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Motivated by recent experiments, we investigate the system of isotropically-interacting bosons
with Rashba spin-orbit coupling. At the non-interacting level, there is a macroscopic ground-state
degeneracy due to the many ways bosons can occupy the Rashba spectrum. Interactions treated at
the mean-field level restrict the possible ground-state configurations, but there remains an accidental
degeneracy not corresponding to any symmetry of the Hamiltonian, indicating the importance of
fluctuations. By finding analytical expressions for the collective excitations in the long-wavelength
limit and through numerical solution of the full Bogoliubov- de Gennes equations, we show that the
system condenses into a single momentum state of the Rashba spectrum via the mechanism of order
by disorder. We show that in 3D the quantum depletion for this system is small, while the thermal
depletion has an infrared logarithmic divergence, which is removed for finite-size systems. In 2D,
on the other hand, thermal fluctuations destabilize the system.

I. INTRODUCTION AND OVERVIEW

Multicomponent condensates of ultracold atoms offer
rich physical systems due to the interplay between su-
perfluidity and internal degrees of freedom [1]. Recently,
through the use of synthetic gauge fields, two-component
bosons with spin-orbit (SO) coupling have been engi-
neered in the ultracold laboratory [2]. SO coupling in
solid-state materials has a long history and is responsi-
ble for a variety of interesting physical effects, with no-
table examples including the spin Hall effect [3] and topo-
logical insulators [4]. In addition, SO-coupled materials
have diverse applications including spintronics [5]. The
newer bosonic counterpart of SO-coupled systems using
ultracold atoms have no analog in solid-state systems and
are thus expected to exhibit genuinely new physics. SO-
coupled cold atomic systems have also received consider-
able recent theoretical attention [6? –21], investigating
topics such as spin-striped states [9, 12, 13], fragmen-
tation [8, 19], and the realization of Majorana fermions
[7, 15, 16].

Recent experiments [2] have realized a special combi-
nation of Rashba [22] and Dresselhaus [23] SO coupling
in ultracold atoms. There are also promising proposals
to realize more general non-Abelian gauge fields like pure
Rashba (c.f. [24]), or even SU(N) gauge fields that pro-
vide a toolbox for topological insulators [25]. The con-
ceptually simple system of a Rashba SO-coupled Bose-
Einstein Condensate with isotropic interactions (RBEC)
has surprisingly rich physics. The non-interacting system
has a macroscopic ground state degeneracy as shown in
Fig. 1. Interactions at the mean-field level partially re-
move this degeneracy, but there remains an ‘accidental’
degeneracy not corresponding to any underlying symme-
try of the system. Specifically, mean-field theory predicts
a superposition of condensates of opposite momenta with
their relative amplitudes and phases unspecified.

In this work we show how fluctuations remove this ac-
cidental degeneracy and select a unique ground state (up
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FIG. 1. (Color online) The non-interacting (Rashba) energy
spectrum of the Hamiltonian Eq. (1) with kz = 0. The red
circle indicates the degenerate lowest-energy single-particle
states.

to overall symmetries) through the mechanism of ‘order
by disorder’ [26]. Although the phenomenon of order by
disorder has been theoretically accepted and discussed
within the context of classical spin models [26, 27], quan-
tum magnetism [28, 29] and ultracold atoms [30–33], ex-
perimental demonstrations are, at best, scarce [34]. In
contrast to the original proposal [26], the degeneracy
lifting we find is primarily quantum driven. We deter-
mine the fluctuation spectrum by numerically solving the
coupled Bogoliubov-de Gennes equations. The resulting
modes are integrated over to obtain the free energy as a
function of the relative condensate weights and temper-
ature. With this we show that fluctuations select a state
with all bosons condensing into a single momentum state
in the Rashba spectrum. We estimate the energy split-
ting per particle due to fluctuations for typical experi-
mental parameters to be on the order of 100 pK. While
this splitting is smaller than typical condensate tempera-
tures, it is the total energy which determines the ground
state, so this effect should be readily observable provided
the RBEC model can be realized.
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II. DEFINITION OF HAMILTONIAN AND
MEAN-FIELD GROUND STATES

The Hamiltonian describing non-interacting bosons in
3D with SO coupling reads

H0 =

∫
drΨ̂

†
(r)

