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Abstract
We study non-equilibrium dynamics of ultracold two-compotFermi gases in low-dimensional geome-
tries after the interactions are quenched from weakly awlang to strongly interacting regime. We develop
a T-matrix formalism that takes into account the interplayween Pauli blocking and tight confinement in
low-dimensional geometries. We employ our formalism talgtthe formation of molecules in quasi-two-
dimensional Fermi gases near Feshbach resonance and stidiethate at which molecules form depends
strongly on the transverse confinement. Furthermore, Bindking gives rise to a sizable correction to the

binding energy of molecules.
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. INTRODUCTION

Theoretical prediction and experimental observation ofinedic-field induced Feshbach reso-
nances in ultracold atoms [1] paved the way for many excidiisgoveries including demonstra-
tion of fermionic superfluidity [2], observation of Efimovirtrers and Fermi polarons [3—7], and
creation of quantum degenerate gases of polar moleculesS{8prisingly, additional Feshbach
resonances can be found in systems with reduced dimenisyoiadrlier theoretical work on two
particle scattering in systems confined to one dimensiarzg [9] and two dimensional pan-
cakes [10] suggested a possibility realizing “confinemedticed resonances” (CIR), i.e., special
scattering resonances made possible by restricting thevease motion of atoms. Such reso-
nances have been observed in both one [11] and two dimehfl@jaystems. In optical lattices,
Feshbach resonances can give rise to nontrivial manifessadf mixing of higher Bloch bands
[13, 14].

Most of the earlier work has focused on the interplay of disi@nal confinement and resonant
interactions in two-body problems. Very few extensions tmgibody systems have been consid-
ered so far. On the other hand, the primary motivation fodytg low-dimensional systems is
to understand the surprising properties of low dimensioray-body systems (see Refs. [15-17]
for a review). Moreover, experiments are always performmesi/stems with a finite density and in
many cases it may not be easy to disentangle many-body®ffeat two-particle scattering. For
example, confinement-induced molecules are relativegelan the BCS side of resonance [10].
Already for a modest density of fermions, distances betvpeeticles may become comparable to
the size of bound pairs, and Pauli principle can have a steffegt on the collisional properties of

atoms and, as a result, on the properties of CIRs.

In this paper we provide a theoretical analysis of a manyyl®gtem composed of two-
component fermions confined in two-dimensional (2D) geoie®in the vicinity of a Feshbach
resonance. We focus on quench type experiments, where ateavacting mixture is rapidly taken
to the regime of strong interactions [18, 19]. We analyze yrdawdy corrections to the energies
of confinement-induced molecules and calculate the raténimhwhey are formed out of unbound

atoms.

One of the intriguing questions raised by recent experisieoncerns the possibility of using
fermionic systems close to Feshbach resonance for exglamamy-body phenomena associated

with strong repulsive interactions. For example, posisigattering length on the BEC side of the
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Feshbach resonance has been suggested as a route to obsebtener instability [20]. While
the first experiments by Ja al. have been interpreted using a simple mean-field pictureidi s
transition [20, 21], subsequent measurements showedthaystem is strongly dominated by fast
molecule formation [22], as predicted theoretically in&¢19, 23]. In this paper, we demonstrate
that dimensional confinement can have a dramatic effect@dyhamics of molecule formation.
We find that the peak in the molecule formation rate shouldhiféesl from the BEC to the BCS
side of the resonance with increasing transverse confineniesting our predictions in experi-
ments will help to distinguish between different models afiecule formation [19, 23].

Another conceptually intriguing aspect of the system weysts that one cannot use separation
of energy scales to simplify the analysis. Typically whemgraody systems of ultracold atoms
are studied, it is assumed that one can start by solving étwdy-problem to obtain the strength
of contact interaction and then work with this contact iat#ion when analyzing the many-body
problem. In our system the effective two particle scatgpdan be strongly modified by the pres-
ence of other particles [19]. Hence, an accurate analysisio$ystem requires understanding the

interplay of few-body and many-body phenomena.

1. VACUUM T-MATRIX

Traditionally two-body problems in low-dimensional gednes have been analyzed using the
Schrodinger equation which can be simplified into two deded single particle problems corre-
sponding to the relative and the center-of-mass (COM) mdfp10]. This approach is, however,
difficult to generalize to the many-body case. In the presearia filled Fermi sea, the COM mo-
mentum of the scattering pair relative to Fermi sea is ingodrand cannot be taken into account
by a simple momentum boost. Therefore we re-examine thebtvdy- problem in quasi-2D ge-
ometries by recasting the results of Ref. [10] to the form Bfraatrix in vacuum. For a discussion
regarding Feshbach resonances in low-dimensional systaadkef. [24]. We take the gas to be
homogeneous in a 2D plane and assume a strong harmonic coafibm the transverse direction.

