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Abstract

We study non-equilibrium dynamics of ultracold two-component Fermi gases in low-dimensional geome-

tries after the interactions are quenched from weakly interacting to strongly interacting regime. We develop

a T-matrix formalism that takes into account the interplay between Pauli blocking and tight confinement in

low-dimensional geometries. We employ our formalism to study the formation of molecules in quasi-two-

dimensional Fermi gases near Feshbach resonance and show that the rate at which molecules form depends

strongly on the transverse confinement. Furthermore, Pauliblocking gives rise to a sizable correction to the

binding energy of molecules.
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I. INTRODUCTION

Theoretical prediction and experimental observation of magnetic-field induced Feshbach reso-

nances in ultracold atoms [1] paved the way for many excitingdiscoveries including demonstra-

tion of fermionic superfluidity [2], observation of Efimov trimers and Fermi polarons [3–7], and

creation of quantum degenerate gases of polar molecules [8]. Surprisingly, additional Feshbach

resonances can be found in systems with reduced dimensionality. Earlier theoretical work on two

particle scattering in systems confined to one dimensional tubes [9] and two dimensional pan-

cakes [10] suggested a possibility realizing “confinement-induced resonances” (CIR), i.e., special

scattering resonances made possible by restricting the transverse motion of atoms. Such reso-

nances have been observed in both one [11] and two dimensional [12] systems. In optical lattices,

Feshbach resonances can give rise to nontrivial manifestations of mixing of higher Bloch bands

[13, 14].

Most of the earlier work has focused on the interplay of dimensional confinement and resonant

interactions in two-body problems. Very few extensions to many-body systems have been consid-

ered so far. On the other hand, the primary motivation for studying low-dimensional systems is

to understand the surprising properties of low dimensionalmany-body systems (see Refs. [15–17]

for a review). Moreover, experiments are always performed in systems with a finite density and in

many cases it may not be easy to disentangle many-body effects from two-particle scattering. For

example, confinement-induced molecules are relatively large on the BCS side of resonance [10].

Already for a modest density of fermions, distances betweenparticles may become comparable to

the size of bound pairs, and Pauli principle can have a strongeffect on the collisional properties of

atoms and, as a result, on the properties of CIRs.

In this paper we provide a theoretical analysis of a many-body system composed of two-

component fermions confined in two-dimensional (2D) geometries in the vicinity of a Feshbach

resonance. We focus on quench type experiments, where a non-interacting mixture is rapidly taken

to the regime of strong interactions [18, 19]. We analyze many-body corrections to the energies

of confinement-induced molecules and calculate the rate at which they are formed out of unbound

atoms.

One of the intriguing questions raised by recent experiments concerns the possibility of using

fermionic systems close to Feshbach resonance for exploring many-body phenomena associated

with strong repulsive interactions. For example, positivescattering length on the BEC side of the
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Feshbach resonance has been suggested as a route to observe the Stoner instability [20]. While

the first experiments by Joet al. have been interpreted using a simple mean-field picture of such

transition [20, 21], subsequent measurements showed that the system is strongly dominated by fast

molecule formation [22], as predicted theoretically in Refs. [19, 23]. In this paper, we demonstrate

that dimensional confinement can have a dramatic effect on the dynamics of molecule formation.

We find that the peak in the molecule formation rate should be shifted from the BEC to the BCS

side of the resonance with increasing transverse confinement. Testing our predictions in experi-

ments will help to distinguish between different models of molecule formation [19, 23].

Another conceptually intriguing aspect of the system we study is that one cannot use separation

of energy scales to simplify the analysis. Typically when many-body systems of ultracold atoms

are studied, it is assumed that one can start by solving a two-body problem to obtain the strength

of contact interaction and then work with this contact interaction when analyzing the many-body

problem. In our system the effective two particle scattering can be strongly modified by the pres-

ence of other particles [19]. Hence, an accurate analysis ofour system requires understanding the

interplay of few-body and many-body phenomena.