(
p2

2m
− Q

m
σ⊥ · p

)
Ψ̂(r), (1)

where Ψ̂(r) = (Ψ↑(r),Ψ↓(r))T is a two-component
bosonic field operator, p is the momentum operator,
Q is the magnitude of the SO coupling, and σ⊥ is a
vector composed of Pauli matrices as σ⊥ = (σx,σy, 0)
(we set ~ = 1). The SO coupling in Eq. (1) is equiv-
alent to the Rashba form [22] through a 90◦ spin ro-
tation. The single-particle eigenstates of Eq. (1) have
spins pointing either parallel or antiparallel to their mo-
menta in the xy plane, and up to a constant have energies

E
(±)
k = 1

2m

(
(k⊥ ±Q)2 + k2z

)
, where k⊥ = (kx, ky, 0).

Clearly, there is a ring in momentum space of degenerate
lowest-energy states with kz = 0 and |k⊥| = Q (Fig. 1).
Correspondingly, there is a macroscopic number of ways
N non-interacting bosons can occupy this manifold of
states.

For the interacting portion of the Hamiltonian we take
the simplest SU(2) invariant form

Hint =

∫
dr
(g

2
[ρ̂(r)]

2 − µρ̂(r)
)
, (2)

where ρ̂(r) = Ψ̂
†
(r)Ψ̂(r), µ is the chemical potential,

and g = 4πa
m where a is an effective scattering length.

At the mean-field level one replaces the operators by c-
numbers Ψ̂(r) → Ψ(r). The states that minimize the
kinetic energy, Eq. (1), are in general given by

Ψ(r) =
∑

|k⊥|=Q,kz=0

Ak
eik·r√

2

(
1
eiϕk

)
(3)

where Ak are arbitrary coefficients and tan(ϕk) = kx/ky.
Minimizing the interaction energy restricts the mean-
field states of Eq. (3) to have a constant density, ρ(r) =

Ψ†(r)Ψ(r) ≡ ρ0. Placing this constraint on states in
Eq. (3), one finds that Ψ(r) can have at most two nonzero
coefficients Ak occurring at opposite momenta. This can
be shown by setting each non-zero wavevector component
of Ψ†(r)Ψ(r) to zero. Without loss of generality, we take
the momenta to point along the x-axis and thereby ob-
tain the state

Ψ(r) =

√
ρ0
2

(
aeiQx

(
1
1

)
+ be−iQx

(
−1
1

))
, (4)

where |a|2 + |b|2 = 1. We can take a and b to be real
and parametrized as a = cos

(
θ
2

)
and b = sin

(
θ
2

)
since

changing the phases of a and b amounts to position dis-
placements and overall phase shifts of Ψ(r) in Eq. (4).
The selection of (a, b) as a result of spin-symmetry break-
ing interactions (which is resolved at the mean-field level)
was worked out in [12]. In contrast, in this work there
remains a degeneracy at the mean-field level.

III. CALCULATION OF COLLECTIVE
EXCITATIONS

The degeneracy with respect to θ is accidental, i.e. it
does not correspond to any symmetry of the Hamilto-
nian H = H0 + Hint. We thus expect quantum fluctua-
tions about the mean-field state Eq. (4) to remove this
degeneracy and to select a unique ground state through
the order-by-disorder mechanism. To this end, we write

Ψ̂(r) = Ψ(r)+ψ̂(r) and perform a Bogoliubov expansion

of H to quadratic order in ψ̂(r). Up to a constant the

interaction Hamiltonian becomes Hint = g
2

∫
dr [δρ̂(r)]

2

where δρ̂(r) = Ψ†(r)ψ̂(r) + ψ̂
†
(r)Ψ(r). It proves use-

ful to transform to the variables χ̂(r) = (χ̂↑(r), χ̂↓(r))T

where χ̂(r) = eiσy
θ
2 e−iσzQxeiσy

π
4 ψ̂(r) for which the in-

teraction Hamiltonian takes the simple form Hint =
g
2

∫
dr
(
χ̂↑(r) + χ̂†↑(r)

)2
.

