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We develop the mean-field theory for Bose-Einstein condensates (BECs) in a one-dimensional ring
with two types of nonlinear double-well potentials, based on a pair of delta-functions or Gaussian
of a finite width, placed at diametrically opposite points. Analyzing the ground states (GSs) in
these cases, we find a qualitative difference between them: with the Gaussian profile, the GS always
undergoes the phase transition from the symmetric shape to an asymmetric one at a critical value of
the norm. On the contrary, the symmetry-breaking transition does not happen with the δ-functional
profile of the nonlinearity, the GS always remaining symmetric. In addition, the numerical analysis
for the Gaussian profile demonstrates that the type of the symmetry-breaking transition depends
on the width of the nonlinear-potential well.

PACS numbers: 03.75.Lm, 05.45.Yv

I. INTRODUCTION

Hohenberg has proved that Bose-Einstein condensa-
tion (BEC) does not occur in an interacting infinitely
extended uniform bosonic system for low dimensional
systems, even at the zero temperature, since long-
wavelength phase fluctuations destroy the off-diagonal
long-range order [1]. However, this is not true in spa-
tially confined finite systems [2]. In line with the latter
fact, stable effectively one-dimensional (1D) BEC and
matter-wave solitons in it have been observed experi-
mentally in ultracold gases of 7Li [3, 4] and 85Rb [5]
atoms. More recently, BEC on a ring has been exper-
imentally demonstrated by quite a few groups [6]. These
achievements make it possible to experimentally realize
spatially confined low-dimensional condensates subject
to periodic boundary conditions. Further, making use of
the fact that both the magnitude and sign of the parame-
ter governing the intrinsic nonlinearity of the condensate
— the scattering length of the atomic collisions — can
be tuned, using externally applied magnetic [7] or optical
[8, 9] fields via the Feshbach resonance technique [10], a
method to generate periodically modulated patterns of
the scattering length (nonlinear lattices) and other ef-
fective nonlinear potentials (alias pseudopotentials) has
been elaborated and applied to solitons in various set-
tings, see original works [11] and recent review [14], and
to bound states of two atoms, at the most fundamental
level [15]. Combining these ingredients, in this work we
aim to consider the dynamics of BEC in the ring-shaped
trap with an intrinsic nonlinear potential.

Many theoretical results have been reported for bosons
confined in a 1D finite system with periodic boundary
conditions [16, 17], and in the ring-shaped traps [18, 19].
In particular, within the mean-field (MF) theory, these
systems feature a quantum phase transition (QPT) be-
tween a uniform condensate and a bright soliton state

when the strength of attractive interactions approaches
a critical value. Roughly speaking, the QPT is caused
by the competition between the quantum pressure and
self-attraction. A similar QPT takes place in the system
of bosons confined in a 1D nonlinear ring-shaped lattice
[12, 20]. In such a system, the atomic scattering length
is periodically modulated between negative and positive
values as U = U0 sin(dθ), where d is the modulation pe-
riod and θ is the azimuthal angle along the ring. When
the depth of the periodic modulation U0 exceeds a cer-
tain critical value, the MF ground state (GS) undergoes
a QPT from a spatially periodic state into a soliton-like
one. Reference [12] shows that the nature of the QPT
is also sensitive to the modulation period d. In particu-
lar, the MF symmetry-breaking phase transition is of the
second kind when the modulation period is 2, and of first
kind when the period is larger than 2.

Additionally, the above-mentioned double-well nonlin-
ear in a ring geometry can also be considered in dipo-
lar BECs. For instance, an effective ring-shaped two-
period modulated nonlinear potential is achieved when
the alignment of the atomic dipoles is perpendicular to
the symmetry axis of ring traps, where symmetry break-
ing phenomena has also been predicted under MF level
[21]. Therefore, this can be viewed as another ideal ex-
perimental platform to testify the model we discussed
here.