II. VACUUM T-MATRIX

Traditionally two-body problems in low-dimensional geometries have been analyzed using the

Schrödinger equation which can be simplified into two decoupled single particle problems corre-

sponding to the relative and the center-of-mass (COM) motion [9, 10]. This approach is, however,

difficult to generalize to the many-body case. In the presence of a filled Fermi sea, the COM mo-

mentum of the scattering pair relative to Fermi sea is important and cannot be taken into account

by a simple momentum boost. Therefore we re-examine the two-body problem in quasi-2D ge-

ometries by recasting the results of Ref. [10] to the form of aT-matrix in vacuum. For a discussion

regarding Feshbach resonances in low-dimensional systems, see Ref. [24]. We take the gas to be

homogeneous in a 2D plane and assume a strong harmonic confinement in the transverse direction.

We start from the full 3D scattering problem and use a contactinteractionVint(r − r′) =

V0δ(r − r′) to describe the inter-particle interactions. In order to make the connection to the

many-body problem we do not separate relative and center-of-mass motion from the outset. This

gives rise to a T-matrix which depends on energy~ω as well as on the harmonic oscillator quantum

numbers~n = (n1, n2) and~n′ = (n′
1, n

′
2) corresponding to incoming and outgoing particles. For
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the contact interaction the Lippmann-Schwinger equation takes a simple form

T 0
~n,~n′(ω) = V~n,~n′ +

∑

~n′′

V~n,~n′′Π
(0)
~n′′ (ω) T

0
~n′′,~n′(ω), (1)

where the polarization operator is given by

Π
(0)
~n (ω) =

∫

dk

(2π)2
1

~ω − 2εk − ~ωz(n1 + n2) + i0+
, (2)

and we have denoted the trap frequency in transverse direction byωz. The polarization operator in

vacuum has the propertyΠ(0)
~n (ω) = Π

(0)
n
1
+n

2
(ω) for ~n = (n1, n2). We will utilize these two nota-

tions interchangeably when discussing the properties of the many-body T-matrix. The dispersion

is given byεk = ~
2k2/2m, and we measure energies and frequencies with respect to thezero-point

energy~ωz. Thus, a confined particle in the lowest vibrational state with no in-plane momentum

is assumed to have zero energy.

SinceVint depends only on the relative motion of scattering particles, we write the matrix

elementsV~n,~n′ in terms of the quantum numbers corresponding to relative (nr) and center-of-mass

motion (N)

V~n,~n′ = V0

∑

N,nr ,n
′

r

C~n ∗
N,nr

C~n′

N,n′

r
ϕ∗
nr
(0)ϕn′

r
(0). (3)

Hereϕnr
is a harmonic oscillator eigenfunction corresponding to relative motion and the harmonic

oscillator length in the transverse direction is denoted byℓz =
√

~/mωz. The Clebsch-Gordan

coefficients arising from the change of basis are defined asC~n
N,nr

= 〈N, nr|n1, n2〉. Quantum

numbersn1, n2, nr, andN are non-negative integers and energy conservation imposescondition

n1 + n2 = N + nr for the non-zero elementsC~n
N,nr

.

The form of matrix elementsV~n,~n′ suggests we look for a solution in the basis of relative and

COM quantum numbers and then go back to the original basis. Wefind that (see Appendix A)

T 0
~n,~n′(ω) =

√
2π ℓz

∑

N,nr,n
′

r

C~n∗
N,nr

C~n′

N,n′

r
ϕ∗
nr
(0)ϕn′

r
(0)

× T0(ω −Nωz). (4)

The structure ofT 0
~n,~n′ shows explicitly the decoupling of relative and COM motion.Furthermore,

since the interaction potential depends only on the relative motion, the COM quantum number

does not change in the scattering and contributes only as shift to the energy of scattering particles.

When the bare interactionV0 is eliminated,T0 is given by [10, 25] (for details, see Appendix A)

4



1

T0(ω)
=

m

4π~2

[
√
2π ℓz/a3D + w(ω/ωz + i0+)

]

, (5)

where functionw(z) is defined as

w(z) = lim
n→∞

[

2

√

n

π
ln

n

e2
−

n
∑

ℓ=0

(2ℓ− 1)!!

(2ℓ)!!
ln(ℓ− z/2)

]

. (6)

The double factorial is given byn!! ≡ n · (n− 2) · (n− 4)..., and by definition(−1)!! = 0!! = 1.

