL AND METHOD

We consider two species of bosonic atoms [5] or, alter-
natively, atoms in two different hyperfine states [2, 6], in
an optical lattice in the presence of an external harmonic
trap. Within the tight-binding picture, this system can
be described by a single-band Bose-Hubbard model:

H = −
∑
<i,j>

ν=b,d

tν(b
†
iνbjν + h.c) +

1

2

∑
i,λν

Uλν n̂iλ(n̂iν − δλν)

+
∑

i,ν=b,d

(Vi − µν)n̂iν −
∑
i,ν

µν
magB(xi)n̂iν (1)

Moreover, we consider a linear position-dependence of
the magnetic field in x direction, i.e., B(xi) = c xi where
c is the magnetic field gradient and xi the distance from
the harmonic trap center, which describes the recent ex-
periment [14]. This leads to

HB = −
∑
i,ν

µν
mag B(xi)n̂iν = −

∑
i,ν

µν
magc xin̂iν

≡ −
∑
i,ν

V ν
gradxin̂iν (2)

In the Hamiltonian, 〈i, j〉 denotes the summation over
nearest neighbors sites and the two boson species are la-
belled by the index λ(ν) = b, d. Due to different masses
or a spin-dependent optical lattice, these two species gen-
erally have different hopping amplitudes tb and td. The
bosonic creation (annihilation) operator for species ν at

site i is b†iν (biν) and the local density is n̂i,ν = b†iνbiν . Uλν

denotes the inter- and intra-species interactions, which

can be tuned via a Feshbach resonance [39] or by a spin-
dependent lattice [6]. µν denotes the global chemical po-
tential for the two bosonic species and Vi is the harmonic
trapping potential. µν

mag denotes the magnetic moment
of component ν and B(xi) is the magnetic field along the
x axis.
Bosonic DMFT (BDMFT) has been developed [36] and

implemented [10, 37, 38] to provide a non-perturbative
description of zero- and finite-temperature properties of
the homogeneous Bose-Hubbard model including mag-
netic ordering. In order to account for the external trap-
ping potential, we have recently developed real-space
BDMFT (RBDMFT), whose detailed formalism is pre-
sented in [15]. In parallel to RBDMFT, here we also em-
ploy an LDA scheme combined with single-site BDMFT
to explore the system. The advantage of the latter ap-
proach is the larger system size accessible. The validity
and limitations of this approach have been investigated
by a quantitative comparison with the more rigorous RB-
DMFT method [15]. In our LDA+BDMFT calculations,
the chemical potentials are adjusted locally according to
the trapping potential, i.e., µν(r) = µν − V0r

2, where V0

is the strength of the harmonic confinement and r is the
distance from the trap center.
In general, it is difficult to calculate the entropy within

BDMFT or RBDMFT directly. But assuming that the
strongly interacting many-body system is in equilibrium,
we can use the Maxwell relation ∂s

∂µ
= ∂n

∂T
to obtain the

local entropy per site [34] at temperature T and chemical
potential µs(r) = (µb(r) + µd(r))/2:

s(µs(r0), T ) =

∫ µs(r0)

−∞

∂n(r)

∂T
dµs(r) (3)

where n(r) = nb + nd is the local density (i.e., number
of particles per lattice site) at radius r. Note that the
formula (3) is only valid at fixed ∆µ(r) = µb(r) − µd(r)
for the two-component mixture. The density distribu-
tion obtained from BDMFT and RBDMFT is accurate
enough to yield precise results for the derivative ∂n

∂T
. This

relation will be used in the following to obtain the entropy
distribution.

III. RESULTS

In ongoing experiments, two hyperfine states of 87Rb
have been loaded into optical lattices [2, 6], with inter-
species and intra-species interactions in the regime Ub ≈
Ud ≈ Ubd. Considering the tunability of interactions via
Feshbach resonances [39] or state-dependent optical lat-
tices [6], here we choose Ub = Ud = 1.01Ubd. In the
following, we investigate the finite temperature quantum
phases of this system in a cubic optical lattice, as well as
the temperature dependence of the entropy distribution
in the presence of a harmonic trap. Finally, these thermo-
dynamical properties are used to quantitatively describe
the adiabatic spin gradient cooling scheme of [14]. In
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all our calculations we consider balanced mixtures of the
two components. We choose Ubd = 1 as the unit of en-
ergy, and set kB = 1. z denotes the number of nearest
neighbors for each lattice site. The lattice constant is set
to unity.

