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The operation of atomic clocks is generally carried out at room temperature, whereas the definition
of the second refers to the clock transition in an atom at absolute zero. This implies that the clock
transition frequency should be corrected in practice for the effect of finite temperature of which
the leading contributor is the blackbody radiation (BBR) shift. In the present work, we used
configuration interaction + coupled-cluster method to evaluate polarizabilities of the 6s2 1S0 and
6s6p 3P0 states of Tl+ ion; we find α0(

1S0) = 19.6 a.u. and α0(
3P0) = 21.4 a.u.. The resulting BBR

shift of the 6s6p 3P0 − 6s2 1S0 Tl+ transition at 300 K is ∆νBBR = −0.0157(16) Hz. This result
demonstrates that near cancelation of the 1S0 and 3P0 state polarizabilities in divalent B+, Al+,
In+ ions of group IIIB [Safronova et al., PRL 107, 143006 (2011)] continues for much heavier Tl+,
leading to anomalously small BBR shift for this system. This calculation demonstrates that the
BBR contribution to the fractional frequency uncertainty of the Tl+ frequency standard at 300 K
is 1× 10−18. We find that Tl+ has the smallest fractional BBR shift among all present or proposed
frequency standards with the exception of Al+.

PACS numbers: 06.30.Ft, 31.15.ac, 31.15.ap, 31.15.am

I. INTRODUCTION

Recent advances in atomic and optical physics have
led to unprecedented improvements in the accuracy of
optical frequency standards that are essential for many
applications including measurements of the fundamental
constants and search of their variation with time, testing
of physics postulates, inertial navigation, magnetometry,
tracking of deep-space probes, and others [1]. An optical
clock with a record low fractional frequency uncertainty
of 8.6 × 10−18, based on quantum logic spectroscopy of
an Al+ ion was demonstrated in 2010 [2].

Any definition of the second should be based on a clock
decoupled from its particular environment. Thermal fluc-
tuations of the electromagnetic field, i.e. blackbody ra-
diation (BBR), are pervasive and can only be suppressed
by cooling the clock. The BBR at any non-zero tempera-
ture induces small shifts in atomic energy levels through
the AC Stark effect. The operation of atomic clocks is
generally carried out at room temperature and the clock
transition frequency should be corrected in practice for
the BBR shift. Experimental measurements of the BBR
shifts are sufficiently difficult that no direct measurement
has yet been reported for optical frequency standards. At
room temperature, the BBR shift of a clock transition
turns out to make one of the largest irreducible contribu-
tions to the uncertainty budget of optical atomic clocks
[3]. The present status of the theoretical and experi-
mental determinations of the BBR shifts in all frequency
standards was recently reviewed in [3, 4].

The BBR frequency shift of a clock transition can be
related to the difference of the static electric-dipole po-
larizabilities between the two clock states [5]. Recent
work [6] demonstrated that the polarizabilities of ground

ns2 1S0 and metastable nsnp 3P0 states are nearly equal
to each other in B+, Al+, and In+, all of which are group
IIIB ions. As a result, these three ions have anomalously
small BBR shifts of the ns2 1S0 − nsnp 3P0 clock tran-
sitions. The fractional BBR shifts for these ions are at
least 10 times smaller than those of any other present or
proposed optical frequency standards at the same tem-
perature, and are less than 0.3% of the Sr clock shift.
Optical frequency standard based on 204Tl+

6s2 1S0 mF = 0 – 6s6p 3P0 mF ′ = 0 transition
was proposed in Ref. [7]. The radioactive isotope of
204Tl has a half-life of 3.78 years, a spin of 2, and a very
small magnetic moment of 0.0908 nuclear magnetons
making it ideal object for very high-resolution laser
spectroscopy [7]. Because of its small nuclear magnetic
moment the natural linewidth of the clock transition in
204Tl+ is expected to be orders of magnitude smaller
than estimated for stable Tl isotopes [7]. The BBR
in this frequency standard have not been previously
estimated. Since three group IIIB ions exhibit very
small BBR shifts, it is very interesting to evaluate if this
trend holds for much heavier Tl+.
The BBR frequency shift of the clock transition can

be related to the difference of the static electric-dipole
polarizabilities between the clock states, ∆α0, by [5]