The two-body T-matrix has a series of poles corresponding todifferent values of the center-of-

mass quantum numberN . In particular, there is a bound state corresponding toN = 0 which

exists for alla3D and coincides with the Feshbach molecule deeply on the BEC side. Deeply on

the BCS side of resonance (|a3D| ≪ ℓz), the energy of the confinement-induced two-body bound

state has a simple expressionεb = −B
π
~ωz e

−
√
2π ℓz/|a3D |, whereB = 0.905 [1]. In general the pole

has to be computed numerically from Eq. (5).

III. MANY-BODY T-MATRIX AND COOPERON

Let us next discuss the many-body effects in the formation ofconfinement-induced molecules

in quasi-2D geometries. The system is described by a many-body Hamiltonian

H =
∑

k,n,σ

ξk,n,σ c
†
k,n,σck,n,σ

+
1

V
∑

k,q,p

∑

~n,~n′

V~n,~n′ c†k+q,n
1
,↑c

†
p−q,n

2
,↓cp,n′

2
,↓ck,n′

1
,↑, (7)

whereξk,n
i
,σ = εk − εF,σ + ~ωzni and particles carry2D momentumk as well as harmonic os-

cillator quantum numberni. We have also allowed a possible imbalance between the two fermion

species.

To incorporate the Pauli blocking to our analysis, we derivea T-matrix in the presence of Fermi

sea (Cooperon). We approximate the full Bethe-Salpeter equation by taking into account the ladder

diagrams and obtain

TMB
~n,~n′(ω, q) = V~n,~n′ +

∑

~n′′

V~n,~n′′Π~n′′(ω, q) TMB
~n′′,~n′(ω, q), (8)

where assume that the scattering particles can have finite COM momentumq in the 2D plane. The

full polarization operatorΠ~n(ω, q) is of the form
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Π~n(ω, q) =

∫

dk

(2π)2

1− nF (ξk+q,n
1
,↑)− nF (ξk,n

2
,↓)

~ω(1 + i0+)− ξk+q,n
1
,↑ − ξk,n

2
,↓
. (9)

Although COM and relative motion become coupled in the presence of Fermi sea, we utilize

insights from the two-body problem and look for a solution where COM and relative motion are

at least partially decoupled. We find that the solution of Bethe-Salpeter equation can be written in

terms of a T-matrix depending only on the COM quantum numbers

TMB
~n,~n′ =

√
2π ℓz

∑

N,N ′

nr,n
′

r

C~n ∗
N,nr

C~n′

N ′,n′

r
ϕ∗
nr
(0)ϕn′

r
(0) TN,N ′. (10)

We use the two-body T-matrixT0 to renormalize the UV divergence associated with polarization

operator (9) and obtain (for details, see Appendix B)

T −1
N,N ′(ω, q) = T −1

0 (ω −Nωz − ωq)δN,N ′ −DN,N ′(ω, q), (11)

where the renormalized polarization operator is given by

DN,N ′ =
∑

~n,nr

unr,N+nr−K C~n ∗
K,N+nr−K C~n

N,nr

× [Π~n(ω, q)−Π
(0)
~n (ω − ωq)]. (12)

The coefficientsun,m are related to the zeros of the harmonic oscillator eigenfunctions [see

Eq. (A4)] and they are given by

un,m =
(−1)(n+m)/2(n− 1)!! (m− 1)!!√

n!m!
(13)

for even and non-negativen andm. Otherwiseun,m is zero. We have also defined~ωq = 1
2
εq −

εF,↑−εF,↓. In order to correctly renormalize the UV divergence associated with the 2D momentum

integral in Eq. (9), we have to evaluate the two-body T-matrix such that the Fermi surface and finite

COM momentum are taken into account. This shifts the argument of T0 by ωq in Eq. (11).

Conservation of energy and parity impose selection rules for the allowed scattering processes

and render matrixV~n,~n′ non-invertible. Since bothT 0 andTMB share the same structure asV~n,~n′,

they also lack well-defined inverses and Eqs. (4) and (10) have to be solved in terms of matricesT0

andT which are both regular. The full solution retains all discrete energy levels in the transverse

direction and although the most interesting 2D limit does involve real processes via higher bands,

virtual scattering processes become important near the Feshbach resonance. The general solution
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based on Eqs. (10)–(12) enables a systematic analysis of pairing instabilities from the strictly 2D

regime at zero temperature to the confinement dominated 3D regime where temperature and Fermi

energy become comparable with~ωz.