In this paper we investigate MF states of the BEC in a
ring-shaped trap with two types of the intrinsic nonlinear
double-well potentials, δ-functional and Gaussian with a
finite width. We find that the δ-type of the nonlinear
potential leads to a degenerate behavior ,which cannot
be approximated by the Gaussian-type potentials with
any finite width. The GS is always symmetric within a
small regime of the norm. We also find that, if the pair
of Gaussians is used, the system shows a QPT from a
symmetric GS to an asymmetric one as we increase the
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norm. The width of the Gaussian is a key parameter to
determine the type of the QPT.
This paper is organized as follows. The model’s Hamil-

tonian is introduced in section II. Section III presents
analytical solutions for the δ-functional nonlinearity. In
section IV, we numerically investigate the GS and QPT
for the Gaussian profile. Discussions and conclusions are
presented in sections V and Sec. VI, respectively.

II. THE HAMILTONIAN

The system considered here is similar to the one stud-
ied in Ref. [12, 18, 20]. N bosons are confined in a toroid
of radius R and cross-section area S. The normalized
Hamiltonian for such a system can be written as

H =

∫ 2π

0

dθ

[

−ψ†(θ)
∂2

∂θ2
ψ(θ) +

U

2
ψ†(θ)ψ†(θ)ψ(θ)ψ(θ)

]

,

(1)
where θ is the azimuthal angle around the toroid, de-
fined so that it takes values −π/2 < θ ≤ 3π/2. The
two terms in H represent the kinetic and potential ener-
gies, which are measured in units of ~2/(2mR2), where
m is the bosonic mass, while the dimensionless interac-
tion strength is U = 8πasR/S, with the (tunable) s-wave
scattering length as. A related problem in an open (infi-
nite) 1D system was studied in Refs. [13, 22].
We consider a situation where the scattering length,

hence the interaction strength U too, are modulated
along the toroid, with two types of the modulation. First,
we consider a pair of δ-functions located at diametrically
opposite points,

U(θ) = − [δ(θ − π/2) + δ(θ − 3π/2)] . (2)

Second, we consider a smooth modulation, with the δ-
functions replaced by Gaussians of a finite width a in
terms of azimuthal coordinate

U(θ) = − 1

a
√
π

[

exp

(

− (θ − π/2)2

a2

)

+ exp

(

− (θ − 3π/2)2

a2

)]

. (3)

In the limit a → 0, the Gaussians reduce to the δ-
functions.
The corresponding Gross-Pitaevskii (GP) equation can

be derived from Hamiltonian (1) as

i
∂

∂t
ψ(θ, t) = −1

2

∂2

∂θ2
ψ(θ, t) + U(θ)|ψ|2ψ(θ, t) . (4)

Setting ψ(θ, t) = φ(θ)e−iµt, we arrive at the stationary
version of the GP equation with chemical potential µ,

µφ = −1

2

∂2

∂θ2
φ+ U(θ)|φ|2φ , (5)

Finally, the norm of the wave function is defined as

N =

∫

dθ |φ(θ)|2 . (6)

L R

2

0

2

FIG. 1: A sketch of the system. The two gray dots repre-
sent the positions of the nonlinear potential, around which
the interaction strength is modulated. Values of azimuthal
coordinate, θ, are indicated as defined in the text.

III. THE ANALYTICAL SOLUTION FOR THE

DELTA-FUNCTIONS

We first consider the δ-nonlinearity with the inter-
action strength given by Eq. (2). It is convenient to
divide the toroid into two segments, (−π/2, π/2) and
(π/2, 3π/2), to be denoted “R” and “L”, respectively,
see Fig. 1. Off points θ = π/2 and 3π/2, Eq. (4) is
linear, hence its solution can be written as

φR(θ)=AR cos(
√

2µθ) +BR sin(
√

2µ θ) , (7a)

φL(θ)=AL cos(
√

2µ(π − θ)) +BL sin(
√

2µ(π − θ)), (7b)

for µ > 0. For µ < 0, the solution is

φR(θ)=AR cosh(
√

2|µ| θ) +BR sinh(
√

2|µ| θ) , (8a)

φL(θ)=AL cosh(
√

2|µ|(π − θ)) +BL sinh(
√

2|µ|(π − θ)).

