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We present a detailed motivation for and definition of the contextual values of an observable,
which were introduced in Dressel et al., Phys. Rev. Lett. 102, 040402 (2010). The theory of
contextual values is a principled approach to the generalized measurement of observables. It extends
the well-established theory of generalized state measurements by bridging the gap between partial
state collapse and the observables that represent physically relevant information about the system.
To emphasize the general utility of the concept, we first construct the full theory of contextual
values within an operational formulation of classical probability theory, paying special attention to
observable construction, detector coupling, generalized measurement, and measurement disturbance.
We then extend the results to quantum probability theory built as a superstructure on the classical
theory, pointing out both the classical correspondences to and the full quantum generalizations of
both Lüder’s rule and the Aharonov-Bergmann-Lebowitz rule in the process. As such, our treatment
doubles as a self-contained pedagogical introduction to the essential components of the operational
formulations for both classical and quantum probability theory. We find in both cases that the
contextual values of a system observable form a generalized spectrum that is associated with the
independent outcomes of a partially correlated and generally ambiguous detector; the eigenvalues are
a special case when the detector is perfectly correlated and unambiguous. To illustrate the approach,
we apply the technique to both a classical example of marble color detection and a quantum example
of polarization detection. For the quantum example we detail two devices: Fresnel reflection from a
glass coverslip, and continuous beam displacement from a calcite crystal. We also analyze the three-
box paradox to demonstrate that no negative probabilities are necessary in its analysis. Finally,
we provide a derivation of the quantum weak value as a limit point of a pre- and post-selected
conditioned average and provide sufficient conditions for the derivation to hold.

PACS numbers: 03.65.Ta,03.67.-a,02.50.Cw,03.65.Ca

I. INTRODUCTION

Since the advent of quantum mechanics, practition-
ers have struggled with an inherent conceptual dual-
ism in its formalism. On one hand, time evolution of
a quantum state is a continuous, deterministic, and re-
versible process well described by a wave-equation. On
the other hand, there is irreducible stochasticity present
in the measurement process that leads to discontinuous
and generally irreversible state evolution in the form of
so-called “quantum jumps” or “state collapse.”

To cope with the necessary introduction of the stochas-
tic element of the theory while still preserving ties with
the deterministic classical mechanics, traditional quan-
tum mechanics [1, 2] emphasizes the role of Hermitian
observable operators that are analogous to classical ob-
servables. Indeed, we find that observables underlie most
of the core concepts in the quantum theory: commutation
relations of observables, complete sets of commuting ob-
servables, spectral expansions of observables, conjugate
pairs of observables, expectation values of observables,
uncertainty relations between observables, and time evo-
lution generated by a Hamiltonian observable. Even the
quantum state is introduced as a superposition of observ-
able eigenvectors. The stochasticity of the theory mani-
fests as a single prescription for how to average the om-
nipresent observables under a deterministically evolving
quantum state: the implicit projective quantum jumps
corresponding to laboratory measurements are largely

hidden by the formalism.

Experimental control of quantum systems has im-
proved since the early days of quantum mechanics, how-
ever, so the discontinuous evolution present in the mea-
surement process can now be more carefully investigated.
Modern optical and condensed matter systems, for ex-
ample, can condition the evolution of a state on the out-
comes of weakly coupled measurement devices (e.g. [3–
5]), resulting in non-projective quantum jumps that alter
the state more gently, or even resulting in continuous
controlled evolution of the state. Since observables are
defined in terms of projective jumps that strongly affect
the state, it becomes unclear how to correctly apply a
formalism based on observables to such non-projective
measurements. A refinement of the traditional formal-
ism must be employed to correctly describe the general
case.

To address this need, the theory of quantum opera-
tions, or generalized measurement, was introduced in the
early 1970’s by Davies [6] and Kraus [7], and has been
developed over the past forty years to become a compre-
hensive and mathematically rigorous theory [8–16]. The
formalism of quantum operations has seen the most use
in the quantum optics, quantum computation, and quan-
tum information communities, where it is indispensable
and well-supported by experiment. However, it has not
yet seen wide adoption outside of those communities.

Unlike the traditional observable formalism, the for-
malism of quantum operations emphasizes the states.
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Observables are mentioned infrequently in the quantum
operations literature, usually appearing only in the con-
text of projective measurements where they are well-
understood. Some references (e.g. [13, 14, 16]) de-
fine “generalized observables” in terms of the general-
ized measurements and detector outcome labels, but give
no indication about their relationship to traditional ob-
servables, if any. As a result, there is a conceptual gap
between the traditional quantum mechanics of observ-
ables and the modern treatment of quantum operations
that encompasses a much larger class of possible measure-
ments than the traditional observables seemingly allow.

A possible response to this conceptual gap is to declare
that traditional observables are meaningless outside the
context of projective measurements. This argument is
supported by the fact that any generalized measurement
can be understood as a part of a projective measurement
being made on a larger joint system that can be associ-
ated with a traditional observable in the usual way (i.e.
[13, p. 20]). However, there has been parallel research
into the “weak measurement” of observables [17–33] that
suggests that linking generalized measurements to tradi-
tional observables may not be such an outlandish idea.

Weak measurements were introduced as a consequence
of the von Neumann measurement protocol [2] that
uses an interaction Hamiltonian with a variable coupling
strength to correlate an observable of interest to the gen-
erator of translations for a continuous meter observable.
The resulting shift in the meter observable is then used
to infer information about the observable of interest in a
non-projective manner. The technique has been used to
great effect in the laboratory [34–48] to measure physi-
cal quantities like pulse delays, beam deflections, phase
shifts, polarization, and averaged trajectories. There-
fore, we conclude that there must be some meaningful
way to reconcile nonprojective measurements with tradi-
tional observables more formally.

The primary purpose of the present work is to detail a
synthesis between generalized measurements and observ-
ables that is powerful enough to encompass projective
measurements, weak measurements, and any strength of
measurement in between. The formalism of contextual
values, which we explicitly introduced in [49, 50] and
further developed in [51–53], forms a bridge between the
traditional notion of an observable and the modern the-
ory of quantum operations. For a concise introduction
to the topic in the context of the quantum theory, we
recommend reading our Letter [49].