A. Pomeranchuk effect and phase diagram at finite

temperature

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6

T
/2

z
t ν

Ubd/2ztν

SF

N

MI

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6

T
/2

z
t ν

Ubd/2ztν

SF

N

MI

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6

T
/2

z
t ν

Ubd/2ztν

SF

N

MI

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6

T
/2

z
t ν

Ubd/2ztν

SF

N

MI

0.04

0.08

0 0.2

∆
2
(n

)

T/2ztν

(a)

0

0.02

2 3 4 5 6

(b)

XY
0

0.02

2 3 4 5 6

(b)

XY
0

0.02

2 3 4 5 6

(b)

XY

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

T
/2

z
t ν

Ubd/2ztν

SF

N

MI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

T
/2

z
t ν

Ubd/2ztν

SF

N

MI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

T
/2

z
t ν

Ubd/2ztν

SF

N

MI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

T
/2

z
t ν

Ubd/2ztν

SF

N

MI

0

0.1

0.2

0 0.5 1

∆
2
(n

)

T/2ztν

(a)

0

0.04

0.08

0.12

3 4 5 6

(b)

XY0

0.04

0.08

0.12

3 4 5 6

(b)

XY0

0.04

0.08

0.12

3 4 5 6

(b)

XY

FIG. 1: (Color online) Finite temperature phase diagram of a
two-component bosonic gas in a cubic optical lattice with fill-
ing nb = nd = 0.5 (upper) and nb = nd = 1.0 (lower). The
interactions are set to Ub = Ud = 1.01Ubd , and the hopping
amplitudes are tb = td. Inset (a): fluctuations of the total
density per site n = nb + nd as a function of temperature
along the vertical dotted line of the main figure. Note the
reduction of local number fluctuations by heating, analogous
to the Pomeranchuk effect. Inset (b): zoom of the main figure
around the critical point of magnetic order.

In this section, we explore the finite-temperature phase
diagram of two-component bosons in a homogeneous and
infinite optical lattice. For strongly interacting two-
component Fermi gases, the critical parameters such as
the critical temperature and entropy for the transition

to a superfluid state have been determined experimen-
tally [23] by considering entropy versus energy. For one-
component bosonic gases in an optical lattice, the finite-
temperature phase diagram has been studied experimen-
tally in combination with Monte Carlo simulations [40].
However, for two-component bosonic gases, the critical
behavior of the superfluid-normal phase transition has
not been determined yet. In our previous work [15],
phase diagrams at filling n = 1 and n = 2 for zero
and fixed finite temperature have been determined for
the cubic lattice. But there we mainly focused on the
emergence of long-range magnetic order, which is gov-
erned by second-order tunneling and only develops at
very low temperatures of the order of 100 pK. On the
contrary, here we will investigate quantum criticality of
the system at higher temperatures. We choose interac-
tions Ub = Ud = 1.01Ubd and hopping amplitudes tb = td.
Fig. 1 shows the phase diagram of a Bose-Bose mixture
in a cubic optical lattice with filling nb = nd = 0.5 (up-
per) and nb = nd = 1 (lower). We observe four differ-
ent phases. When the interaction is weak, the atoms
are delocalized and at low temperature the system is
in the superfluid phase (SF), characterized by a finite
value of the superfluid order parameter φν ≡ 〈bν〉. When
the temperature is increased, thermal fluctuations de-
stroy the coherence between atoms and the system goes
through a phase transition into the normal phase (N).
For sufficiently strong interactions, the atoms are local-
ized and hopping processes are strongly suppressed. The
system is in the XY-ferromagnetic phase (characterized
by 〈bd†〉 > 0 and φν = 〈bν〉 = 0) at low temperature, with
magnetic long-range order governed by second-order tun-
neling processes. Since the corresponding energy scale is
very small, even weak thermal fluctuations can destroy
the long-range magnetic order, and the system will go
through a phase transition into a Mott insulator (MI)
without order. Upon further increase of temperature, the
Mott insulator melts into a normal phase which is charac-
terized by large density fluctuations ∆2(n) = 〈(n−〈n〉)2〉
where the n is the total density per site. Compared to the
single-component system in a cubic optical lattice, new
features of two-component bosons appear at low temper-
ature. Near the critical interaction strength of the zero-
temperature MI-SF transition, with increasing tempera-
ture, the system will first go through a phase transition
from superfluid to Mott-insulator, and then cross over to
the normal phase. This is because upon heating at low
temperature, the system favors localization - analogous
to the Pomeranchuk effect in liquid 3He [31, 41] - since
the Mott insulating phase of spinful bosons carries more
entropy in the spin degree of freedom than the superfluid.
Interestingly, the first-order phase transition from super-
fluid to Mott-insulator occurs at a higher temperature for
filling n = 2 (lower plot in Fig. 1) compared to n = 1,
indicating that it is easier to observe the Pomeranchuk
effect discussed above for higher filling. Note that the
XY-ferromagnetic phase at filling n = 2 only extends up
to a finite maximum value of Ubd/2ztν, which is consis-
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tent with our previous work [15].