(8b)

Here we concentrate on the case of µ < 0 case, a similar
analysis being possible for µ > 0 too. The continuity
condition for the wave function at the points θ = π/2
and 3π/2 requires

φR(π/2) = φL(π/2) , φR(−π/2) = φL(3π/2) , (9)

which impose the following restrictions on the coefficients
AL,R and BL,R in expressions (8):

AR cosh(α)± BR sinh(α) = AL cosh(α)∓BL sinh(α),
(10)

where α ≡
√

2|µ|π/2. Therefore, one may only have
AL = AR ≡ A and BL = BR ≡ B.
On the other hand, integrating the GP equation in the

vicinity of the two δ-functions, we arrive at the follow-
ing jump conditions for the first derivative of the wave
function:

φ′L(π/2)− φ′R(π/2) = −2φ3(π/2),

φ′R(−π/2)− φ′L(3π/2) = −2φ3(−π/2),
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which leads to

2α

π
[A sinh(α) ±B cosh(α)] = [A cosh(α) ±B sinh(α)]3.

(11)

A. Solutions

Possible solutions to Eqs. (11) are listed below (both
A and B may be set to be real, for this purpose):
Asymmetric solution: For A 6= 0 and B 6= 0, we

find the following nontrivial solution:

A2
as =

α

π

cosh(2α) + 2

sinh(2α)[cosh(2α) + 1]
, (12)

B2
as =

α

π

cosh(2α)− 2

sinh(2α)[cosh(2α)− 1]
. (13)

The non-negativity of B2
as requires that cosh(2α) ≥ 2,

hence the asymmetric solution exists at

µ ≤ − ln(2 +
√
3)2

2π2
≈ −0.0879. (14)

Obviously, there are two mutually symmetric representa-
tives of the asymmetric solution (mirror images of each
other).
Symmetric solution:

A2
sym =

2α

π

sinh(α)

(cosh(α))
3 , B

2
sym = 0, (15)

Antisymmetric solution:

A2
anti = 0, B2

anti =
2α

π

cosh(α)

(sinh(α))
3 . (16)

Typical shapes of all three solutions are shown in
Fig. 2. In both the symmetric and antisymmetric solu-
tions, the two δ-functional nonlinear potentials trap equal
populations; on the contrary, in the asymmetric solution
one nonlinear potential traps a larger population than
the other.
We also stress that for µ > 0, the only possible solution

is the anti-symmetric one in the case of self-attractive
nonlinearity. From the Feynman’s “no-node” theorem, it
follows that for bosonic systems, such as those considered
here, that the GS wave function has no nodes, hence
the antisymmetric state cannot represent the GS. For
this reason, below we concentrate on the symmetric and
asymmetric solutions.

B. Characterizing symmetric and asymmetric

solutions

With the expressions of A and B at hand, we can cal-
culate other physical quantities of interest, such as the

FIG. 2: (Color online) Examples of the different types of the
solutions at µ = −0.1.

energy and norm of the wave function. The total energy
of the system can be written as

E =

∮

dθ

[

−φ1
2

∂2

∂θ2
φ− 1

2
U(θ)|φ(θ)|4

]

,

= µN +
1

2
[|φ|4θ→π/2 + |φ|4θ→−π/2]. (17)

Thus, for the asymmetric and symmetric solutions, we
obtain the following expressions for the norm and energy:

Nas = 2

∫ π/2

−π/2

[

Aas cosh(
√

2|µ|x) +Bas sinh(
√

2|µ|x)
]2

=
cosh(2α)2 + 2α coth(2α)− 2

sinh(2α)2
, (18)

Eas = −|µ|
[

csch(2α)2 +N − 1
]

, (19)

Ns =
sinh(α)

cosh(α)3
(2α+ sinh(2α)), (20)

Es =

(

2α

π

)2 [

−N
2

+
sinh(α)2

cosh(α)2

]

. (21)

The norm of the wave functions is shown in Fig. 3 as
functions of the chemical potential. For the asymmetric
state, Nas decreases monotonically as |µ| increases, ap-
proaching Nas = 1 at large |µ|. In fact, in the limit of

large |µ|, or large α ≡
√

2|µ|π/2, one has sinh(2α) ≈
cosh(2α) ≈ e2α/2, which simplifies the asymmetric solu-
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FIG. 3: (Color online) The norm of the asymmetric (a) and
symmetric (b) states as functions of the chemical potential.
The asymmetric state exists at |µ| > 0.0879.

tion to the expressions whose norm is, indeed, Nas = 1:

φL(θ) = (2|µ|)1/4 e−α e
√

2|µ| θ ,

φR(θ) = (2|µ|)1/4 e−α e
√

2|µ| (θ−π) .