∆νBBR = −
1

2
(831.9 V/m)2

(

T (K)

300

)4

∆α0(1 + η), (1)

where η is a small dynamic correction due to the fre-
quency distribution and only the electric-dipole transi-
tion part of the contribution is considered. The M1 and
E2 contributions have been estimated for Al+ and found
to be negligible [6]. Therefore, the calculation of the BBR
shift reduces to accurate calculation of the static polar-
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izabilities of the clock states and dynamic correction η.
In this work, we evaluate polarizabilities of the 6s2 1S0

and 6s6p 3P0 states in Tl+, corresponding BBR shift and
its uncertainty. Dynamic correction to the BBR shift is
evaluated and found negligible. We also calculate a num-
ber of electric-dipole matrix elements in Tl+ for transi-
tions between low-lying levels. We note that our cal-
culation of all of these properties is independent on the
particular isotope number well within the quoted level of
precision. Therefore, all these results apply to any Tl+

isotope.

II. METHOD

Correlation corrections between a few valence electrons
can be accurately treated by the configuration interac-
tion (CI) method. Since the valence-valence correla-
tions are very large, the CI method provides better de-
scription of these correlations than the perturbative ap-
proaches. However, excitations of the core [1s2, ..., 5d10]
electrons can not be directly included in the CI approach
due to enormous size of such problem. An elegant ap-
proach to the inclusion of the core-valence correlations
within the CI framework was developed in [8], where core-
valence correlations were incorporated into the CI by con-
structing an effective Hamiltonian using the second-order
many-body perturbation theory (CI+MBPT). Recently,
we have developed the relativistic CI+all-order method
[9] combining CI with coupled-cluster (CC) approach.
This method, first suggested in [10], was successfully ap-
plied to the calculation of divalent atom properties in
Refs. [6, 9]. The coupled-cluster method used here is
known to describe the core-core and core-valence corre-
lations very well as demonstrated by its great success
in predicting alkali-metal atom properties [11]. There-
fore, combination of the CI and all-order coupled-cluster
methods allows to account for all dominant correlations
to all orders. To evaluate uncertainty of our results, we
use all three of the approaches and compare the results of
the CI, CI+MBPT, and CI+all-order calculations. We
refer the reader to Refs. [6, 8, 9] for the description of the
methods and outline only main points of the calculations
below.
We start with solving Dirac-Fock (DF) equations

Ĥ0 ψc = εc ψc,

where H0 is the relativistic DF Hamiltonian [8, 9] and ψc

and εc are single-electron wave functions and energies.
The self-consistent calculations were performed for the
[1s2, ..., 5d10] closed core and the 6s, 7s, 6p, 7p, and 6d
orbitals. We have constructed the B-spline basis set con-
sisting of N = 35 orbitals for each of the s, p1/2, p3/2, ...
partial waves up to l ≤ 5. The core and the 6s, 7s, 6p,
7p, and 6d orbitals expanded as the linear combinations
of B-splines were replaced by the exact DF functions; the
orthogonalization procedure was preformed after the re-
placement. Tests were carried out to demonstrate that

this procedure improves the numerical accuracy in com-
parison with unmodified N = 35 B-spline basis set. The
basis set is formed in a spherical cavity with radius 60
a.u. The CI space is effectively complete and includes
20sp and 21dfg orbitals. All MBPT and all-order terms
were summed over the entire N = 35, l ≤ 5 basis set.
The multiparticle relativistic equation for three valence

electrons is solved within the CI framework [12] to find
the wave functions and the low-lying energy levels:

Heff(En)Φn = EnΦn.