B. Entropy distribution in the trapped system

with B = 0

In the former section, we have studied the homoge-
neous system and mapped out the finite-temperature
phase diagram. We will now study the thermodynamics
of Bose-Bose mixtures in an optical lattice in the pres-
ence of a harmonic trap. More specifically, we investigate
the temperature dependence of the entropy distribution,
motivated by recent experiments [2, 5, 6]. Comparison
between RBMDFT and BDMFT+LDA calculations has
been made to check the validity of LDA for determin-
ing the entropy. Only the results of BDMFT+LDA are
given here for the 3D case in a 51 × 51 × 51 cubic lat-
tice. Throughout this section, the interactions are set
to Ub = Ud = 1.01Ubd with a harmonic trap strength
V0 = 0.005Ubd and a total filling n = 2 at the trap cen-
ter.
In the upper panel of Fig. 2 at high temperatures

T/Ubd = 0.105, 0.11 and 0.115 (corresponding to the
normal phase in Fig. 1), the Mott-insulator plateaux melt
into a normal phase with entropy per site s > ln 3 around
the center of the harmonic trap and s > ln 2 at the second
Mott-insulating ring. Naturally, we can also identify the
melting of the Mott insulator into the normal phase from
the density profile, i.e., the corresponding Mott-plateaux
at filling n = 2 and n = 1 have disappeared at this tem-
perature. Due to the insensitivity of the density profile
to a small variation of temperature, only a single density
profile at temperature T/Ubd = 0.11 is shown here. There
are also two peaks of the entropy density in the normal
shells surrounding the Mott-insulating regions. Our sim-
ulations indicate that the transfer of entropy from su-
perfluid to Mott insulator due to the Pomeranchuk effect
does not occur in this high temperature region, since here
the local entropy per particle in the superfluid is higher
than in the Mott-insulator. We observe that the local
entropy per particle is reduced when the temperature
decreases, as shown in the lower panel of Fig. 2 at low
temperatures of T/Ubd = 0.035, 0.04 and 0.045 (corre-
sponding to the Mott insulator region in Fig. 1). Here
the system has a Mott-insulator core with filling n = 2 in
the trap center and also a Mott-insulating shell with fill-
ing n = 1. Correspondingly, the local entropy per site of
the Mott-insulator region is s ≈ ln 3 in the filling n = 2
region and s ≈ ln 2 in the n = 1 region, respectively,
since there are three possible local spin states |↑↑〉, |↓↓〉
and |↑↓〉 for n = 2, and two possible spin states |↑〉, |↓〉
for n = 1, where ↑ and ↓ denote the two bosonic species.
Between the two Mott-insulating regions, there is also a
superfluid shell with non-zero value of the superfluid or-
der parameter. Interestingly, we observe a sudden drop
of the entropy density around the peak of the superfluid
order parameter, which indicates a fine structure in the
density distribution of the phases with non-integer filling
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FIG. 2: (Color online) Radial profile for the total density
per site (n ≡ nb + nd), parity (pν), local entropy per parti-
cle (s/n), and superfluid order parameter (φν) in a 3D cubic
lattice obtained by BDMFT+LDA at different temperatures.
The interactions are set to Ub = Ud = 1.01Ubd , with hop-
ping amplitudes 2ztb = 2ztd = 0.195Ubd and harmonic trap
strength V0 = 0.005Ubd . The unit of temperature is Ubd.