According to the Vakhitov-Kolokolov criterion [23],
localized stationary modes in the system with the
self-focusing nonlinearity are dynamically unstable if
dN/dµ > 0. We thus conclude, from Fig. 3, that the
whole asymmetric branch, and the symmetric one at
|µ| > 0.5 are unstable, cf. a similar conclusion made for
the infinite system in Ref. [13]. To confirm conclusion, we
performed direct simulations of the time-dependent GP
equation (4). The δ-functions were modeled by a very
narrow Gaussian, as defined by Eq. (3) with a = 0.02.
We took different analytic solutions as the initial wave
function and followed its evolution. Figure 4 displays the
results, from which we have indeed confirmed that only
the symmetric solution at |µ| < 0.5 is stable. In ad-
dition, for the asymmetric solution, exhibiting temporal
oscillation between two degenerate unstable asymmetric
states.
For a given norm Nas = Ns ≡ N , the GS can be iden-

tified by comparing the energies of the coexisting states.
This is shown in Figs. 5(a) and (b), in which both the
energies and chemical potentials are plotted versus the
common norm of the asymmetric and symmetric states,
in the range of 1.01 ≤ N ≤ 1.17356, where the asymmet-
ric solution exists. As seen from Fig. 5(a), the energies
of both solutions decrease as the norm increases. How-
ever, the symmetric state always has the lower energy,
hence it represents the GS for the given norm. This con-
clusion is consistent with the fact that the asymmetric
state is always dynamically unstable, according to Fig. 4.

FIG. 4: (Color online) The time evolution of the wave function
in direct simulations of the model with the delta-functions
modeled by the narrow Gaussians. From top to bottom, the
initial state is given by the symmetric solution at |µ| = 0.1,
the symmetric solution at |µ| = 1, and the asymmetric one at
|µ| = 1. Only the top solution is stable.

Figure 5(b) demonstrates that the chemical potential of
the symmetric state is weakly sensitive to the norm. As
a consequence, the energy of the symmetric state de-
creases roughly linearly with N , which can be deduced
from Eq. (21) and is seen in Fig. 5(a).
An important characteristic of the asymmetric state is

the population imbalance, which is defined as

Θ ≡
∫ π/2

0
|φ(θ)|2dθ −

∫ 0

−π/2
|φ(θ)|2dθ

∫ π/2

−π/2
|φ(θ)|2dθ

, (22)

to quantify the asymmetry of the populations trapped by
the two nonlinear potential wells. For the exact asym-
metric solution obtained here, the population imbalance
is

Θ =
sinh(2α)2

√

cosh(2α)2 − 4

[cosh(2α) + 1][cosh(2α)2 + 2α coth(2α)− 2]
. (23)
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FIG. 5: (Color online) The energy (a) and chemical potential
(b) of the symmetric and asymmetric states as functions of
the norm. (c) Imbalance Θ for the asymmetric state as a
function of the norm. All the quantities plotted have been
rescaled to be dimensionless.

It is plotted in Fig. 5(c) as a function of the norm. As
the norm increases from N = 1, Θ decreases mono-
tonically from 1 until it vanishes at the critical norm,
Nc = 1.17356, where the asymmetric solution merges
with the symmetric one and ceases to exist.

IV. NUMERICAL RESULTS FOR THE

GAUSSIAN-SHAPED NONLINEARITY

We now turn to the system with the ideal δ-functions
replaced by the Gaussians with finite width, as shown
in Eq. (3). To this end, we have to resort to numerical
solutions of the GP equation (5). As in the case of δ-
functions, the key issue is whether the GS is symmetric
or asymmetric. Note that, for nonlinear potentials U(θ)
with finite width a, the GS always exists with the norm
N ∼ a2|µ| for µ→ −∞, in contrast to the analytical re-
sult for δ-functional nonlinearity, where the steady-state
solution can be found only in a finite range of the values
of N [22], cf. Fig. 3(b).
Numerically found characteristics of the system with