The effective Hamiltonian is defined as

Heff(E) = HFC +Σ(E),

where HFC is the Hamiltonian in the frozen-core approx-
imation and the energy-dependent operator Σ(E) takes
into account virtual core excitations. The Σ(E) part of
the effective Hamiltonian is constructed using the second-
order perturbation theory in the CI+MBPT approach
[8] and linearized coupled-cluster single-double method
in the CI+all-order approach [9]. The Σ(E) = 0 in the
pure CI calculation. Construction of the effective Hamil-
tonian in CI+MBPT and CI+all-order approximations is
described in detail in Refs. [8, 9].

III. RESULTS

Comparison of the energy levels (in cm−1) obtained
in the CI, CI+MBPT, and CI+all-order approximations
with experimental values [13, 14] is given in Table I. Cor-
responding relative differences of these three calculations
with experiment are given in the last three columns in
%. Two-electron binding energies are given in the first
row of Table I, energies in other rows are counted from
the ground state. We also observed significant, by a fac-
tor of 4 or better, improvement in the precision of the
energy levels with CI+all-order method in comparison
with the CI+MBPT one. For example, CI+MBPT value
for the two-electron binding energy differs from experi-
ment by 1.8%, while our all-order value differs from the
experiment by only 0.4% (see line one of Table I). The
experimental value of the two-electron binding energy
is obtained as the sum of the Tl+ and Tl2+ ionization
limits given in [13], 164765(5) cm−1 and 240600 cm−1.
Ref. [13] notes that the ionization limit for Tl2+, derived
from the first 3 members of the 2S series was shifted by
300 cm −1 to give effective quantum number for 5g 2G
that is nearly hydrogenic. Therefore, there is some uncer-
tainty (<∼ 0.1%) associated with the two-electron binding
energy in Tl+.
We also compared the transition energies between the

6s6p 3P0 level and 4 levels relevant to the calculation
of the 6s6p 3P0 polarizability. These values, calculated
in the CI+all-order approximation are compared with
experiment in Table II. We find that these transition
energies are substantially more accurate than the energy
levels counted from the ground state listed in Table I.
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TABLE I: Comparison between experimental [13, 14] and the-
oretical energy levels in cm−1. Two-electron binding energies
are given in the first row, energies in other rows are counted
from the ground state. Results of the CI, CI+MBPT, and
CI+all-order calculations are given in columns labeled CI,
MBPT, and All. Corresponding relative differences of these
three calculations with experiment are given in the last three
columns in %.

State Expt. CI MBPT All
Differences (%)
CI MBPT All

6s2 1S0 405365 376102 412676 407125 −7 1.8 0.4
6s7s 3S1 105229 92945 108031 106028 −12 2.7 0.8
6s7s 1S0 108000 96304 110845 108904 −11 2.6 0.8
6s6d 1D2 115166 101238 118678 116194 −12 3.1 0.9
6s6d 3D1 116152 103334 119000 116857 −11 2.5 0.6
6s6d 3D2 116436 103555 119339 117284 −11 2.5 0.7
6s6d 3D3 116831 103911 119688 117758 −11 2.5 0.8
6p2 3P0 117408 108495 120875 118450 −8 3.0 0.9
6p2 3P1 125338 114961 129401 126440 −8 3.2 0.9
6p2 3P2 128817 117721 132754 129839 −9 3.1 0.8
6s8s 3S1 133568 120147 136369 134187 −10 2.1 0.5
6s8s 1S0 134292 121089 137132 134950 −10 2.1 0.5