We start from the full 3D scattering problem and use a contgetactionV, ,(r — ') =
Vod(r — ') to describe the inter-particle interactions. In order tckenthe connection to the
many-body problem we do not separate relative and centarask motion from the outset. This
gives rise to a T-matrix which depends on enefigyas well as on the harmonic oscillator quantum

numbersi = (n,,n,) andi’ = (n}, n,) corresponding to incoming and outgoing particles. For
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the contact interaction the Lippmann-Schwinger equatded a simple form

T3 (W) = Vi + Z Vﬁ,ﬁﬂﬂg? (W) T s (w), (1)

-
n//

where the polarization operator is given by

dk 1
19 (w) = / 2
a () (27)2 hw — 2¢, — hw,(n, + ny) + 01’ @)

and we have denoted the trap frequency in transverse dindayiv.. The polarization operator in

vacuum has the properlyg]) (w) = n®

n,+"ny

(w) for i = (ny,ny). We will utilize these two nota-
tions interchangeably when discussing the propertieseofrtany-body T-matrix. The dispersion
is given bys,, = h?k?/2m, and we measure energies and frequencies with respectzerthg@oint
energyhw.. Thus, a confined patrticle in the lowest vibrational statéwb in-plane momentum
is assumed to have zero energy.

SinceV,,
elementd/; ;7 in terms of the quantum numbers corresponding to relativegnd center-of-mass
motion (V)

depends only on the relative motion of scattering partjckes write the matrix

Nn,.nj.
Herey,, is a harmonic oscillator eigenfunction corresponding tatiee motion and the harmonic
oscillator length in the transverse direction is denoted by= /h/mw,. The Clebsch-Gordan
coefficients arising from the change of basis are definedﬁggr = (N,n,|ny,ny). Quantum
numbersn,, ny, n,., and N are non-negative integers and energy conservation immasebtion
ny, + ny, = N + n, for the non-zero elemenfs?,,nr.

The form of matrix element$; ;; suggests we look for a solution in the basis of relative and
COM quantum numbers and then go back to the original basidindi¢hat (see Appendix A)

T8 (w) =v2re, Y C, C.. @4 (0)p,(0)

/
N,n,.,n..

X To(w — Nw,). (4)

The structure of; , shows explicitly the decoupling of relative and COM motiéurthermore,
since the interaction potential depends only on the reatmtion, the COM quantum number
does not change in the scattering and contributes only #sskiie energy of scattering particles.

When the bare interactidy, is eliminated,7; is given by [10, 25] (for details, see Appendix A)
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762@) = 4:;12 [\/%fz/aw +w(w/w, + ’i0+)}, (5)

where functionu(z) is defined as

n

w(z) = lim [2 ﬁlnﬁ—zwln(ﬁ—zﬂ) . (6)

n—00 2 I
- moer = (20!

The double factorial is given by!! = n - (n — 2) - (n — 4)..., and by definition(—1)!! = 0!! = 1.
The two-body T-matrix has a series of poles correspondingjfferent values of the center-of-
mass quantum numbeé¥. In particular, there is a bound state corresponding’te= 0 which
exists for alla;,, and coincides with the Feshbach molecule deeply on the B&&E $leeply on
the BCS side of resonanci.{,,| < ¢,), the energy of the confinement-induced two-body bound
state has a simple expressign= — £ fiw, e=v27%/l%l whereB = 0.905 [1]. In general the pole

has to be computed numerically from Eq. (5).

1. MANY-BODY T-MATRIX AND COOPERON

Let us next discuss the many-body effects in the formatiocoofinement-induced molecules

in quasi-2D geometries. The system is described by a mady4damiltonian

_,E T
H = gk,n,cr Ck,n,ack:,n,o

k,n,o

1
o f
Ty D D Vi Chigm, A% qma Comipl Gt (7)

k,q,p 7,7

whereg,, ,, , = €, — €y, + Iw,n; and particles carrg. D momentumk as well as harmonic os-
cillator quantum numbet,. We have also allowed a possible imbalance between the twode
species.