The central idea of the contextual value formalism is
that an observable can be completely measured indirectly
using an imperfectly correlated detector by assigning an
appropriate set of values to the detector outcomes. The
assigned set of values generally differs from the set of
eigenvalues for the observable, and forms a generalized
spectrum that is associated with the operations of the
generalized measurement, rather than the spectral pro-
jections for the observable. Thus, the spectrum that one
associates with an observable will depend on the context

of how the measurement is being performed; such an in-
ability to completely discuss observables without specify-
ing the full measurement context is reminiscent of Bell-
Kochen-Specker contextuality [26, 54–59] and motivates
the name “contextual values.”
The secondary purpose of the present work is to

demonstrate that the contextual values formalism for
generalized observable measurement is essentially classi-
cal in nature. Hence, it has potential applications outside
the usual scope of the quantum theory. Indeed, we will
show that any system that can be described by Bayesian
probability theory can benefit from the contextual values
formalism.
Extending contextual values to the quantum theory

from the classical theory clarifies which features of the
quantum theory are novel. The quantum theory can be
seen as an extension of a classical probability space to a
continuous manifold of incompatible frameworks, where
each framework is a copy of the original probability space.
Hence, intrinsically quantum features arise not from the
observables defined in any particular framework, but in-
stead from the relative orientations of the incompatible
frameworks. As we shall see, the differences manifest in
sequential measurements and conditional measurements
due to the probabilistic structure of the incompatible
frameworks, rather than the observables or contextual
values themselves.
To keep the paper self-contained with these aims in

mind, we first develop both the operational approach to
measurement and the contextual values formalism com-
pletely within the confines of classical probability theory,
giving illustrative examples to cement the ideas. We then
port the formalism to the quantum theory and identify
the essential differences that arise. Our analysis therefore
doubles as a pedagogical introduction to the operational
approaches for both classical and quantum probability
theory that should be accessible to a wide audience.
The paper is organized as follows. In §IA, we provide

a simple intuitive example to introduce the concept of
contextual values. In §II A through §II C we develop the
classical version of the operational approach to measure-
ment. In §II D we introduce the contextual values for-
malism classically and then give several examples similar
to the initial example. In §III A through §III C we gener-
alize the classical operations to quantum operations and
highlight the key differences with explicit examples. In
§III D we apply the contextual values formalism to the
quantum case and show that it is unchanged. We also
specifically address how to treat weak measurements as
a special case of our more general formalism and provide
a derivation of the quantum weak value in §III E. Finally
we give our conclusions in §IV.

A. Example: Colorblind Detector

The idea of the contextual values formalism is decep-
tively simple. Its essence can be distilled from the fol-
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lowing classical example of an ambiguous detector.
Suppose we wish to measure a marble that may either

be colored red or green. A person with normal vision can
distinguish the colors unambiguously, so would represent
an ideal detector for the color state of the marble. A
partially colorblind person, however, may only estimate
the color correctly some percentage of the time, so would
represent an ambiguous detector of the color state of the
marble.
If the person is only mildly colorblind, then the estima-

tions will be strongly correlated to the actual color of the
marble. The ambiguity would then be perturbative and
could be interpreted as noise introduced into the mea-
surement. However, if the person is strongly colorblind,
then the estimations may be only mildly correlated to
the actual color of the marble. The ambiguity becomes
nonperturbative, so the noise dominates the signal in the
measurement.
We can design an experimental protocol where an ex-

perimenter holds up a marble and the colorblind person
gives a thumbs-up if he thinks the marble is green or
a thumbs-down if he thinks the marble is red. Suppose,
after testing a large number of known marbles, the exper-
imenter determines that a green marble correlates with a
thumbs-up 51% of the time, while a red marble correlates
with a thumbs-down 53% of the time. The experimental
outcomes of thumbs-up and thumbs-down are thus only
weakly correlated with the actual color of the marble.
Having characterized the detector in this manner, the

experimenter provides the colorblind person with a very
large bag of an unknown distribution of colored mar-
bles. The colorblind person examines every marble, and
for each one records a thumbs-up or a thumbs-down on
a sheet of paper, which he then returns to the exper-
imenter. The experimenter then wishes to reconstruct
what the average distribution of marble colors in the bag
must be, given only the ambiguous output of his color-
blind detector.
For simplicity, the clever experimenter decides to as-

sociate the colors with numerical values: 1 for green (g),
and −1 for red (r). In order to compare the ambiguous
outputs with the colors, he also assigns them different
numerical values: a for thumbs-up (u), and b for thumbs-
down (d). He then writes down the following probabil-
ity constraint equations for obtaining the average marble
color,

〈
color

〉
, based on what he has observed,

P (u) = (.51)P (g) + (.49)P (r),

P (d) = (.47)P (g) + (.53)P (r),
〈
color

〉
= 1P (g)− 1P (r) = aP (u) + bP (d), (1)

which he can rewrite as a matrix equation in the basis of
the color probabilities P (g) and P (r),

(
1
−1

)
=

(
.51 .47
.49 .53

)(
a
b

)
. (2)

After solving this equation, he finds that he must assign
the amplified values a = 25 and b = −25 to the outcomes

of thumbs-up and thumbs-down, respectively, in order
to compensate for the detector ambiguity. After doing
so, he can confidently calculate the average color of the
marbles in the large unknown bag using the identity (1).
The classical color observable has eigenvalues of 1 and

−1 that correspond to an ideal measurement. The am-
plified values of 25 and −25 that must be assigned to
the ambiguous detector outcomes are contextual values
for the same color observable. The context of the mea-
surement is the characterization of the colorblind detec-
tor, which accounts for the degree of colorblindness. The
expansion (1) relates the spectrum of the observable to
its generalized spectrum of contextual values. With this
identity, both an ideal detector and a colorblind detector
can measure the same observable; however, the assigned
values must change depending on the context of the de-
tector being used.

II. CLASSICAL PROBABILITY THEORY

To define contextual values more formally, we shall de-
fine generalized measurements within the classical the-
ory of probability using the same language as quantum
operations. In particular, rather than representing the
observables of classical probability theory in the tradi-
tional way as functions, we shall adopt a more calcula-
tionally flexible, yet equivalent, algebraic representation
that closely resembles the operator algebra for quantum
observables.
We also briefly comment that the relevant subset of

probability theory that is summarized here may slightly
differ in emphasis from incarnations that the reader may
have encountered previously. Our treatment acknowl-
edges that probability theory, in its most general incar-
nation, is a system of formal reasoning about Boolean
logic propositions [60, 61]; specifically, our treatment em-
phasizes logical inference rather than the traditional fre-
quency analysis of concrete random variable realizations.
However, the “frequentist” approach of random variables
is not displaced by the logical approach, but is rather sub-
sumed as an important special case pertaining to repeat-
able experiments with logically independent outcomes.
Due to its clarity and generality, the logical approach has
been widely adopted in diverse disciplines under the dis-
tinct name “Bayesian probability theory.” Several physi-
cists, including (but certainly not limited to) Jaynes [62],
Caves [63], Fuchs [64], Spekkens [65], Harrigan [66], and
Leifer [67], have also extolled its virtues in recent years.
We follow suit to emphasize the generality of the contex-
tual values concept.