(superfluid and normal phase). A similar structure is also
found for a one-component Bose gas in an optical lattice
plus external harmonic trap [42]. Physically, the sudden
change of entropy in the superfluid region is caused by
the reduced number of many-body states of the system
due to the formation of a condensate. It is expected that,
if the temperature is lowered further, another superfluid
domain forms in the region with filling n < 1. We have
also shown the parity profile pν = 〈(1− eiπn̂ν )/2〉 for the
individual components in Fig. 2, which can be directly
measured experimentally [43, 44]. Interestingly, the lo-
cal parity for the individual components in the Mott-
insulating region with total filling n = 2 is finite.

In addition, we now observe (lower plot of Fig. 2) that
the local entropy per particle in the first superfluid ring is
smaller in some regions than that in the Mott insulator,
which indicates that a transfer of entropy from super-
fluid to Mott insulator can lower the temperature of the
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system in this regime, which is consistent with the phase
diagram for the homogeneous system in Fig. 1. This
interaction-induced cooling mechanism (Pomeranchuk ef-
fect) of two-component bosonic gases in an optical lattice
is expected to be visible experimentally [2, 5, 6], after
further lowering the temperature. For example, in the
experiment this effect could be observed via ramping up
the optical lattice, where the temperature should be de-
creased beyond single-particle adiabatic cooling due to
the Pomeranchuk effect, since the Mott-insulating region
increases.
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FIG. 3: (Color online) Validity of BDMFT+LDA bench-
marked against RBDMFT. Density profile ntot and entropy
distribution s along the radial direction r at temperature
T = 0.1Ubd (upper) and T = 0.03Ubd (lower) obtained by
RBDMFT (R) and BDMFT+LDA (L) for 2D case. The in-
teractions are set to Ub = Ud = 1.01Ubd and the hopping
amplitudes are 2ztb = 2ztd = 0.175Ubd with harmonic trap
V0 = 0.005Ubd.

To check the validity of BDMFT+LDA around quan-
tum degeneracy, we investigate the density and entropy
distribution for the 2D case and test the accuracy of
BDMFT+LDA against RBDMFT, as shown in Fig. 3.
We find excellent agreement deep inside each phase, while
RBDMFT provides the slightly more accurate descrip-
tion of the transition region. We therefore expect that

BDMFT+LDA will also give quantitatively reliable re-
sults for the 3D case.

C. Adiabatic cooling via entropy redistribution for

B 6= 0

We have so far investigated thermodynamical proper-
ties for equal filling of the two components. In this sec-
tion, we will now study a scenario with the two species
separated by a magnetic field with constant gradient
which can be used experimentally to cool the system.
Specifically, we simulate the adiabatic process of the spin-
gradient cooling scheme proposed by Weld et. al. [2]. To
this end, we calculate the entropy distribution of the in-
homogeneous system in the presence of the field gradient,
and the dependence of the entropy per particle on tem-
perature. To simplify the calculation, we assume that the
two components of the bosonic mixture have the same
absolute value of the magnetic moment.

1. Entropy distribution in the presence of field gradient
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FIG. 4: (Color online) Real-space profile (here in the x-y
plane of the lattice) for the local density n, magnetization m
and entropy s along the z = 0 plane of a 3D cubic lattice
using BDMFT+LDA. From left to right, the temperatures
are T/Ubd = 0.020, 0.040, 0.070 and 0.095, respectively. The
interactions are set to Ub = Ud = 1.01Ubd and the hopping
amplitudes are 2ztb = 2ztd = 0.12Ubd , with total particle
number Ntot ≈ 17000 in a harmonic trap V0 = 0.004Ubd and
magnetic field gradient Vgra = 0.01Ubd.