6s6p 3P0 49451 41719 52320 50288 −16 5.8 1.7
6s6p 3P1 52394 44743 55114 53060 −15 5.2 1.3
6s6p 3P2 61728 61728 65044 62669 −14 5.4 1.5
6s6p 1P1 75663 75663 76866 76145 −7 1.6 0.6
6s7p 3P0 119361 119361 122299 120155 −11 2.5 0.7
6s7p 3P1 119576 119576 122602 120472 −11 2.5 0.8
6s7p 3P2 122209 122029 124873 122675 −11 2.3 0.5
6s7p 1P1 122379 122379 126014 124019 −9 3.0 1.3
6s5f 3F2 136216 136216 138873 136600 −10 2.0 0.3
6s5f 3F3 136115 136115 138868 136577 −10 2.0 0.4
6s5f 3F4 136230 136230 138870 136595 −10 1.9 0.3
6s5f 1F3 136263 136263 138997 136756 −10 2.0 0.4

In the present calculation, the Tl+ scalar polarizabil-
ity α0 is separated into a valence polarizability αv

0 , ionic
core polarizability αc, and a small term αvc ( that mod-
ifies ionic core polarizability due to the presence of two
valence electrons. The ionic core polarizability is evalu-
ated in the random-phase approximation (RPA), an ap-
proach that is expected to provide core values accurate
to better than 5% [4]. We approximate the vc term by
adding vc contributions from the individual electrons, i.e.
αvc(6s

2) = 2αvc(6s), and αvc(6s6p) = αvc(6s)+αvc(6p).
For consistency, this term is also calculated in RPA. We
note that αvc contributions are small, but their contri-
bution to the ∆α(3P0 −

1S0) polarizability difference is
significant, 15%, due to severe cancelation of the valence
polarizabilities of these two states. The valence polariz-
ability is determined by solving the inhomogeneous equa-
tion of perturbation theory in the valence space, which
is approximated as

(Ev −Heff)|Ψ(v,M ′)〉 = Deff,q|Ψ0(v, J,M)〉 (2)

for a state v with the total angular momentum J and
projection M [15]. The wave function Ψ(v,M ′), where

TABLE II: Comparison between experimental [13, 14] and
CI+all-order transition energies in cm−1. The relative differ-
ences are given in the last column in percent.

Transition Expt. CI+all-order Dif. (%)
6s6p 3P0 − 6s7s 3S1 55778 55739 0.07%
6s6p 3P0 − 6s6d 3D1 66701 66569 0.20%
6s6p 3P0 − 6p2 3P1 75887 76152 −0.35%
6s6p 3P0 − 6s8s 3S1 84117 83899 0.26%

M ′ = M + q, is composed of parts that have angular
momenta of J ′ = J, J±1 from which the scalar and tensor
polarizability of the state |v, J,M〉 can be determined
[15]. The effective dipole operator Deff includes RPA
corrections.
Unless stated otherwise, we use atomic units (a.u.) for

all matrix elements and polarizabilities throughout this
paper: the numerical values of the elementary charge,
e, the reduced Planck constant, h̄ = h/2π, and the
electron mass, me, are set equal to 1. The atomic
unit for polarizability can be converted to SI units via
α/h [Hz/(V/m)2]=2.48832×10−8α (a.u.). The conver-
sion coefficient is 4πǫ0a

3
0/h in SI units and the Planck

constant h is factored out in order to provide direct con-
version into frequency units; a0 is the Bohr radius and ǫ0
is the electric constant.
While we do not use the sum-over-state approach in

the calculation of the polarizabilities, it is useful to es-
tablish which levels give the dominant contributions. We
evaluate several leading contributions to polarizabilities
by combining our values of the E1 matrix elements and
energies according to the sum-over-states formula for the
valence polarizability [4]:

αv
0 =

2

3(2J + 1)