IV. MOLECULE FORMATION

To analyze the possible pairing instabilities, we assume that the system is initially spin balanced

and weakly interacting. In the spirit of Ref. [18], we consider an instantaneous quench where in-

teractions are rapidly modified utilizing a 3D Feshbach resonance. The molecule formation is as-

sociated with the appearance of poles~ω = Ωq + i∆q in the many-body T-matrixTMB
~n,~n′(ω, q) [26].

We identify the real partΩq as the binding energy of the molecule and the imaginary part∆q as

the growth rate of the instability towards formation of molecules [19].

Similarly to the 3D case [19], we find that the system exhibitsan instability towards molecule

formation via two-body processes as long as the Fermi sea canabsorb the binding energy of the

molecules. This results in a sharp cutoff in the growth rate,see Fig. 1(a). For a fixedℓz/a3D, the

binding energy of molecules depends strongly on the ratioεF/~ωz and Fig. 1(b) shows that the

binding energy increases with increasing strength of the transverse confinement. The location of

the peak value for the growth rate of instability can be varied by adjusting the ratioℓz/a3D and,

in particular, tight enough transverse confinement can movethe pairing instability completely to

the BCS side. On the other hand, whenεF/~ωz ≃ 0.1 as in Refs. [12, 27], the pairing instability

extends to the BEC side and fast two-body processes dominatethe three-body processes. When

the molecule formation via two-body processes is no longer possible, the leading instability is

a three-body recombination which is suppressed for Fermi gases due to low densities and Pauli

principle.

The binding energy in vacuum is compared to the binding energy at finite densities in Fig. 2.

The relation between vacuum and finite density binding energies depends again onεF/~ωz, and

when the system becomes more three-dimensional (i.e. whenεF/~ωz increases), Pauli blocking

by the Fermi sea can result in a stronger binding of molecules. The crossover takes place roughly

at εF/~ωz = 0.5. In 3D gases many-body corrections always result in stronger binding [19] and

Pauli blocking induced weaker binding is a manifestation of2D physics. On the other hand, the

binding energy of molecules is larger than the binding energy of the Feshbach molecules existing

on the BEC side of resonance.

7



Figure 1. (Color online) Growth rate of the pairing instability (a) and the binding energy of molecules (b)

at zero temperature as a function ofℓz/a3D. The values ofεF /~ωz are (from left to right)εF /~ωz =

0.0175, 0.025, 0.0375, 0.075, 0.2, and 0.4.

Figure 2. (Color online) Binding energy of molecules at zerotemperature forεF /~ωz = 0.025, 0.075, and

0.2 (from bottom to top). The binding energy in the presence of Fermi sea (solid lines) is always smaller

than the vacuum binding energy (dashed line).

Finite temperature suppresses strongly the growth rate of pairing instability whereas the bind-

ing energy decreases more slowly with increasing temperature. In Fig. 3, the growth rate is shown

at different temperatures forεF/~ωz = 0.1 corresponding to the experimental parameters of

Refs. [12, 27]. Pairing instability at the BCS side of the resonance is sensitive to the temper-

ature since thermal fluctuations can easily break moleculesat small binding energies. At high

enough temperatures the pairing instability can become completely suppressed for weak attractive

interactions. On the other hand, the cutoff in the growth rate atℓz/a3D ≈ 0.5 does not in gen-

eral depend strongly on the temperature. We note that although the pairing instability can persist

to quite high temperatures, the critical temperature for the superfluid transition is typically much

lower near the Feshbach resonance or deeply in the BEC regime[28, 29].

The vacuum T-matrix has several poles on the BEC side of the Feshbach resonance corre-

sponding to the different COM quantum numbers. This can in principle give rise to several pairing
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Figure 3. (Color online) The growth rate of the pairing instability as a function ofℓz/a3D for εF /~ωz = 0.1.