The two-component bosonic mixture can be separated
to opposite sides of the trap by the magnetic field. At
zero temperature, the two components are completely
separated and a sharp domain wall forms in the trap cen-
ter. At finite temperature, spin excitations, such as a pair
of opposite-spin atoms swapping positions via second-
order tunneling, will broaden the width of the domain
wall (the width is defined as the distance from the trap
center to the position where the magnetization is half
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of the maximum value). As pointed out in [2, 22] the
width of the domain wall depends in a simple way on
the field gradient and can be used as a thermometer in
the zero-tunneling limit. Fig. 4 shows the distribution
of local density n, magnetization m = (nb − nd)/2, and
entropy s in the z = 0 plane. Since the density and
magnetization distributions depend on the temperature,
they can be used for thermometry via in-situ measure-
ments with single-site resolution [43, 44]. In particular,
the magnetization distribution can be used as a ther-
mometer at low temperatures down to the critical tem-
perature of magnetic phases. From the middle row of
Fig. 4 we observe that the narrow mixed region of the
two components broadens with increasing temperature,
which is consistent with measurements where tempera-
tures as low as 350 pK have been measured [2, 14]. The
bottom row of Fig. 4 shows the entropy distribution. The
entropy is mainly carried by the spin degree of freedom of
particles around the trap center, and also by delocalized
particles near the edge of trap. When the temperature is
lowered, the delocalized particles form a condensate. As
a result, the entropy drops quickly as a function of tem-
perature in the superfluid ring. On the other hand, the
spin degree of freedom in the mixed region can still carry
a large amount of entropy, even at low temperature where
the entropy of the single-component superfluid becomes
very small. Therefore, if one prepares the system in a
state where entropy is mainly carried by a single species
(i.e. if one initially separates the two species by a field
gradient) and then transfers the entropy from the single
species to the spin degree of freedom, the temperature of
the system can be lowered dramatically.
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FIG. 5: Domain-wall width dm (in units of the lattice con-
stant) as a function of superexchange coupling at different
temperatures. The width is defined as the distance from
the trap center to the position where the magnetization is
half of the maximum value. The interactions are set to
Ub = Ud = 1.01Ubd in a harmonic trap V0 = 0.004Ubd and
a magnetic field gradient Vgra = 0.0005Ubd .

The domain-wall width can also be used as a tool to

measure the strength of the resulting superexchange in-
teractions between the atoms. As shown in panel (a)
and (b) in Fig. 5, when superexchange interactions dom-
inate over thermal fluctuations (4t2ν/Ubd > T ), we ob-
serve a linear dependence of the domain-wall width on
the strength of the superexchange in the Mott-insulating
regime. We also observe that the domain-wall width in-
creases faster at larger hopping parameters, since in that
case the mixed region is in the superfluid regime and the
first-order tunneling dominates. When thermal fluctua-
tions dominate (4t2ν/Ubd < T ), as shown in panels (a),
(b), (c) and (d), the increase of the superexchange de-
creases the width of the domain wall due to minimizing
the energy of the spin-spin coupling. If the temperature
is increased, the minimum of the domain-wall width is
shifted to higher hopping amplitudes, as shown in panels
(a) and (b) in Fig. 5. We also observe that the linear de-
pendence [2, 22] of the domain-wall width dm only holds
for temperature above the critical values Tc for magnetic
ordering (see Fig. 6). The change of slope at Tc is a clear
indication of the phase transition.
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0 0.002 0.004 0.006 0.008 0.01

d
m
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tν/Ubd = 0.020

= 0.015

= 0.005

FIG. 6: (Color online) Domain-wall width dm (in units of
the lattice constant) as a function of temperature at different
hopping amplitudes. The width is defined as the distance
from the trap center to the position where the magnetization
is half of the maximum value. The interactions are set to
Ub = Ud = 1.01Ubd in a harmonic trap V0 = 0.004Ubd and a
magnetic field gradient Vgra = 0.0005Ubd .

2. Entropy per particle versus temperature

We now focus on the relation of entropy versus tem-
perature, which gives insight how adiabatic changes af-
fect the temperature of the system. Fig. 7 shows the
entropy-temperature curve for strongly interacting two-
component bosons in an optical lattice in the presence of
the magnetic field, where the dashed lines are obtained by
the zero-tunneling approximation [20]. Due to the deep
optical lattice, our results obtained by BDMFT+LDA
are in good agreement with the approximate analytical



7

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1

S
t
o
t
/N

t
o
t

T/Ubd

Vgra/Ubd = 0.005

analytical

Vgra/Ubd = 0.030

analytical

FIG. 7: (Color online) Entropy per particle versus tempera-
ture in a cubic optical lattice obtained by BDMFT+LDA,
compared with the analytical zero-tunneling approxima-
tion [20]. The interactions are set to Ub = Ud = 1.01Ubd

and the hopping amplitudes to 2ztb = 2ztd = 0.12Ubd, with
total particle number Ntot ≈ 17000 in a harmonic trap of
strength V0 = 0.004Ubd .

results except at low and high temperatures. At high
temperature, thermal fluctuations will induce hopping of
atoms. This effect is neglected in the zero-tunneling ap-
proximation, which therefore gives a lower prediction for
the entropy. At low temperature, on the other hand, the
entropy of the motional degree of freedom drops quickly
due to condensate formation in the superfluid regime.
This effect is neglected as well in the zero-tunneling ap-
proximation, which therefore gives a larger prediction for
the entropy. We note that quantum Monte Carlo simula-
tions [21] also reveal the inadequacy of the zero-tunneling
approximation in the low temperature regime.