To incorporate the Pauli blocking to our analysis, we degiematrix in the presence of Fermi
sea (Cooperon). We approximate the full Bethe-Salpeteatemjuby taking into account the ladder

diagrams and obtain

Y (w,q) = Vi + > Viarlly(w, q) Tolh (w, ), (8)

ﬁll

where assume that the scattering particles can have finiké @@mentuny in the 2D plane. The

full polarization operatofl . (w, g) is of the form
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(. q) / (dk L= 15 (€rgn, 1) — 7 (Ehny,t) o

2m)% hw(1 4 i0%) — Shraqnt — g,ww'
Although COM and relative motion become coupled in the preseof Fermi sea, we utilize
insights from the two-body problem and look for a solutionendnCOM and relative motion are
at least partially decoupled. We find that the solution of@eBalpeter equation can be written in

terms of a T-matrix depending only on the COM quantum numbers

nl\%/ =V2rl, Z Cfé*n ]F\Lfl’,n;. @;7.(0)%1;.(0) Ty (10)
N,N'

/
n'r?nr

We use the two-body T-matri¥, to renormalize the UV divergence associated with polaionat

operator (9) and obtain (for details, see Appendix B)
T]\Z]l\/’ (CU, q) = 76_1(("} - Nwz - wq)(sN,N’ - DN,N’(wv q)v (11)
where the renormalized polarization operator is given by

_ i 7i
DN,N' = E Uy, N4n,—K CK,N-i—nT—K CN,nT
n,n

i

% [a(w, @) — I (w — w,)]. (12)

The coefficientsu,, ,, are related to the zeros of the harmonic oscillator eigestions [see

Eq. (A4)] and they are given by

(=12 (= I (m = )N
(A T (13)

for even and non-negativeandm. Otherwiseu,, ,, is zero. We have also definéd,, = 3¢, —

€p+—Ep,- INOrder to correctly renormalize the UV divergence asated with the 2D momentum
integral in Eq. (9), we have to evaluate the two-body T-mauich that the Fermi surface and finite
COM momentum are taken into account. This shifts the arguwfeR, by w, in Eq. (11).
Conservation of energy and parity impose selection rulethi® allowed scattering processes
and render matri¥/; ,, non-invertible. Since botfi® and7*'” share the same structuregs;,,
they also lack well-defined inverses and Egs. (4) and (109 talse solved in terms of matric&s
and7 which are both regular. The full solution retains all digerenergy levels in the transverse
direction and although the most interesting 2D limit doe®ive real processes via higher bands,

virtual scattering processes become important near the&Behl resonance. The general solution
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based on Egs. (10)—(12) enables a systematic analysisrofgpaistabilities from the strictly 2D
regime at zero temperature to the confinement dominated@eavhere temperature and Fermi

energy become comparable wiila, .

IV. MOLECULE FORMATION

To analyze the possible pairing instabilities, we assuraethie system is initially spin balanced
and weakly interacting. In the spirit of Ref. [18], we coreicn instantaneous quench where in-
teractions are rapidly modified utilizing a 3D Feshbach nesee. The molecule formation is as-
sociated with the appearance of pates= Q, +iA, in the many-body T-matrif}’3} (w, q) [26].
We identify the real parf), as the binding energy of the molecule and the imaginary paras
the growth rate of the instability towards formation of nmlées [19].

Similarly to the 3D case [19], we find that the system exhiaitsnstability towards molecule
formation via two-body processes as long as the Fermi sealzsorb the binding energy of the
molecules. This results in a sharp cutoff in the growth rage, Fig. 1(a). For a fixefl /a,,, the
binding energy of molecules depends strongly on the rtitw, and Fig. 1(b) shows that the
binding energy increases with increasing strength of thestrerse confinement. The location of
the peak value for the growth rate of instability can be \étig adjusting the ratid, /a,,, and,
in particular, tight enough transverse confinement can nttoeairing instability completely to
the BCS side. On the other hand, wheyyfiw, ~ 0.1 as in Refs. [12, 27], the pairing instability
extends to the BEC side and fast two-body processes donthmataree-body processes. When
the molecule formation via two-body processes is no longssible, the leading instability is
a three-body recombination which is suppressed for Fersegidue to low densities and Pauli
principle.