The temperature is (from top to bottom)T/TF = 0, 0.1, 0.2, 0.3, 0.4, and0.5.

instabilities which show up as distinct poles in the Cooperon. For smallεF/~ωz these poles do

not coexist for givenℓz/a3D since the Fermi sea is unable to absorb large binding energies. When

εF/~ωz increases, the poles start to overlap and additional poles with non-zero∆q become dis-

cernible. However, these additional instabilities remainweak compared to the primary instability

corresponding to the pole of the vacuum T-matrix withN = 0.

So far we have analyzed the pairing instability in the case ofzero COM momentumq. We

find that the results remain qualitatively the same for finiteq and in the spin balanced case the

most unstable mode is always atq = 0. However, the growth rate of instability decreases slowly

as a function of|q| and in a realistic quench experiment it is likely that molecules with a wide

distribution of momenta are created. We find that finiteq reduces the binding energy due to the

smaller number of low-energy states that are available for scattering [30]. In spin imbalanced

systems the lowest energy state can shift to finite momentum [31, 32].

V. DISCUSSION

We have studied pairing instabilities in spin balanced quasi-2D Fermi gases when interactions

are dynamically quenched to the regime of strong interactions using 3D Feshbach resonances. We

found that the pairing instability can be shifted to the BCS side of resonance by adjusting the axial

confinement with respect to Fermi energy. Pauli blocking wasfound to renormalize significantly

the binding energies, resulting in weaker binding in the 2D limit than warranted by the two-body

description.

The growth rate of pairing instability can be measured by monitoring the atom loss [18] and

9



the binding energy can be probed using rf spectroscopy [12, 33, 34]. In a related work [35], we

argue that the recent experiment [12] probing the properties of 2D Fermi gases can be interpreted

in terms of dynamically created polarons. Another recent experiment [34] measures directly the

binding energies of the molecules and finds agreement with a theoretical prediction for the two-

body bound states in 1D optical lattices [36]. On the other hand, our calculation (Fig. 2) predicts

that the two-body bound state energy should be significantlyrenormalized by the presence of the

Fermi sea. The discrepancy could stem from the fact that our calculation probes an unpaired

gas which is rapidly quench to the strongly interacting regime, whereas in Ref. [34] the system

corresponds to a strongly interacting gas in equilibrium with a large number of paired atoms.

The T-matrix approach presented here can be used to probe thecompetition between polaron

and molecule [31, 32, 37, 38] in quasi-2D systems and to investigate dimensional crossover from

2D to 3D [29, 34, 39, 40]. Our formalism is also useful for studies of pair formation in other low-

dimensional geometries and Bose gases. In particular, it can be used to investigate the effective

three-body collisions induced by virtual excitations of the transverse modes [41–43].
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Appendix A: Vacuum T-matrix

We shortly discuss the technical details regarding the calculation of the vacuum T-matrix as

well as the many-body T-matrix. For simplicity, we set~ = 1 in Appendices A and B.

The form of the Matrix elements in Eq. (3) suggest the following ansatz for the vacuum T-

matrix

T 0
~n,~n′(ω) =

√
2πℓz

∑

N,nr,n
′

r

C~n ∗
N,nr

C~n′

N,n′

r
ϕ∗
nr
(0)ϕn′

r
(0)TN(ω). (A1)

Substituting Eq. (A1) to Eq. (1) we obtain
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TN (ω) =
V0√
2πℓz

+

∑

nr

∫

dk

(2π)2

√
2πℓz|ϕnr

(0)|2V0

ω − k2

m
− ωz(N + nr) + i0+

TN (ω).

We observe that the COM index comes only through the shift of energy. Thus we can take

TN(ω) = T0(ω −Nωz) and forT0(ω) we obtain

1

T0(ω)
=

√
2πℓz
V0

−
∑

nr

∫

dk

(2π)2

√
2πℓz|ϕnr

(0)|2
ω − k2

m
− ωznr + i0+

. (A2)

We can calculate the integral in Eq. (A2) using the identity

1

A
= −

∫ ∓∞

0

dτ eAτ , (A3)

where∓ = sgn(ReA). For Eq. (A2) we have two cases: (a)Reω < 0 and (b)Reω ≥ 0. We

discuss case (a) and case (b) follows from an analogous calculation. We note that the harmonic

oscillator eigenfunctions in Eq. (A2) satisfy

√
2πℓz|ϕn(0)|2 =











(n−1)!!
n!!