A. Sample Spaces and Observables

In what follows, we shall consider the stage on which
classical probability theory unfolds—namely its space of
observables—to be a commutative algebra over the reals
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FIG. 1. Diagram of the relationship between the sample space
of atomic propositions X, the Boolean algebra of propositions
ΣX , and the algebra of observables ΣR

X . The probability state
P is a measure from ΣX to the interval [0, 1]. The expectation
functional

〈
·
〉
is a linear extension of P that maps ΣR

X to the

reals R; by construction
〈
·
〉
= P (·) whenever both are defined.

that we denote ΣR

X . This choice of notation is motivated
by the fact that the observable algebra is built from and
contains two related spaces, X and ΣX , that are con-
ceptually distinct and equally important to the theory.
The three are illustrated in Figure 1 to orient the dis-
cussion. To avoid distracting technical detail, we will
briefly describe finite-dimensional versions of these three
spaces here, and note straight-forward generalizations to
the continuous case when needed [68].

Sample Spaces.—The core of a probability space is a
set of mutually exclusive logic propositions, X , known as
the sample space of atomic propositions. In other words,
elements of the sample space, such as g, r ∈ X , repre-
sent “yes/no” questions that cannot be answered “yes”
simultaneously and cannot be broken into simpler ques-
tions. For example, g = “Does the marble look green?”
and r = “Does the marble look red?” are valid mutually
exclusive atomic propositions. To be a proper sample
space, the propositions should form a complete set, mean-
ing that there must always be exactly one true proposi-
tion. Physically, such propositions typically correspond
to mutually independent outcomes of an experiment that
probes some system of interest. Indeed, any accessible
physical property must be testable by some experiment,
and any experiment can be described by such a collection
of yes/no questions.

Boolean Algebra.—The atomic propositions in X can
be extended to more complex propositions by logical
combination in order to form the larger space ΣX . Specif-
ically, we can combine them algebraically with a logical
or denoted by addition and a logical and denoted by mul-
tiplication. For example, given propositions x, y, z ∈ ΣX ,
the quantity xy + yz would denote the proposition “(x
and y) or (y and z).” Importantly, both the sum and
the product commute since the corresponding logical op-
erations commute, and the propositions are idempotent
so x2 = x for any x ∈ ΣX . Furthermore, the product
of any two nonequal propositions in X must be trivially
false since they are mutually exclusive; we denote the

trivially false proposition as 0 since its product with any
proposition is also trivially false. Similarly, the sum of
all propositions in X will be trivially true since one of
the atomic propositions must be true by construction;
we denote the trivially true proposition as 1X since its
product with any proposition x ∈ X leaves that propo-
sition invariant, 1Xx = x. The logical operation of not,
or complementation (xc) with respect to X , can then be
defined as the subtraction from the identity xc = 1X − x
since x+xc = 1X must be true for any proposition x ∈ X
by definition. The proposition space ΣX contains X and
is closed under the operations of and, or, and not ; hence,
it forms a Boolean logic algebra [69].

Observables.—Finally, we extend ΣX linearly over the
real numbers to obtain the commutative algebra of ob-
servables ΣR

X . That is, any linear combination of propo-
sitions F = ax + by with a, b ∈ R and x, y ∈ ΣX is an
observable in ΣR

X ; similarly any linear combination of ob-
servables H = a′F +b′G with a′, b′ ∈ R and F,G ∈ ΣR

X is
also an observable in ΣR

X . Countable sums are permitted
provided the coefficients converge. The three spaces X ,
ΣX , and ΣR

X are illustrated in Figure 1.

The observables combine logical propositions with
numbers that describe the relation of each proposition
to some meaningful reference. For example, one could
define a simple observable A = (1)g + (−1)r that as-
signs a value of 1 to the proposition asking whether a
marble looks green and assigns a value of −1 to the
proposition asking whether that same marble looks red
in order to distinguish the colors by a sign. Alterna-
tively, one can bestow a physical meaning to the color
propositions by defining a wavelength observable instead:
B = (550nm)g + (700nm)r. One could even define an
observable C = ($2)g + (−$3)r that indicates a mone-
tary bet made on the color of the marble, with $2 being
awarded for a color of green and $3 being lost for a color
of red. Such numerical labels are always assigned by
convention, but indicate physically relevant information
about the type of questions being asked by the experi-
menter that are answerable by the independent proposi-
tions.

Representation.—The algebra ΣX can be represented
as the lattice of projection operators acting on a Hilbert
space exactly as in the standard representation of quan-
tum theory [2, 12, 70]. The elements {x} of X cor-
respond to rank-1 projection operators {|x〉〈x|} onto
orthogonal subspaces spanned by orthonormal vectors
{|x〉} in the Hilbert space. Any sum of n elements of
X , x1 + · · ·+ xn, corresponds to a rank-n projection op-
erator |x1, . . . , xn〉〈x1, . . . , xn| onto a subspace spanned
by n orthonormal vectors {|x1〉, . . . , |xn〉} in the Hilbert
space. Hence, we shall casually refer to propositions of
the Boolean algebra ΣX as projections in what follows.
However, it is important to note that the Boolean al-
gebra ΣX need not be represented in this fashion to be
well-defined.

Just like the propositions ΣX can be represented as
projections on a Hilbert space, the observables ΣR

X can
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also be represented as the algebra of Hermitian operators
acting on the same Hilbert space. Hence, we shall casu-
ally refer to observables in ΣR

X as observable operators in
analogy to the quantum theory. However, unlike quan-
tum observables, all classical observables commute. It is
important to note that the representation of observables
as operators on a Hilbert space in both the classical and
the quantum case remains strictly optional for calcula-
tional convenience.
Independent Probability Observables.—We note that

the identity observable 1X can be partitioned into many
distinct sets of independent propositions in ΣX , such
as
∑

i xi = 1X , which is known as a closure relation.
Each partitioning corresponds to a particular detector
arrangement that only probes those propositions. Such
a partitioning {xi} has the common mathematical name
Projection-Valued Measure (PVM) since it forms a mea-
sure over the index i and has a representation that con-
sists of orthogonal projections. However, we shall make
an effort to call the propositions {xi} Independent Proba-
bility Observables to be more physically descriptive. We
will later contrast them with more general probability
observables.
General observables can be constructed from indepen-

dent probability observables by associating a real value
f(xi) to each index i in the sum, F =

∑
i f(xi)xi. The

product of the observable with any of its constituent
probability observables simplifies, F xi = f(xi)xi; hence,
the associated values form the set of eigenvalues for the
observable. For a finite observable space ΣR

X , the set of
atomic propositions X itself is a maximally refined set of
independent probability observables that can construct
any observable in the space,

F =
∑

x∈X

f(x)x. (3)

In the continuous case the values f(x) form a measur-
able function that specifies the spectrum of the observ-
able; the sum (3) is then commonly written as an in-
tegral over the continuous set of propositions {|x〉〈x|},
F =

∫
X
f(x) d|x〉〈x|. We use the Hilbert space notation

d|x〉〈x| in the integral to avoid later confusion with real-
valued integrals.