N
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(a)

symmetric

asymmetric

FIG. 6: (Color online) (a) Energies of the symmetric and
asymmetric states as functions of the norm in the model with
the Gaussians of width a = 0.1. (b) The chemical potential of
the ground state. (c) The population imbalance of the ground
state.

the Gaussian nonlinear potential, with width a = 0.1,
are displayed in Fig. 6. In Fig. 6(a), we observe that,
for N < Nc = 1.25, the GS is represented by the sym-
metric mode, whose energy decreases nearly linearly with
N , in agreement with the results reported above for δ-
functional model [cf. Fig. 5(a)]. However, at the critical
value of the norm, Nc = 1.25, there emerges the asym-
metric mode, whose energy is lower than in the symmet-
ric one. Thus, the symmetry-breaking phase transition
takes place at N = Nc, changing the GS from symmetric
to asymmetric. As shown above, such a transition does
not occur in the case of δ-functional nonlinear potential.
Focusing on the GS properties, we plot its chemical po-
tential and population imbalance in Fig. 6(b) and (c),
respectively. At the critical point Nc, both these quan-
tities exhibit a sudden jump, indicating that the phase
transition at this point is of first kind (alias, it is a sub-

critical bifurcation of the stationary states).
The critical norm Nc increases with the width of the

Gaussian, a, while both the jumps of the chemical poten-
tial and imbalance at Nc decrease, and eventually vanish
at the respective critical value, acrit ≃ 0.28. An example
is presented in Fig. 7 for a = 0.3. Similar to the previous
case, there is a symmetry-breaking phase transition at
the critical value of the norm, which is now Nc = 1.54.
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FIG. 7: (Color online) Same as Fig. 6, but for the width of
the Gaussian a = 0.3.

However, differently from the case of a = 0.1, the tran-
sition here is of second kind (in other words, it is rep-
resented by a supercritical bifurcation), as can be seen
in the plots of the GS chemical potential and imbalance,
in Figs. 7(b) and (c), respectively — both quantities are
continuous functions of N , although both exhibit kinks
at N = Nc.
Figure 8 shows that the numerically found critical

norm Nc increases almost linearly with the Gaussian’s
width a. As shown above, the system features the
symmetry-breaking QPT of the first kind, with jumps
of the population imbalance and chemical potential, at
a < acrit ≃ 0.28, see Fig. 9. Actually, the chemical-
potential jump, ∆µ, increases almost exponentially as a
decreases. On the other hand, at a > acrit, the con-
tinuous QPT of the second kind occurs, without jumps.
Thus, the type of the QPT from the symmetric state to
the asymmetric one is sensitive to the width of nonlin-
ear potential well. Plausibly, a similar mechanism de-
termines the type of the symmetry-breaking QPT which
happens in a the BEC trapped in the 1D nonlinear ring-
shaped lattice, which was considered in Ref. [12].

V. DISCUSSION

Our analysis demonstrates that, even though the Gaus-
sian nonlinear potential with width a, represented by
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1.0

1.2

1.4

1.6

1.8

2.0

a

N
c

FIG. 8: (Color online) The numerically found critical norm,
Nc, as a function of the width of the nonlinearity-modulation
Gaussian, a. The symmetry-breaking phase transition of the
first kind occurs at a ≤ acrit ≃ 0.28 (the dashed line), while
the solid line indicates the phase transition of the second kind,
which occurs at a > acrit.
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FIG. 9: (Color online) (a) The jump of the population imbal-
ance ∆Θ of the ground state at the critical point, N = Nc,
as a function of width a. At a . 0.28, the order phase transi-
tion of the first kind occurs at N = Nc. (b) The jump of the
chemical potential, ∆µ = µs − µas, between the symmetric
and asymmetric states at the transition point, N = Nc for
different value of the Gaussian’s width, a.