, for evenn

0, for oddn.
(A4)

Using the identity in Eq. (A3), we obtain

I =
∑

nr

∫

dk

(2π)2

√
2πℓz|ϕnr

(0)|2
ω − k2

m
− ωznr + i0

= −
∫ ∞

0

dτ

∞
∑

n=0

(2n− 1)!!

(2n)!!
eτ(ω−2nωz+i0+)

( m

4πτ

)

= −
∫ ∞

0

dτ eτ(ω+i0+)

(

eωzτ

2 sinhωzτ

)1/2
( m

4πτ

)

.

The COM part of the quasi-2D T-matrix satisfies therefore an equation

1

T0(ω)
=

√
2πℓz
V0

+

∫ ∞

0

dτ eτ(ω+i0+)

√

eωzτ

2 sinhωzτ

( m

4πτ

)

. (A5)

The UV divergence associated with the original contact interaction is manifested as a singular-

ity of the integrand in the limitτ → 0. We regularize this divergence using the 3D T-matrix which

is given by an analogous equation

1

T3D(ω)
=

1

V0
+

∫ ∞

0

dτ eτ(ω+i0+)
( m

4πτ

)3/2

. (A6)
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We takeω → 0 of Eq. (A6) to obtain

m

4πa3D
=

1

V0

+

∫ ∞

0

dτ
( m

4πτ

)3/2

. (A7)

Using this identity, we eliminate the bare interactionV0 from Eq. (A5). This gives us anT0(ω)

which is manifestly free from UV divergences

1

T0(ω)
=

m

4π

{√
2πℓz
a3D

+

∫ ∞

0

dx
1

x

[

ex(ω/ωz+i0+)

(

ex

2 sinh x

)1/2

−
(

1

2x

)1/2 ]
}

. (A8)

The latter term in Eq. (A8) is the integral representation ofthe functionw(ω/ωz + i0+) defined in

Eq. (6).

Appendix B: Many-body T-matrix

To solve the Bethe-Salpeter equation (8) we generalize the ansatz in Eq. (A1) and assume that

the many-body T-matrix is of the form

TMB
~n,~n′ =

√
2π ℓz

∑

N,N ′

nr,n
′

r

C~n ∗
N,nr

C~n′

N ′,n′

r
ϕ∗
nr
(0)ϕn′

r
(0) TN,N ′, (B1)

where we have temporarily suppressed the frequency and momentum arguments. The polarization

operator satisfies the following useful identity

∑

~n ~n′

C~n′

N,nr
C~n ∗
N ′,n′

r
Π~n,~n′(ω,k) = δN,N ′δnr,n

′

r
Π

(0)
N+nr

(ω − ωk)+

∑

~n~n′

C~n′

N,nr
C~n ∗

N ′,n′

r

[

Π~n,~n′(ω,k)− δ~n,~n′Π
(0)
~n (ω − ωk)

]

, (B2)

whereωk = 1
2
εk − εF,↑ − εF,↓. Substituting the ansatz (B1) to the Bethe-Salpeter equation (8) and

using the above identity, we obtain an equation for the COM part

TN,N ′ =
V0√
2πℓz

+
V0√
2πℓz

∑

K

(D0)N,KTK,N ′+

V0√
2πℓz

∑

K

(D)N,KTK,N ′, (B3)

where matricesD0 andD given by

(D0)N,K = δN,K

∑

nr

unr,nr
Π

(0)
K+nr

(ω − ωk), (B4)
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and Eq. (12), respectively. Coefficientsunr,nr
are given by Eq. (13) in the main text. Equation (B3)

for T = (TN,N ′) can be written in a matrix form

T −1 =

√
2πℓz
V0

−D0 −D. (B5)

DenotingT (0) = diag(TN), whereTN(ω) = T0(ω −Nω), we obtain

T (0)−1

=

√
2πℓz
V0

−D0. (B6)

This gives us an equation for the many-body T-matrix such that the UV divergence associated with

D0 is renormalized

T −1 = T (0)−1 −D. (B7)

Equation (B7) is illustrated in more detail in Eqs. (11) and (12) of the main text.
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