B. States, Densities, and Collapse

Probability Measures.—A state P is a probability mea-
sure over the Boolean algebra ΣX , meaning that it is
a linear map from ΣX to the interval [0, 1] such that
P (1X) = 1. Such a state P assigns a numerical value
P (x) to each proposition x ∈ ΣX that quantifies its de-
gree of plausibility; that is, P (x) formally indicates how
likely it is that the question x would be answered “yes”
were it to be answered, with 1 indicating a certain “yes”
and 0 indicating a certain “no.” The value P (x) is called
the probability for the proposition x to be true. Normal-
izing P (1X) = 1 ensures that exactly one proposition in

the sample space must be true. For continuous spaces,
the state becomes an integral P (x0) =

∫
x0∈ΣX

dP (x).

Frequencies.—Empirically, one can check probabilities
by repeatedly asking a proposition in ΣX to identically
prepared systems and collecting statistics regarding the
answers. For a particular proposition x ∈ ΣX , the ratio
of yes-answers to the number of trials will converge to the
probability P (x) as the number of trials becomes infinite.
However, the probability has a well-defined meaning as a
plausibility prediction even without actually performing
such a repeatable experiment. Indeed, designing good
quality repeatable experiments to check the probabili-
ties assigned by a predictive state is the primary goal of
experimental science, and is generally quite difficult to
achieve.
Expectation Functionals.—The linear extension of a

state P to the whole observable algebra ΣR

X is an ex-
pectation functional that averages the observables, and
is traditionally notated with angled brackets

〈
·
〉
. Specif-

ically, for an observable F =
∑

x∈X f(x)x, then,

〈
F
〉
=
∑

x∈X

f(x)P (x), (4)

is the expectation value, or average value, of F under the
functional

〈
·
〉
that extends the probability state P . Since〈

·
〉
is linear, it passes through the sum and the constant

factors of f(x) to apply directly to the propositions x.
The restriction of

〈
·
〉
to ΣX is P , so

〈
x
〉
= P (x) as

written in (4). That is, the expectation value
〈
x
〉
of a

pure proposition x is the probability of that proposition.
The probability state P and its linear extension

〈
·
〉
are

illustrated in Figure 1. For continuous spaces the sum
(4) becomes an integral of the measurable function f(x),〈
F
〉
=
〈 ∫

X f(x) d|x〉〈x|
〉
=
∫
X f(x) dP (x).

Moments.—The nth statistical moment of F is
〈
Fn
〉
=∑

x∈X fn(x)P (x) and empirically corresponds to mea-
suring the observable F n times in a row per trial on iden-
tical systems and averaging the repeated results. Hence,
the moments quantify the fluctuations of the observable
measurements that stem from uncertainty in the state.
For continuous spaces, the higher moments also become
integrals

〈
Fn
〉
=
∫
X
fn(x) dP (x).

Densities.—States can often be represented as densi-
ties with respect to some reference measure µ from ΣX to
R+, which can be convenient for calculational purposes.
Just as the state P can be linearly extended to an ex-
pectation functional

〈
·
〉
, any reference measure µ can

be linearly extended to a functional
〈
·
〉
µ
. For contin-

uous spaces, such a reference functional takes the form
of an integral

〈
F
〉
µ
=
∫
X f(x)dµ(x). The representation

of a state as a density follows from changing the inte-
gration measure for the state to the reference measure〈
F
〉
=
∫
X
f(x) dP (x) =

∫
X
f(x)(dP/dµ)(x) dµ(x). The

Jacobian conversion factor dP/dµ from the integral over
dP (x) to the integral over a different measure dµ(x) is
the probability density for P with respect to µ, if it ex-
ists [71]. We can then define a state density observable
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Pµ =
∫
X(dP/dµ)(x) d|x〉〈x| that relates the expectation

functional
〈
·
〉
to the reference functional

〈
·
〉
µ
directly

according to the relation
〈
Pµ F

〉
µ
=
〈
F
〉
.

For continuous spaces, the standard integral is most
frequently used as a reference. Hence, the probability
density with respect to the standard integral is given the
simple notation p(x) such that

〈
F
〉
=
∫
X f(x)p(x) dx.

Importantly, the probability for x is not the density
p(x) = (dP/dx)(x), but is the (generally infinitesi-
mal) integral of the density over a single point P (x) =∫
x∈X p(x) dx [72, 73], commonly notated p(x)dx.
In discrete spaces we apply the same idea by defining

a state density observable directly in terms of measure
ratios,

Pµ =
∑

x∈X

P (x)

µ(x)
x. (5)

Then by definition and linearity,
〈
PµF

〉
µ

=∑
x∈X(P (x)/µ(x))f(x)µ(x) =

∑
x∈X f(x)P (x) =

〈
F
〉
,

as required. Evidently, the measure µ must be nonzero
for all propositions x for which P is nonzero in order for
such a state density to be well-defined. This definition
as a ratio of functionals will correctly reproduce the
Jacobian derivative in the continuous case using a
limiting prescription.
Trace.—An important reference measure which is

nonzero for any nonzero proposition is the counting mea-
sure, or trace Tr, which evaluates to the rank of any
proposition in ΣX ; for example, given x, y, z ∈ X then
(x+y+z) ∈ ΣX is a rank-3 proposition and Tr(x+y+z) =
Tr(x)+Tr(y)+Tr(z) = 1+1+1 = 3. Since the trace eval-
uates to unity on any atomic proposition, any state has a
trace-density defined by equation (5) that is traditionally
notated as ρ.