The full Bogoliubov Hamiltonian, HBog, can be writ-
ten compactly in matrix form if we introduce the four-
component vector

Φ̂(r) =
(
χ̂T (r), χ̂†(r)

)T
. (5)

Then up to a constant independent of θ we find that

HBog = 1
2

∫
drΦ̂

†
(r)M(r,p)Φ̂(r), where

M(r,p) =1⊗ 1
p2

2m
+
gρ0
2

(1 + σx)⊗ (1 + σz) (6)

− Qpy
m

(1⊗ σy cos(2Qx)− σz ⊗ σθ sin(2Qx)) .

In this expression, all θ-dependence is included in σθ ≡
cos(θ)σx + sin(θ)σz and ⊗ is the Kronecker product.
This Hamiltonian can be diagonalized using a symplec-
tic transformation [35, 36], which amounts to solving the
Bogoliubov-de Gennes equations,

ηM(r,p)vkn(r) = Eknvkn(r), (7)

for positive eigenvalues Ekn, where η = σz ⊗ 1, and
vkn(r) is a four-component function. Because of the
translational symmetries of M(r,p), the eigenvalues are
labelled with band index n and momentum k in the
Brillouin zone (BZ) defined as −∞ < ky, kz < ∞
and −Q ≤ kx < Q. As usual, the eigenvectors are

normalized as 〈vkn|η|vk′n′〉 ≡
∫
drv†kn(r)ηvk′n′(r) =

δkk′δnn′sgn(Ekn). In practice, Eq. (7) is simplest to solve
in momentum space. Since the momentum space repre-
sentation of M(r,p) is an infinite matrix, in numerical
calculations it must be truncated at high momentum and
the eigenvalues of interest must be checked to be inde-
pendent of the cutoff.

In Fig. 2 we show the two gapless (Goldstone) modes
for several values of θ, found numerically from Eq. (7).

In experiments of [2], εQ = Q2

2m ' gρ0, so we set these
quantities to be equal. The dispersion is plotted along
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FIG. 2. (Color online) (a) The dispersions for the density and
spin Goldstone modes for three values of θ for kx = kz = 0.
(b) The average (arithmetic mean) of the density and spin

modes. In both plots we have fixed gρ0 = Q2

2m
.

ky since, as can be seen from Eq. (7), the spectrum Ekn

has no θ-dependence when ky = 0. We refer to the dis-
persions as ‘density’ and ‘spin’ modes since they reduce
to the known expressions Ekd =

√
εk(εk + 2gρ0) and

Eks = εk in the limiting case of Q = 0, where εk = k2

2m is
the free particle dispersion. One sees that upon increas-
ing θ from zero to π/2, the spin mode decreases in energy
while the density mode increases. This gives, in a sense,
a competing effect in terms of which (a, b) configuration
is selected from fluctuations. Noting this, in the right
panel we plot the average of the spin and density modes
for each value of θ. One sees that the average is always
lowest in energy for θ = 0. This indicates that the zero-
point fluctuations from the Goldstone modes will select
θ = 0 state though things become more subtle for T > 0.
Such a state, as can be seen from Eq. (4), corresponds
to all bosons condensing into a single momentum state
of the RBEC system. The order-by-disorder mechanism
will be considered more quantitatively below.

Analytical expressions for the dispersions and eigen-
vectors of Eq. (7) can be found perturbatively in the
long-wavelength limit εk � εQ, gρ0. In this limit one

finds Ekd =
√

2gρ0
(
εkxz + λεky sin2(θ)

)
and Eks =

√
εkxz (εkxz+λεky )

2

εkxz+λεky sin2(θ)
for the density and spin modes respec-

tively where λ = gρ0/(4εQ + 2gρ0) and kxz =
√
k2x + k2z .

These agree well with the numerical results shown in
Fig. 2 for small k except for two special cases which re-
quire more careful analysis. In particular, for θ = 0, the
density mode disperses quadratically along ky while for
0 < θ ≤ π/2 the spin mode disperses as k3y along ky.
Otherwise the density and spin mode have respectively
linear and quadratic dispersions about their minima. It
is interesting to compare these to the noninteracting en-

ergies shown in Fig. 1, which have quadratic and quartic
dispersions about their minima.