The binding energy in vacuum is compared to the binding gnatdinite densities in Fig. 2.
The relation between vacuum and finite density binding éesmdepends again an./Aw,, and
when the system becomes more three-dimensional (i.e. whéiw, increases), Pauli blocking
by the Fermi sea can result in a stronger binding of molecUlee crossover takes place roughly
atep/hw, = 0.5. In 3D gases many-body corrections always result in strobineling [19] and
Pauli blocking induced weaker binding is a manifestatio2Dfphysics. On the other hand, the
binding energy of molecules is larger than the binding enefghe Feshbach molecules existing

on the BEC side of resonance.
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Figure 1. (Color online) Growth rate of the pairing instépi(a) and the binding energy of molecules (b)
at zero temperature as a function@f azp. The values ot /hw, are (from left to right)e . /hw, =

0.0175, 0.025, 0.0375, 0.075, 0.2, and 0.4.

AY
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Figure 2. (Color online) Binding energy of molecules at zemmperature fot /7w, = 0.025, 0.075, and
0.2 (from bottom to top). The binding energy in the presence ofritsea (solid lines) is always smaller

than the vacuum binding energy (dashed line).

Finite temperature suppresses strongly the growth rataiahp instability whereas the bind-
ing energy decreases more slowly with increasing tempexaln Fig. 3, the growth rate is shown
at different temperatures far,/fw, = 0.1 corresponding to the experimental parameters of
Refs. [12, 27]. Pairing instability at the BCS side of theomnce is sensitive to the temper-
ature since thermal fluctuations can easily break moleatlesnall binding energies. At high
enough temperatures the pairing instability can becomeptately suppressed for weak attractive
interactions. On the other hand, the cutoff in the growtk &, /asp ~ 0.5 does not in gen-
eral depend strongly on the temperature. We note that aththe pairing instability can persist
to quite high temperatures, the critical temperature ferghperfluid transition is typically much

lower near the Feshbach resonance or deeply in the BEC rég8n29].

The vacuum T-matrix has several poles on the BEC side of tlsbldaeh resonance corre-

sponding to the different COM quantum numbers. This caniimcyple give rise to several pairing
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Figure 3. (Color online) The growth rate of the pairing ifslity as a function o, /asp for e /hw, = 0.1.

The temperature is (from top to bottoMy 7, = 0, 0.1, 0.2, 0.3, 0.4, and0.5.

instabilities which show up as distinct poles in the Cooperbor smalle . /fiw, these poles do
not coexist for givert, /a4, since the Fermi sea is unable to absorb large binding eseigiben
ep/hw, increases, the poles start to overlap and additional poigsnen-zeroA, become dis-
cernible. However, these additional instabilities rema@ak compared to the primary instability
corresponding to the pole of the vacuum T-matrix wkh= 0.

So far we have analyzed the pairing instability in the caseend COM momentung. We
find that the results remain qualitatively the same for figitand in the spin balanced case the
most unstable mode is alwayse@t= 0. However, the growth rate of instability decreases slowly
as a function ofg| and in a realistic quench experiment it is likely that molesuwith a wide
distribution of momenta are created. We find that figiteeduces the binding energy due to the
smaller number of low-energy states that are available dattsring [30]. In spin imbalanced

systems the lowest energy state can shift to finite momerdan32].

V. DISCUSSION

We have studied pairing instabilities in spin balanced gaBsFermi gases when interactions
are dynamically quenched to the regime of strong interastising 3D Feshbach resonances. We
found that the pairing instability can be shifted to the B@e ®f resonance by adjusting the axial
confinement with respect to Fermi energy. Pauli blocking twasd to renormalize significantly
the binding energies, resulting in weaker binding in the @@tlthan warranted by the two-body
description.

The growth rate of pairing instability can be measured by itooing the atom loss [18] and
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the binding energy can be probed using rf spectroscopy [3234]. In a related work [35], we
argue that the recent experiment [12] probing the propedi€D Fermi gases can be interpreted
in terms of dynamically created polarons. Another recepeexent [34] measures directly the
binding energies of the molecules and finds agreement witlea@retical prediction for the two-
body bound states in 1D optical lattices [36]. On the otherdhaur calculation (Fig. 2) predicts
that the two-body bound state energy should be significaatiprmalized by the presence of the
Fermi sea. The discrepancy could stem from the fact that aleulation probes an unpaired
gas which is rapidly quench to the strongly interacting megji whereas in Ref. [34] the system
corresponds to a strongly interacting gas in equilibriurtinwailarge number of paired atoms.