ρ =
∑

x∈X

P (x)x. (6)

The trace-density is the only state density that is always
defined and exactly determined by the probabilities of
the atomic propositions P (x). Because of this, the trace-
representation of a state can be naturally interpreted as
an inner product,

〈
ρ, F

〉
= Tr(ρF ) =

〈
F
〉
, (7)

between the trace-density and the observable, known as
the Hilbert-Schmidt inner product. The trace will be-
come particularly important when we generalize to quan-
tum mechanics, which is why we mention it here. Indeed,
the trace-density ρ will be equivalent to the quantum
mechanical density operator when extended to the non-
commutative case. For continuous spaces the integral is
traditionally preferred to the trace as a reference because
the trace can frequently diverge.
State Collapse.—If a question on the probability space

is answered by some experiment, then the state indicat-
ing the plausibilities for future answers must be updated

to reflect the acquired answer. The update process is
known as Bayesian state conditioning, or state collapse.
Specifically, if a proposition y ∈ ΣX is verified to be true,
then the experimenter updates the expectation functional
to the conditioned functional,

〈
F
〉
y
=

〈
y F
〉

P (y)
, (8)

that reflects the new information. For a proposition
x ∈ ΣX , the conditional probability

〈
x
〉
y
= P (yx)/P (x)

has the traditional notation P (x|y) and is read as “the
probability of x given y.”
From (8), any state density corresponding to P will be

similarly updated to a new density via a product,

Pµ|y =
Pµ y

P (y)
. (9)

Notably, conditioning the trace-density ρ on an atomic
proposition y ∈ X will collapse the density to become
the proposition itself, ρy = ρ y/P (y) = y.
Note that the proposition y serves a dual role in the

conditioning procedure. First, it is used to compute the
normalization probability P (y). Second, it directly up-
dates the state via a product action. The product in-
dicates that future questions will be logically linked to
the answered question with the and operation; that is,
the knowledge about the system has been refined by the
answered question. The process of answering a question
about the system and then conditioning the state on the
new information is called ameasurement ; moreover, since
the proposition y is a projection acting on the density,
this kind of measurement is called a projective measure-
ment.
Bayes’ Rule.—If we pick another proposition z ∈ ΣX

as the observable in (8) we can derive Bayes’ rule as a
necessary consequence by interchanging y and z and then
equating the joint probabilities P (yz),

P (z|y) = P (y|z)P (z)
P (y)

. (10)

Bayes’ rule relates conditioned expectation functionals
to one another, so is a powerful logical inference tool
that drives much of the modern emphasis on the logical
approach to probability theory.
Disturbance.—Conditioning, however, is not the only

way that one can alter a state. One can also disturb
a state without learning any information about it, which
creates a transition to an updated expectation functional
that we denote with a tilde

〈
·̃
〉
according to,

〈
F̃
〉
=
〈
D(F )

〉
, (11a)

D(F ) =
∑

x∈X

〈
F
〉
Dx

x, (11b)

〈
F
〉
Dx

=
∑

x′∈X

f(x′)Dx(x
′). (11c)
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Here the disturbance D is a map from ΣR

X to ΣR

X that
is governed by a collection of states {Dx} that specify
transition probabilities Dx(x

′) from old propositions x to
new propositions x′. To be normalized, the transition
states must satisfy Dx(1X) = 1, so that

〈
1X
〉
Dx

= 1X
and thereforeD(1X) = 1X . Updating the state according
to (11) is also known as Bayesian belief propagation [67]
and is more commonly written in the fully expanded form〈
F̃
〉
=
∑

x∈X P (x)
∑

x′∈X Dx(x
′)f(x′).

Time Evolution.—As an important special case, the
time evolution of a probabilistic system is a form of dis-
turbance Dt, known as a propagator, that is parametrized
by a time interval t. No information is learned as the
system evolves, so the knowledge about the system as
represented by the expectation functional can only prop-
agate according to the laws governing the time evolution.
For a Hamiltonian system, the time-evolution is of Liou-
ville form; that is, if we define a time-evolving observable
as F (t) = Dt(F ) then we have dF (t)/dt = {F (t), H}p,
where {·, ·}p is defined point-wise as the Poisson bracket.
The differential equation implicitly specifies the form of
the disturbance Dt.
Correlation Functions.—Correlations between observ-

ables at different times can be obtained by inserting a
time-evolution disturbance between the observable mea-
surements,

〈
F (0)G(t)

〉
=
〈
FDt(G)

〉
, (12)

=
∑

x∈X

P (x)f(x)
∑

x′∈X

Dx,t(x
′)g(x′).

Operationally this corresponds to measuring the observ-
able F , waiting an interval of time t, then measuring the
observable G. Similarly, n-time correlations can be de-
fined with n−1 time-evolution disturbances between the
observable measurements

〈
F1Dt1(F2 · · · Dtn−1

(Fn) · · · )
〉
.

Computing the correlation of an observable with itself at
the same time will produce a higher moment

〈
Fn
〉
.

Invasive Measurement.—A system may also be dis-
turbed during the physical process that implements con-
ditioning, which will alter the state above and beyond the
pure conditioning expression (8). With such an invasive
measurement, one conditions a state after a disturbance
induced by the measurement process has occurred; hence,
one obtains a new state,

〈
F̃
〉
y
=

〈
D(y F )

〉
〈
D(y)

〉 , (13)

=

∑
x∈X P (x)

∑
x′∈X Dx(y x

′)f(x′)∑
x∈X P (x)Dx(y)

,

which is a composition of the measurement disturbance
(11) followed by the pure conditioning (8).
As we shall see later in §III B, the quantum projection

postulate (Lüder’s Rule) can be understood as an inva-
sive measurement similar to (13), but not as pure con-
ditioning similar to (8). This observation has also been
recently emphasized by Leifer and Spekkens [67], who

show that a careful extension of (8) to the noncommuta-
tive quantum setting does not reproduce the projection
postulate. Hence, understanding classical invasive mea-
surement better should provide considerable insight into
the quantum measurement process. However, to properly
understand the implications of invasive measurements on
the measurement of observables, we must consider the
measurement process in more detail.