Eq. (3), reduces to the δ-functional potential (2) in the
limit of a → 0, there are several essential differences be-
tween them:
(1) The Gaussian potential always exhibits the

symmetry-breaking phase transition, which changes the
GS from symmetric to asymmetric, at the critical value of
the norm. The transition is of first kind for small widths
a, and of the second kind at larger a. Such a phase tran-
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sition does not occur in the model with the δ-functional
potential, the GS being always symmetric.
(2) In the case of the δ-functional potential, the asym-

metric state exists only in the range of norms N ∈
(1.0, 1.17356), and the corresponding population imbal-
ance decreases from 1 to 0 as N increases from 1 to
1.17356. In the case of the Gaussian potential, the asym-
metric state always exists at sufficiently large N , and the
imbalance increases with the norm.
These observations indicate that the δ-functional non-

linear potential is degenerate: as soon as the potential is
given a finite width, a length scale is introduced into the
system, which changes its properties dramatically. Such
singular behavior also occurs for a single nonlinear δ-
functional potential with the cubic nonlinearity [24–26],
as well as for the pair of δ-functions in the infinite system
[13, 26]. In reality, one can never implement the ideal δ-
functional profile. Intuitively, one may expect that the
physics of the δ-potential may be recovered by real po-
tentials in a proper limit. This is indeed the case for the
linear δ-functional potential (also known as the Fermi po-
tential), examples of which appear in textbooks on quan-
tum mechanics. However, our analysis and that in Refs.
[13] and [26] demonstrate that the physics of the non-
linear δ-potential is qualitatively different from its any
counterpart of a finite width. On the other hand, the
degenerate character of the nonlinear potential based on
the ideal δ-function(s) may be lifted not only by lending
it a finite width, but also by combining it with a periodic
linear potential, which also introduces a particular length
scale into the system [26].

VI. CONCLUSION

Within the framework of the mean-field theory, we
have performed a systematic analysis of the BEC dynam-
ics in the ring-shaped trap with nonlinear double-well po-
tentials, represented by the pair of δ-functional or Gaus-
sian modulation functions, placed at diametrically oppo-
site points of the ring. Our studies show that, in the case
of the Gaussian-type nonlinear double-well potential, the

GS (ground state) of bosons always undergoes the tran-
sition from symmetric to asymmetric states, as the norm
of the condensate increases. The type of the transition
is determined by the width of the Gaussian. There ex-
ists a critical value of the width, acrit ≃ 0.28 (in terms
of the azimuthal coordinate), such that, at a < acrit, the
symmetry-breaking phase transition is of the first kind
(in other words, it is a subcritical bifurcation of the sta-
tionary states), while, at a > acrit, the transition is of
the second kind (associated with the supercritical bifur-
cation). This result, in particular, answers a question
left open in Ref. [12], to explain how the type of the
phase transition depends on the period of spatial modu-
lation, which determines the length scale of the nonlinear
potential. For the case of δ-functional nonlinear double-
well potential, we have obtained the analytical solution
of the time-independent GP equation. However, in that
case the GS is always a symmetric state. The asym-
metric state exists within a narrow range of values of
the norm, being always dynamically unstable, and fea-
turing the energy which is higher than in the coexisting
symmetric state. These properties for the δ-functional
nonlinear potential are qualitatively different from those
of the Gaussian nonlinear potential well with any finite
width.
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P. Zoller, Nature Physics 441, 04918 (2006); R. Qi and
H. Zhai, Phys. Rev. Lett. 106, 163201 (2011).

[16] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys.

Rev. A 62, 063610 (2000).
[17] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys.

Rev. A 62, 063611 (2000).
[18] R. Kanamoto, H. Saito, M. Ueda, Phys. Rev. A 67,

013608 (2003).
[19] A. Parola, L. Salasnich, R. Rota, and L. Reatto, Phys.

Rev. A 72, 063612 (2005); R. Kanamoto, H. Saito, and
M. Ueda, ibid. 73, 033611 (2006); L. Salasnich, A. Parola,
and L. Reatto, ibid. 74, 031603(R) (2006); M. Modugno,
C. Tozzo, and F. Dalfovo, ibid. 74, 061601(R) (2006); I.
Lesanovsky and W. von Klitzing, Phys. Rev. Lett. 98,
050401 (2007); A. V. Carpentier and H. Michinel, Eu-
rop. Lett. 78, 10002 (2007); J. Brand, T. J. Haigh, and
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