IV. QUANTUM AND THERMAL ORDER BY
DISORDER

Let us now consider the free energy due to quantum
and thermal fluctuations described by HBog. It is useful
to separate out the contribution from zero-point fluctua-
tions and write F (θ) = Fq(θ) + Ft(θ) where

Fq(θ) =
1

2

∑

k∈BZ,n

Ekn(θ), (8)

Ft(θ) = kBT
∑

k∈BZ,n

ln
(

1− e−βEkn(θ)
)
, (9)

and β = 1/kBT is inverse temperature. Reminiscent
of the zero-point photon contribution to the Casimir-
Polder force [37], the purely quantum contribution Fq(θ)
written as it is diverges. This divergence can be reg-
ularized by subtracting the free energy for a particular
mean-field configuration which we take to have θ = 0:
∆Fq(θ) = Fq(θ) − Fq(0). This regularized expression
converges [38], and no renormalization of the effective
range of interactions is needed. The zero-point contribu-
tion to the free energy numerically computed as a func-
tion of θ is shown in Fig. 3(a) where the summation is
performed over 26 bands (we emphasize that in order to
obtain quantitatively correct results, including only the
gapless modes is insufficient). One sees, indeed, that the
θ = 0 state has the lowest energy and at T = 0 such a
state is unambiguously selected.

We now turn to the finite-temperature contribution to
the free energy. Interestingly, one finds that the sign of
the thermal contribution ∆Ft(θ) = Ft(θ)− Ft(0) is neg-
ative and opposite to that of ∆Fq(θ). Furthermore, the
magnitude of the thermal contribution is always smaller
than the contribution from zero-point fluctuations, in
contrast to typical situations where thermal fluctuations
enhance the degeneracy lifting and are larger in magni-
tude for modest temperatures (see, e.g. [30]). Another
instance of where quantum and thermal fluctuations se-
lect different states is presented in Ref. [33]. The sign of
∆Ft at low T can be understood by noting that the spin
mode has the lowest energy for θ = π/2 (Fig. 2).

As seen in Fig. 3(b), the magnitude of ∆Ft(θ) ap-
proaches ∆Fq(θ) at high T , so that ∆F (θ) = ∆Fq(θ) +
∆Ft(θ) = O

(
T−1

)
→ 0 in this limit. This behavior can

be understood through a high T expansion of the free
energy

Ft(θ) ≈ kBT
∑

k∈BZ,n

ln (βEkn(θ))−1

2

∑

k∈BZ,n

Ekn(θ). (10)

As the second term cancels the quantum contribution,
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FIG. 3. (Color online) (a) The zero-point contribution to the
free energy ∆Fq as a function of θ for three different values
of g. (b) The absolute value of the (negative) thermal free
energy splitting between the θ = 0 and θ = π/2 configurations
|∆Ft(π/2)| as a function of temperature (solid line). This is
seen to approach the quantum zero-point splitting ∆Fq(π/2)
at high temperatures (dashed line). In both panels the solid
lines are fits to the numerically computed data points.

we focus on the larger first term which can be written as

kBT
∑

k∈BZ,n

ln (βEkn(θ)) =
1

2
kBT ln |det(βηM(r,p)|

= kBT
∑

k∈BZ′,n

ln |βλkn|

where λkn are the eigenvalues of M(r,p) and we have
used |det(η)| = 1. The second summation above is over
the reduced Brillouin zone BZ′ which is restricted to pos-
itive values of kx. The eigenvalues λkn are independent
of the condensate configuration given by θ. This can be
seen by noting that the θ-dependence of M(r,p) can be
removed through the unitary transformation M(r,p)→
U†M(r,p)U where U = 1

2 (1+σx)⊗1+ 1
2 (1−σx)⊗eiθσy

[39]. Thus to this order we find that ∆Ft(θ) = −∆Fq(θ).
The next-order term in the high-temperature expansion
has 1/T dependence which is evident in the numerical
results shown in Fig. 3(b).

V. CONDENSATE DEPLETION

Having established using the Bogoliubov expansion
that fluctuations select θ = 0, we now investigate the
self-consistency of this approach. This is determined by
the depletion or the number of particles excited out of the
condensate Nex considered as a fraction of the total parti-
cle number N . Consistency of course requires that this be
finite, while neglecting of terms beyond quadratic order
in HBog is quantitatively reliable only if Nex � N . The
quantum and thermal contributions to Nex = Nq + Nt
are, respectively, Nq = 1

2

∑
k∈BZ,n〈vkn|(1 − η)|vkn〉 and

Nt =
∑

k∈BZ,n〈vkn|vkn〉f(Ekn), where f(x) = (eβx −

1)−1 is the Bose-Einstein distribution function. The only
possible divergences of these expressions are in the in-
frared, and so can be studied analytically using the small-
k expansion.