C. Detectors and Probability Observables

For a single ideal experiment that answers questions of
interest with perfectly correlated independent outcomes,
knowing the spectrum of an observable for that experi-
ment is completely sufficient. However, in many (if not
most) cases the independent propositions corresponding
to the experimental outcomes are only imperfectly cor-
related with the questions of interest about the system.
Since in such a case one may not have direct access to the
questions of interest, one also may not have direct access
to the observables of interest. One must instead infer
information about the observables of interest indirectly
from the correlated outcomes of the detector to which
one does have access.
Joint Sample Space.—To handle this case formally, we

first enlarge the sample space to include both the sam-
ple space of interest, which we call the system, X and
the accessible sample space, which we call the detector,
Y . Questions about the system and the detector can
be asked independently, so every question for the system
can be paired with any question from the detector; there-
fore, the resulting joint sample space must be a product
space, XY = {xy |x ∈ X, y ∈ Y }, where the products
of propositions from different sample spaces commute.
The Boolean algebra ΣXY and observable algebra ΣR

XY

are constructed in the usual way from the joint sam-
ple space, and contain the algebras ΣX , ΣY , Σ

R

X , and
ΣR

Y as subalgebras. When represented as operators on a
Hilbert space, the corresponding joint representation ex-
ists within the tensor product of the system and detector
space representations.
Product States.—If the probabilities of the system

propositions are uncorrelated with the probabilities of
the detector propositions under a joint state P on the
joint sample space, then the joint state can be writ-
ten as a composition of independent states that are re-
stricted to the sample spaces of the system and detector,
P = PX ◦ PY . Just as the state P has a linear extension
to
〈
·
〉
, its restrictions PX and PY have linear exten-

sions
〈
·
〉
X

and
〈
·
〉
Y
, respectively. Thus, for any joint

observable F an uncorrelated expectation has the form〈
F
〉
=
〈〈
F
〉
Y

〉
X

=
〈〈
F
〉
X

〉
Y
. Such an uncorrelated joint

state is known as a product state. The name stems from
the fact that for a simple product FXFY of system and
detector observables the corresponding joint expectation
decouples into a product of system and detector expec-
tations separately,

〈
FXFY

〉
=
〈
FX

〉
X

〈
FY

〉
Y
.
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Similarly, general measures on the joint sample space
can be product measures. A particularly useful example
is the trace Tr = TrX ◦ TrY on XY , which is composed
of the partial traces, TrX and TrY . The trace serves as a
convenient reference measure since it is a product mea-
sure for which any joint state has a corresponding den-
sity. On continuous spaces the standard integral is also a
product measure,

〈
F
〉
=
∫
X
(
∫
Y
f(x, y)p(x, y) dy) dx =∫

Y
(
∫
X
f(x, y)p(x, y) dx) dy, which tends to have non-

infinitesimal densities.
Correlated States.—In addition to product states, the

joint space admits a much larger class of correlated states
where the detector and system questions are dependent
on one another. With such a correlated state a mea-
surement on the detector cannot be decoupled in general
from a measurement on the system. Information gath-
ered from a measurement on a detector under a correlated
state will also indirectly provide information about the
system, thus motivating the term “detector.”
Reduced States.—For a pure system observable FX or

a pure detector observable FY , the average under a joint
state will be equivalent to the average under a state re-
stricted to either the system or the detector space, known
as a reduced state, or a marginalized state. We can define
such a reduced state by using the joint state density un-
der any reference product measure µ = µX ◦ µY , such as
the trace Tr. It then follows that,

〈
FX

〉
=
〈〈
Pµ

〉
µY
FX

〉
µX

=
〈
PµX

FX

〉
µX
, (14a)

〈
FY

〉
=
〈〈
Pµ

〉
µX
FY

〉
µY

=
〈
PµY

FY

〉
µY
. (14b)

The quantities PµX
=
〈
Pµ

〉
µY

and PµY
=
〈
Pµ

〉
µX

are

the reduced state densities that define the reduced states
PX and PY with expectation functionals,

〈
FX

〉
X

=
〈
PµX

FX

〉
µX
, (15a)

〈
FY

〉
Y
=
〈
PµY

FY

〉
µY
. (15b)

By definition,
〈
FX

〉
=
〈
FX

〉
X

and
〈
FY

〉
=
〈
FY

〉
Y
. How-

ever, in general
〈
F
〉
6=
〈〈
F
〉
Y

〉
X
,
〈
F
〉
6=
〈〈
F
〉
X

〉
Y
, and〈〈

F
〉
Y

〉
X

6=
〈〈
F
〉
X

〉
Y

unless P is a product state. The

resulting reduced expectations
〈
·
〉
X

and
〈
·
〉
Y

are in-
dependent of the choice of reference product functional
µ.
Probability Observables.—Any correlation between the

system and detector in the joint state allows us to directly
relate propositions on the detector to observables on the
system. We can compute the relationship directly by
using a closure relation and rearranging the conditioning
procedure (8) to find,

P (y) =P (1X y) =
∑

x∈X

P (x)P (y|x), (16)

=
〈 ∑

x∈X

P (y|x)x
〉
=
〈
Ey

〉
X
,

Ey =
∑

x∈X

P (y|x)x. (17)

The resulting set of system observables {Ey} exactly cor-
respond to the detector outcomes {y}. Analogously to
a set of independent probability observables, they form
a partition of the system identity, but are indexed by
detector propositions rather than system propositions,∑

y∈Y Ey = 1X . Such a set {Ey} has the common
mathematical name Positive Operator-Valued Measure
(POVM) [11], since it forms a measure over the detector
sample space Y consisting of positive operators. How-
ever, we shall make an effort to refer to them as gen-
eral Probability Observables to emphasize their physical
significance. As long as the detector outcomes are not
mutually exclusive with the system, the probability ob-
servables (17) will be a faithful representation of the re-
duced state of the detector in the observable space of the
system.
Process Tomography.—The probability observables are

completely specified by the conditional likelihoods P (y|x)
for a detector proposition y to be true given that a sys-
tem proposition x is true. Such conditional likelihoods
are more commonly known as response functions for the
detector and can be determined via independent detec-
tor characterization using known reduced system states;
such characterization is also known as detector tomogra-
phy, or process tomography. Any good detector will then
maintain its characterization with any unknown reduced
system state. That is, a noninvasive coupling of such
a good detector to an unknown system produces a cor-
related joint state according to P (xy) = PX(x)P (y|x),
where PX is the unknown reduced system state prior to
the interaction with the detector.
Generalized State Collapse.—In addition to allow-

ing the computation of detector probabilities, P (y) =〈
Ey

〉
X
, probability observables also have the dual role of

updating the reduced system state following a measure-
ment on the detector. To see this, we apply the general
rule for state collapse (8) for a detector proposition y on
the joint state to find,

〈
FX

〉
y
=

〈
y FX

〉

P (y)
=
∑

x∈X

fX(x)P (y|x)PX (x)

P (y)
, (18)

=

〈
EyFX

〉
X〈

Ey

〉
X

,

which can be seen as a generalization of the Bayesian
conditioning rule (8) to account for the effect of an im-
perfectly correlated detector, and can also be understood
as a form of Jeffrey’s conditioning [74]. For this rea-
son, probability observables are commonly called effects
of the generalized measurement. A reduced state density
PµX

for the system updates as PµX |y = PµX
Ey/

〈
Ey

〉
X
.