∑

n

|〈v‖D‖n〉|2

En − Ev
(3)

where J is the total angular momentum of state v, D is
the electric dipole operator, and Ei is the energy of the
state i.
The breakdown of the contributions to the 6s2 1S0

and 6s6p 3P0 polarizabilities α0 of Tl+ in a.u. is given
in Table III. Absolute values of the corresponding re-
duced electric-dipole matrix elements are listed in col-
umn labeled “D” in a0e. To demonstrate the size of the
correlation corrections, we list valence results obtained
in the CI, CI+MBPT, and CI+all-order approximations.
The contribution of the other terms listed in the row
“Other” is obtained by subtracting the sum of the con-
tributions that are calculated separately from the total
valence polarizability result obtained by the direct solu-
tion of the Eq. (2). With the exception of the last column
labeled CI+allB, we use the theoretical energies obtained
in the respective approximations. To obtain data listed
in the last column, we combine CI+all-order E1 matrix
elements and experimental energies. The polarizability of
the ground state changes by 0.5% as expected from the
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TABLE III: Contributions to the 6s2 1S0 and 6s6p 3P0 polarizabilities in a.u. The dominant contributions to the valence
polarizabilities are listed separately with the corresponding E1 matrix elements given in columns labeled D. The remaining
valence contribution is given in row Other. The contribution from the core and vc terms are given by αc and αvc, respectively.
The dominant contributions to α0 listed in columns CI+allA and CI+allB are calculated with CI + all-order energies and NIST
[13, 14] energies, respectively. The differences of the 3P0 and 1S0 polarizabilities calculated in different approximations are
given in the last row.

State Contribution
CI CI+MBPT CI+allA CI+allB

D α0 D α0 D α0 α0

6s2 1S0 6s2 1S0 − 6s6p 3P1 0.424 0.589 0.658 1.149 0.597 0.984 0.997
6s2 1S0 − 6s6p 1P1 2.789 16.131 2.619 13.057 2.646 13.450 13.535
Other 0.269 0.143 0.155 0.155
αc 4.983 4.983 4.983 4.983
αvc −0.071 −0.071 −0.071 −0.071
Total 21.901 19.261 19.501 19.599

6s6p 3P0 6s6p 3P0 − 6s7s 3S1 1.044 3.113 0.975 2.499 0.980 2.519 2.517
6s6p 3P0 − 6s6d 3D1 2.007 9.563 1.893 7.860 1.897 7.912 7.897
6s6p 3P0 − 6p2 3P1 1.616 5.219 1.557 4.603 1.562 4.690 4.706
Other 1.782 1.630 1.660 1.660
αc 4.983 4.983 4.983 4.983
αvc −0.338 −0.338 −0.338 −0.338
Total 24.322 21.236 21.426 21.425

∆α0(
3P0 −

1S0) 2.421 1.975 1.925 1.826

TABLE IV: Contributions to dynamic corrections η for
6s2 1S0 and 6s6p 3P0 states.

State Transition yn η

η(6s2 1S0) 6s2 1S0 − 6s6p 3P1 363 0.000099
6s2 1S0 − 6s6p 1P1 251 0.000015

0.000114

η(6s6p 3P0) 6s6p 3P0 − 6s7s 3S1 268 0.000031
6s6p 3P0 − 6s6d 3D1 320 0.000068
6s6p 3P0 − 6p2 3P1 364 0.000031

0.000130

∆η(3P0 −
1S0) 0.000016

accuracy of the 6s2 1S0−6s6p 1P1 transition energy listed
in Table I. The polarizability of the excited 6s6p 3P0

state remains the same to four significant figures. Such
remarkable agreement is due to excellent, 0.07%, accu-
racy of the CI+all-order 6s6p 3P0 − 6s7s 3S1 transi-
tion energy and opposite signs of the difference between
CI+all-order 6s6p 3P0−6s6d 3D1 and 6s6p 3P0−6p2 3P1

transition energies and experiment (see Table II). We
note that while the change in the ground state polariz-
ability is only 0.5%, the corresponding change in the final
polarizability difference ∆α(3P0 −