3. Adiabatic cooling via spin-gradient demagnetization

The spin-gradient cooling scheme relies on the in-
homogeneous entropy distribution of the system. The
main effect of the demagnetization process is to decrease
the local entropy per particle in the spin-mixed regions,
which is essential for long-range spin order. There are
three different regions corresponding to different phases
of the system, namely the superfluid, spin-mixed and one-
component Mott-insulating region. Initially, the super-
fluid and spin-mixed region carry almost all the entropy
of the system, while the entropy in the one-component
Mott insulator is close to zero. When the magnetic field
gradient is decreased, the spin-mixed region expands,
while the one-component Mott-insulating region shrinks,
and the average entropy per particle in the spin mixed
region is decreased. At the same time, the temperature
drops, since entropy carried by hot mobile particles is
drained into the expanding mixed region with a drop
of local entropy per particle. Here, we will quantita-
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x
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FIG. 8: (Color online) Upper: Field-gradient dependence of
the local entropy per particle along the x direction on the
y, z = 0 axis, for an entropy per particle Stot/Ntot = 0.7.
The red, green and blue lines correspond to field gradients of
Vgra/Ubd = 0.03, 0.01 and 0.005, respectively. Lower: Adia-
batic cooling due to spin-gradient demagnetization in a cubic
lattice. Data are obtained by BDMFT+LDA and compared
to the analytical zero-tunneling approximation [20]. Interac-
tions are set to Ub = Ud = 1.01Ubd , and the hopping am-
plitudes are 2ztb = 2ztd = 0.12Ubd for total particle number
Ntot ≈ 17000 in a harmonic trap V0 = 0.0025Ubd .

tively establish this scenario by considering the spatial
entropy distribution and entropy-temperature relation.
In the upper panel of Fig. 8, the local entropy per par-
ticle s/n is shown at different field gradient strengths
for fixed total particle number and entropy. We observe
that s/n decreases in the central region as the field gra-
dient is adiabatically decreased. Since the number of
spin excitations (with respect to the ferromagnet at zero
temperature and in the presence of the field gradient)
due to exchange of |↑〉 and |↓〉 particles between neigh-
boring sites is increased in the demagnetization process,
the total energy of the system decreases as well and, as
a result, the temperature drops from T/Ubd = 0.065 to
0.035 when the field gradient adiabatically decreases from
Vgra/Ubd = 0.03 to 0.005. The resulting cooling efficiency
is shown in the lower panel of Fig. 8. The demagneti-
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zation cooling curve obtained via BDMFT simulations is
in good agreement with results from the zero-tunneling
limit [20], since here we choose the optical lattice rela-
tively deep which makes tν/Ubd very small. In addition,
the demagnetization cooling appears to be less efficient
at larger magnetic field gradients. This is because the
strong field gradient repels particles to the outer regions
of the trap, which makes the trap center superfluid with
enhanced entropy compared to the Mott insulator. This
effect reduces the entropy capacity of the spin degree of
freedom at high field gradients.

IV. CONCLUSION

In conclusion, we have investigated the thermodynam-
ics of a two-component Bose gas loaded into an op-
tical lattice in the presence of an external trap, us-
ing BDMFT+LDA and the newly developed real-space
BDMFT. We obtain the finite-temperature phase dia-
gram and find that at low temperature, remarkably, the

system can be heated into a Mott insulator, analogous to
the Pomeranchuk effect in 3He. By investigating the en-
tropy redistribution of the system during adiabatic spin-
gradient demagnetization, we observe efficient cooling
due to entropy transfer from the single species domains to
the mixed region, and provide a quantitative theoretical
validation of recent experiments [2, 14]. We expect our
work to provide valuable insight for realizing quantum
magnetic phases in upcoming experiments.
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