Such a generalized measurement is nonprojective, so is
not constrained to the disjoint questions on the sample
space of the system. As a result, it answers questions on
the system space ambiguously or noisily.
Weak Measurement.—The extreme case of such an am-

biguous measurement is a weak measurement, which is
a measurement that does not (appreciably) collapse the
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system state. Such a measurement is inherently ambigu-
ous to the extent that only a minuscule amount of in-
formation is learned about the system with each detec-
tion. Formally, the probability observables for a weak
measurement are all nearly proportional to the identity
on the system space. Typically, an experimenter has ac-
cess to some control parameter ǫ (such as the correlation
strength) that can alter the weakness of the measurement
such that,

∀y, lim
ǫ→0

Ey(ǫ) = PY (y)1X , (19)

where PY (y) ∈ (0, 1) is the nonzero probability of ob-
taining the detector outcome y in the absence of any in-
teraction with the system. Then for small values of ǫ the
measurement leaves the system state nearly unperturbed,
PµX |y = PµX

Ey(ǫ)/
〈
Ey(ǫ)

〉
X

≈ PµX
. The limit as such

a control parameter ǫ → 0 is known as the weak mea-
surement limit and is a formal idealization not strictly
achievable in an experiment.

Strong Measurement.—The opposite extreme case is a
strong measurement or projective measurement, which is
a measurement for which all outcomes are independent,
as in (3). In other words, the probability observables are
independent for a strong measurement. The projective
collapse rule (8) can therefore be seen as a special case
of the general collapse rule (18) from this point of view.

Measurement Sequences.—A further benefit of the
probability observable representation of a detector is that
it becomes straight-forward to discuss sequences of gener-
alized measurements performed on the same system. For
example, consider two detectors that successively couple
to a system and have the outcomes y and z measured,
respectively. To describe the full joint state of the sys-
tem and both detectors requires a considerably enlarged
sample space. However, if the detectors are characterized
by two sets of probability observables {Ey} and {E′

z} we
can immediately write down the probability of both out-
comes to occur as well as the resulting final collapsed
system state without using the enlarged sample space,

P (yz) =
〈
E′

zEy

〉
X
, (20a)

〈
FX

〉
yz

=

〈
E′

zEyFX

〉
X〈

E′
zEy

〉
X

. (20b)

Similarly, a conditioned density takes the form PµX |yz =

PµX
E′

zEy/
〈
E′

zEy

〉
X
. The detectors have been abstracted

away to leave only their effect upon the system of interest.

Generalized Invasive Measurement.—The preceding
discussion holds provided that the detector can be nonin-
vasively coupled to a reduced system state PX to produce
a joint state P (xy) = PX(x)P (y|x). However, more gen-
erally the process of coupling a reduced detector state PY

to the reduced system state PX will disturb both states
as discussed in (11). The disturbance produces a joint
state from the original product state of the system and

detector according to,
〈
x̃y
〉
=
〈〈
D(xy)

〉
Y

〉
X
, (21)

D(xy) =
∑

x′∈X

∑

y′∈Y

Dx′,y′(xy)x′y′, (22)

where Dx′,y′ are states specifying the joint transition
probabilities for the disturbance. The noninvasive cou-
pling P (xy) = PX(x)P (y|x) is a special case of this where
the reduced system state is unchanged by the coupling.
As a result, we must slightly modify the derivation of

the probability observables (16) to properly include the
disturbance,

〈
ỹ
〉
=
〈〈
D(y)

〉
Y

〉
X

=
〈
Ẽy

〉
X
, (23a)

Ẽy =
〈
D(y)

〉
Y
, (23b)

=
∑

x∈X

∑

y′∈Y

PY (y
′)Dx,y′(y)x.

The modified probability observable Ẽy includes both
the initial detector state PY and the disturbance from
the measurement. Detector tomography will therefore
find the effective characterization probabilities P̃ (y|x) =∑

y′∈Y Dx,y′(y)PY (y
′).

The generalized collapse rule similarly must be modi-
fied to include the disturbance,

〈
F̃X

〉
y
=

〈〈
D(y FX)

〉
Y

〉
X〈〈

D(y)
〉
Y

〉
X

=

〈
Ey(FX)

〉
X〈

Ẽy

〉
X

, (24)

Ey(FX) =
〈
D(y FX)

〉
Y
, (25)

=
∑

x′∈X

x′
∑

y′∈Y

PY (y
′)
∑

x∈X

Dx′,y′(y x)f(x).

Surprisingly, we can no longer write the conditioning in
terms of just the probability observables Ẽy; instead we
must use an operation Ey that takes into account both
the coupling of the detector and the disturbance of the
measurement in an active way. The measurement op-
eration is related to the effective probability observable
according to, Ey(1X) = Ẽy.
The change from observables to operations when dis-

turbance is included becomes particularly important for
a sequence of invasive measurements. Consider an initial
system state PX that is first coupled to a detector state
PY via a disturbance D1, then conditioned on the de-
tector proposition y, then coupled to a second detector
state PZ via a disturbance D2, and finally conditioned
on the detector proposition z. The joint probability for
obtaining the ordered sequence (y, z) can be written,

〈〈
D1(y

〈
D2(z)

〉
Z
)
〉
Y

〉
X

=
〈
Ey(Ẽ′

z)
〉
X
. (26)

The effective probability observable Ey(E ′
z(1X)) = Ey(Ẽ′

z)
for the ordered measurement sequence (y, z) is no longer

a simple product of the probability observables Ẽy and

Ẽ′
z as in (20a), but is instead an ordered composition of

operations.
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The ordering of operations also leads to a new form
of post-selected conditioning. Specifically, if we condi-
tion only on the second measurement of z in an invasive
sequence (y, z), we obtain,

〈
ỹ
〉

z
=

〈
Ey(Ẽ′

z)
〉
X∑

y′∈Y

〈
Ey′(Ẽ′

z)
〉
X

=

〈
Ey(Ẽ′

z)
〉
X〈

E(Ẽ′
z)
〉
X

, (27)

E(Ẽ′
z) =

∑

y′∈Y

Ey′(Ẽ′
z) =

〈
D(Ẽ′

z)
〉
Y
. (28)

The different position of the subscript serves to distin-
guish the post-selected probability

〈
ỹ
〉

z
from the pre-

selected probability
〈
ỹ
〉
z

=
〈
E ′
z(Ẽy)

〉
X
/
〈
Ẽ′

z

〉
X

corre-

sponding to the reverse measurement ordering of (z, y).
The operation E appearing in the denominator is called
a non-selective measurement since it includes the dis-
turbance induced by the measurement coupling, but
does not condition on any particular detector outcome.
When the disturbance to the reduced system state van-
ishes, the conditioning becomes order-independent and
both types of conditional probability reduce to P (y|z) =〈
EyE

′
z

〉
X
/
〈
E′

z

〉
X
.