1 S0) is 5%.

To the best of our knowledge, there is only one ex-
perimental measurement of the 6s6p 1P1 and 6s6p 3P1

lifetimes, τ(6s6p 1P1) = 0.59(4) ns and τ(6s6p 3P1) =
39(2) ns carried out using a beam-foil excitation tech-

nique [16]. Our corresponding CI+all-order matrix el-
ements are D(6s2 1S0 − 6s6p 1P1) = 2.646 a.u. and
D(6s2 1S0 − 6s6p 3P1) = 0.597 a.u. To evaluate the un-
certainties of these values, we compared the CI+MBPT
and CI+all-order results for these matrix elements (see
Table III), and took the difference between these two
calculations (1% for 1P1 and 10% for 3P1) as the un-
certainty in the core-valence correlations. We expect all
other missing corrections to be smaller than these dif-
ferences. Therefore, all other uncertainties should not
exceed the 1% and 10%, respectively. Conservatively,
we add uncertainties in core-valence correlations and all
other contributions in quadrature, giving D(6s2 1S0 −
6s6p 1P1) = 2.646(37) a.u. and D(6s2 1S0− 6s6p 3P1) =
0.597(84) a.u. Correlation corrections are very large for
the 1S0 −3 P1 intercombination line, resulting in much
higher uncertainty. The contribution of this transition
to polarizability is negligible.

We combine CI+all-order E1 matrix elements
from Table III with experimental energies to obtain
τ(6s6p 1P1) = 0.488(14) ns and τ(6s6p 3P1) = 29(8) ns
lifetimes. The resonance 1P1 lifetime differs with the ex-
periment by 2.5σ, where σ is a combined uncertainty
of our calculation and measurement [16]. The value for
the 3P1 lifetime is consistent within uncertainty estimate
with the measured value. Authors of Ref. [16] note that
due to the nonselective nature of beam-foil excitation,
the level populations (and hence the decay curves) are
affected by cascade repopulation. Thus, cascades can
distort the decay curves of shorter-lived levels such as
the 6s2 1S0 − 6s6p 1P1 resonance transition. Additional
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TABLE V: BBR shifts at T = 300K in B+, Al+, In+, and Tl+. B+, Al+, and In+ values are taken from Ref. [6]. Polarizabilities
α0 and their differences ∆α0 are given in a.u.; clock frequencies ν0 and the BBR shifts |∆νBBR| are given in Hz. Uncertainties
in the values of ∆νBBR/ν0 are given in column labeled “Uncertainty”.

Ion α0(
1S0) α0(

3P0) ∆α0 ∆νBBR (Hz) ν0 (Hz) |∆νBBR/ν0| Uncertainty
B+ 9.624 7.772 −1.85(19) 0.0159(16) 1.119 × 1015 1.42 × 10−17 1× 10−18

Al+ 24.048 24.543 0.495(50) −0.00426(43) 1.121 × 1015 3.8× 10−18 4× 10−19

In+ 24.01 26.02 2.01(20) −0.0173(17) 1.267 × 1015 1.36 × 10−17 1× 10−18

Tl+ 19.60 21.43 1.83(18) −0.0157(16) 1.483 × 1015 1.06 × 10−17 1× 10−18

analysis was used to evaluate such lifetimes.
In recent work [17], we have demonstrated that the

same 6s6p 1P1 lifetime measured in another Hg-like
ion, Pb2+ by the same beam-foil excitation approach
[18] is inconsistent with the 2010 very accurate (0.6%)
experimental value of the ground state polarizability
[19]. The 6s2 1S0 polarizability is dominated by the
6s2 1S0 − 6s6p 1P1 resonance transition. Our theoretical
lifetime in the 6s6p 1P1 Hg-like ion, Pb2+, calculated by
the same approach as the Tl+ result, is 0.301 ns [17]. Our
calculation is in agreement with the polarizability mea-
surement [19], but 20% lower than the beam-foil mea-
surement 0.380(21)nm. This difference is similar to the
17% difference in Tl+. Further experimental investiga-
tions of the 6s6p 1P1 lifetimes in Hg-like ions are needed
to resolve the discrepancy.
We have also calculated the dynamic correction η

of both clock states. The total dynamic correction η
in Eq. (1) is the difference of individual corrections,
∆η(3P0 −1 S0) = η(3P0) − η(1S0). The dynamic cor-
rection η of the state v is evaluated using the formula [5]