In 3D at T = 0, Nq is finite and so can be sufficiently
small provided weak-enough interactions. Our numerical
results in fact demonstrate that the depletion is small
even for moderately strong interactions, including in the
region of experimental relevance. For T > 0, the ther-
mal contribution is instead found to have a logarithmic
divergence in 3D. This divergence (similar to that occur-
ring in quasi-2D scalar condensates) is naturally removed
for finite-sized systems and the condensate will thereby
satisfy the stability criterion. For 2D condensates with
isotropic SO coupling, the situation is different. Here,
the quantum depletion again converges, but the thermal
depletion diverges as 1/k for small k. Thus, at T > 0
our theory is unstable in 2D, which is consistent with
work suggesting fragmentation [8, 19]. Our conclusions
on the stability of the condensate are, remarkably, iden-
tical to those based on the simple application of the Ein-
stein criterion to the noninteracting spectrum. This is
particularly surprising since the low-k region is strongly
modified by the interactions, giving quasiparticle modes
that disperse with different powers than in the noninter-
acting case.

VI. EXPERIMENTAL FEASIBILITY

We now comment on the experimental feasibility of
observing order by disorder in RBEC. We first consider
the magnitude of the degeneracy lifting. As a prototyp-
ical example we take spin one 87Rb. For a typical den-

sity of ρ0 = 2 × 1014cm−3 and gρ0 = Q2

2m , we find (for
the appropriate scattering lengths) that at zero temper-
ature the free energy splitting per particle due to fluc-
tuations is ∆F (π/2)/kBN = 110 pK. One should note
that this number should not be directly compared with
the condensate temperature since the total energy de-
termines the ground state. It is this energy which will
determine experimental timescales for the relaxation to
the ground state. Spin-one atoms also possess a spin-
dependent interaction term which we have neglected.
For 87Rb, however, this spin-dependent interaction is
relatively small (.5% that of the spin-independent) and
as a result the degeneracy lifting from fluctuations is
typically larger. Alternatively, one could use fermionic
homonuclear molecules that have a singlet ground state.
More importantly, schemes to create SO coupling in
bosonic systems typically rely on utilizing dressed states
[2, 18, 24] which can induce anisotropic interactions. The
magnitude of such terms and their effect on the order-by-
disorder mechanism will be left to future work when it
becomes clear which of the several proposed schemes is
most promising to realize Rashba coupling.

Another entity of experimental relevance is the har-
monic confining potential. The results of the current
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manuscript will hold if the conditions for the local den-
sity approximation (LDA) are satisfied [40]. For our sys-
tem this requires that the energy splitting of the single-
particle states as recently found in in [20, 21] be small
compared to the interaction energy. This energy split-
ting becomes small for weak trapping and/or strong SO
coupling, resulting in a large quasi-degenerate manifold
of single-particle states. Conversely, in the weakly in-
teracting limit (where LDA is inapplicable) recent work
[20, 21] has shown the ground states of the RBEC system
in a trap can form vortex lattices.

VII. CONCLUSION

In conclusion we have investigated the system of
Rashba SO-coupled bosons with isotropic interactions
(RBEC). In general bosons with SO coupling offer a gen-
uinely new class of systems which has not been addressed
in the vast solid state literature on spintronics [5]. In par-
ticular, we have established that fluctuations select the
RBEC system to condense into a single momentum state.

We have argued that such a configuration is stable in 3D
but destabilized when T > 0 in 2D. We expect bosons
with Rashba SO coupling to be realized in the near future
for which the predicted configuration will be observable
in Stern-Gerlach experiments. In future studies it will
be interesting to investigate more general combinations
of Rashba and Dresselhaus SO coupling. Such systems
also possess accidental mean-field degeneracies and thus
fluctuations are expected to play an important role in
determining their ground states. In addition it will be
interesting to investigate RBEC systems in two dimen-
sions.
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