The T-matrix approach presented here can be used to proloenhgetition between polaron
and molecule [31, 32, 37, 38] in quasi-2D systems and to tiyese dimensional crossover from
2D to 3D [29, 34, 39, 40]. Our formalism is also useful for sasdof pair formation in other low-
dimensional geometries and Bose gases. In particularnibeaused to investigate the effective

three-body collisions induced by virtual excitations of thansverse modes [41-43].
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Appendix A: Vacuum T-matrix

We shortly discuss the technical details regarding theutation of the vacuum T-matrix as
well as the many-body T-matrix. For simplicity, we get 1 in Appendices A and B.
The form of the Matrix elements in Eg. (3) suggest the follogvansatz for the vacuum T-

matrix

T90(w) =V2rl, > Cr CR o (0)0n (0) Ty (w). (A1)

/
an'r?nr

Substituting Eq. (A1) to Eq. (1) we obtain

10



VN,
V21l

Z/ e OFY%

—w,(N +n,)+i0t ¥

Tn(w) =

We observe that the COM index comes only through the shiftngfrgy. Thus we can take
Tn(w) = Ty(w — Nw,) and forTy(w) we obtain

To(w) K w,n, +i0+

We can calculate the integral in Eq. (A2) using the identity

1 Foo
z:‘/ dr e, (A3)
0

whereF = sgn(Re A). For Eqg. (A2) we have two cases: Bpw < 0 and (b)Rew > 0. We
discuss case (a) and case (b) follows from an analogouslatdtu We note that the harmonic
oscillator eigenfunctions in Eq. (A2) satisfy

(=D for evemn

Varl e, (0P =¢ ™ (A4)
0, for oddn.

Using the identity in Eq. (A3), we obtain

/LIl
I—Z/ V2L 0)

= —w,n, +10

- (2n— nno_ - o m
— d A2 ) T (w—2nw,+40T) (_)
/ ’ ; (2n)N! ‘ AT

0

00 eW=T 1/2 m
— d Tw+iot)y [ & <_> )
/0 Te 2sinhw, T AmT

The COM part of the quasi-2D T-matrix satisfies therefore guegion

1 vand, n /OO dr em@Hioh) 'ew < m ) . (A5)
Ty(w) Vo 0 2sinhw, 7 \ 477

The UV divergence associated with the original contactadion is manifested as a singular-
ity of the integrand in the limit — 0. We regularize this divergence using the 3D T-matrix which
is given by an analogous equation

1 1 © -+ m 3/2
_ dr T (@it <_) . AG
Typ(w) Vy +/ Te AT (A6)
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We takew — 0 of Eq. (A6) to obtain

m 1 o m \3/2
- d (—) . A7
dras, Vo +/0 " \4rr (A7)

Using this identity, we eliminate the bare interactignfrom Eq. (A5). This gives us affy(w)

which is manifestly free from UV divergences

- " 1/2 1/2
1 \/ 27T€ / dl' 1 ex(w/wz+i0+) € _ i . (A8)
(@) 47r tap ; T 2sinh x 2z

The latter term in Eq. (A8) is the integral representatiotheffunctionw(w/w, + i0™) defined in
Eq. (6).

Appendix B: Many-body T-matrix

To solve the Bethe-Salpeter equation (8) we generalizertbatain Eq. (A1) and assume that

the many-body T-matrix is of the form

LWE \/_€ Z CNn CN’ Son ( )(pn’r<0) TN,N’? (Bl)

N,N’
/
NN

where we have temporarily suppressed the frequency and ntomearguments. The polarization
operator satisfies the following useful identity

> CH i T (W, k) = Oy 0, TN, (w0 — )+

A

SR ot [ (w0, ) — 6 11 (w0 — wy, )], (B2)

A

wherew,, = %% — ey — €r,. SUbstituting the ansatz (B1) to the Bethe-Salpeter egugs) and

using the above identity, we obtain an equation for the COM pa

Vo Vo

TN = + D Tr N+
N,N \/ﬁﬁz \/ﬁﬁz ;( O)N,K K,N
Vo
D TN B3
Nz ZK:( )i TN (B3)
where matrice®, andD given by
(Do NK = ONK Z“n n, Hgg—i-n — wg), (B4)
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and Eq. (12), respectively. Coefficients ,, are given by Eq. (13) in the main text. Equation (B3)

for 7 = (Ty n») can be written in a matrix form

T 1= vart, Dy — D. (B5)
Vo
Denoting7®) = diag(7Ty ), whereTy(w) = To(w — Nw), we obtain
Fo V2 p (B6)
Vo

This gives us an equation for the many-body T-matrix suchttieUV divergence associated with
D, is renormalized

T1=7O0" _D. (B7)

Equation (B7) is illustrated in more detail in Egs. (11) afh#é)(of the main text.
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