η =
∑

n

(80/63)π2

α0T

|〈v‖D‖n〉|2

(2J + 1)y3n

(

1 +
21π2

5y2n
+

336π4

11y4n

)

,

where yn = ωnv/T ; α0 is the static dipole polarizability
of the state v, and J the total angular momentum of
the state v. We list the dominant contributions to η of
the clock states calculated using CI+all-order E1 matrix
elements and experimental energies in Table IV. The
sum in the expression for η above converges very rapidly
making all other contributions negligible. The values of
η for the 6s 1S0 and 6s6p 3P0 state are almost equal, and
their difference listed in the last row gives only 0.0016%
contribution to the BBR shift.

IV. EVALUATION OF THE UNCERTAINTY

AND CONCLUSION

We use Table III to evaluate the uncertainty to the
BBR shift due to the core-valence correlation corrections
by comparing the CI, CI+MBPT, and CI+all-order re-
sults for ∆α0(

3P0−
1S0) listed in the last row of Table III.

The difference between the CI and CI+MBPT results is
23%, which is expected owing to poor agreement of CI
energies with experiment. The difference between the

CI+MBPT and CI+all-order results is only 3%. As we
noted above, the use of the experimental energies changes
CI+all-order value by 5%.
We studied the effect of the Breit interaction by re-

peating the CI+all-order calculation with the one-body
part of the Breit interaction incorporated into the DF
equations and construction of the basis set on the same
footing with the Coulomb interaction. We find that the
Breit interaction affects both 1S0 and

3P0 polarizabilities
by approximately the same amount, −0.5%. As a result,
the correction to the BBR shift due to the Breit interac-
tion is negligible (0.6%) at the present level of accuracy.

To evaluate the uncertainty in the αvc contribution to
the polarizability, we calculate this term in both DF and
RPA approximations. The difference between these re-
sults is taken to be the uncertainty. We find that the
uncertainty of the vc term contributes 2.4% to the un-
certainty in the BBR shift. The ionic core polarizability
αc is the same for both states and does not contribute to
the BBR shift.

Based on the comparison of the CI, CI+MBPT, and
CI+all-order data, estimated of the accuracy of the αvc

terms, and estimated effect of the Breit interaction,
we place an upper bound on the uncertainty of our
∆α0(

3P0 −1 S0) polarizability difference and the corre-
sponding BBR shift of Tl+ at 10%.

Our final result for the BBR shift of the
6s2 1S0 − 6s6p 3P0 transition in Tl+ is ∆νBBR =
−0.0157(16) Hz at 300 K. The corresponding relative
BBR shift at 300 K is |∆νBBR/ν0| = 1.1(1) × 10−17.
Our final results are summarized in Table V, where we
list the clock state polarizabilities, their difference ∆α0,
BBR shift at T = 300 K, 1S0 −3 P0 clock frequencies
ν0, absolute value of the relative BBR shift |∆νBBR/ν0|,
and the uncertainty in the relative BBR shift of Tl+.
The Tl+ values are compared with the results obtained
for B+, Al+, and In+ ions in Ref. [6]. The results listed
in Table V demonstrate that near cancelation of the
1S0 and 3P0 state polarizabilities in divalent B+, Al+,
In+ ions of group IIIB [6] continues for much heavier
Tl+, leading to anomalously small BBR shift for this
system. This calculation demonstrates that the BBR
contribution to the fractional frequency uncertainty of
the Tl+ frequency standard at 300 K is 1 × 10−18. We
find that Tl+ has the smallest fractional BBR shift
among all present or proposed frequency standards with
the exception of Al+.
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