The two forms of conditioning for invasive measure-
ments in turn lead to a modified form of Bayes’ rule that
relates the pre-selected conditioning of a sequence to the
post-selected conditioning of the same sequence,

〈
ỹ
〉

z
=
〈
z̃
〉
y

〈
Ey

〉
X〈

E(Ẽ′
z)
〉
X

. (29)

When the disturbance to the reduced system state van-
ishes, the non-selective measurement E reduces to the
identity operation;

〈
ỹ
〉

z
reduces to P (y|z);

〈
z̃
〉
y
reduces

to P (z|y); and, we correctly recover the noninvasive
Bayes’ rule (10).

D. Contextual Values

Observable Correspondence.—With the preliminaries
about generalized state conditioning out of the way, we
are now in a position to discuss the measurement of ob-
servables in more detail. First we observe an important
corollary of the observable representation of the detector
probabilities P (y) =

〈
Ey

〉
X

from (16): detector observ-
ables can be mapped into equivalent system observables,

〈
FY

〉
=
∑

y∈Y

fY (y)P (y) =
〈
FX

〉
X
, (30)

FX =
∑

y∈Y

fY (y)Ey . (31)

Note that the eigenvalues fX(x) =
∑

y∈Y fY (y)P (y|x) of
the equivalent system observable FX are not the same as
the eigenvalues fY (y) of the original detector observable
FY , but are instead their average under the detector re-
sponse. If the system propositions were accessible then

the system observable FX would allow nontrivial infer-
ence about the detector observable FY , provided that
the probability observables were nonzero for all y in the
support of FY .
Contextual Values.—A more useful corollary of the ex-

pansion (31) is that any system observable that can be ex-
pressed as a combination of probability observables may
be equivalently expressed as a detector observable,

FX =
∑

y∈Y

fY (y)Ey =⇒ FY =
∑

y∈Y

fY (y) y, (32)

which is the classical form of our main result. Using
this equivalence, we can indirectly measure such system
observables using only the detector. We dub the eigen-
values of the detector observable fY (y) the contextual

values (CV) of the system observable FX under the con-
text of the specific detector characterized by a specific set
of probability observables {Ey}. The CV form a gen-
eralized spectrum for the observable since they are as-
sociated with general probability observables for a gen-
eralized measurement and not independent probability
observables for a projective measurement; the eigenval-
ues are a special case when the probability observables
are the spectral projections of the observable being mea-
sured.
With this point of view, we can understand an ob-

servable as an equivalence class of possible measure-
ment strategies for the same average information. That
is, using appropriate pairings of probability observables
and CV, one can measure the same observable average
in many different ways,

〈
FX

〉
=
∑

x∈X fX(x)P (x) =∑
y∈Y fY (y)

〈
Ey

〉
X
. Each such expansion corresponds to

a different experimental setup.
Moments.—Similarly, the nth statistical moment of an

observable can be measured in many different, yet equiva-
lent, ways. For instance, the nth moment of an observable
FX can be found from the expansion (32) as,

〈
(FX)n

〉
=
〈
(
∑

y∈Y

fY (y)Ey)
n
〉
X
, (33)

=
∑

y1,...,yn∈Y

fY (y1) · · · fY (yn)
〈
Ey1

· · ·Eyn

〉
X
.

By examining the general collapse rule for measure-
ment sequences (20a) we observe that the quantity〈
Ey1

· · ·Eyn

〉
X

must be the joint probability for a se-
quence (y1, · · · , yn) of n noninvasive measurements that
couple the same detector to the system n times in suc-
cession. Furthermore, the average in (33) is explicitly
different from the nth statistical moment of the raw de-
tector results,

〈
(FY )

n
〉
=
∑

y∈Y (fY (y))
nP (y).

We conclude that for imperfectly correlated noninva-
sive detectors one must perform measurement sequences
to obtain the correct statistical moments of an observable
using a particular set of CV. Only for unambiguous mea-
surements with independent probability observables do
such measurement sequences reduce to simple powers of
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the eigenvalues being averaged with single measurement
probabilities. If a single measurement by the detector is
done per trial, then only the statistical moments of the
detector observable FY can be inferred from that set of
CV, as opposed to the true statistical moments of the
inferred system observable FX .
We can, however, change the CV to define new ob-

servables that correspond to powers of the original ob-
servable, such as GX = (FX)n =

∑
y∈Y gY (y)Ey. These

new observables can then be measured indirectly using
the same experimental setup without the need for mea-
surement sequences. The CV gY (y) for the n

th power of
FX will not be a simple power of the CV fY (y) for FX

unless the measurement is unambiguous.
Invasive Measurements.—If the measurement is inva-

sive, then the disturbance forces us to associate the CV
with the measurement operations {Ey} and not solely

with their associated probability operators {Ẽy} in or-
der to properly handle measurement sequences as in (25).
Specifically, we must define the observable operation,

FX =
∑

y∈Y

fY (y)Ey, (34)

which produces the identity FX(1X) =
∑

y∈Y fY (y)Ẽy =

FX similar to (32).
Correlated sequences of invasive observable measure-

ments can be obtained by composing the observable op-
erations,

〈
(FX)n(1X)

〉
X

=
∑

y1,...,yn

fY (y1) · · · fY (yn)×

〈
Ey1

(Ey2
(· · · (Ẽyn

) · · · ))
〉
X
. (35)

Such an n-measurement sequence reduces to the nth mo-
ment (33) when the disturbance vanishes.
If time-evolution disturbance Dt is inserted between

different invasive observable measurements, then we ob-
tain an invasive correlation function instead,

〈
˜FX(0)GX(t)

〉
=
〈
FX(Dt(GX(1X)))

〉
X
. (36)

When the observable measurements become noninvasive,
then this correctly reduces to the noninvasive correla-
tion function (12). Similarly, n-time invasive correla-
tions can be defined with n − 1 time-evolution distur-
bances between the invasive observable measurements〈
F1(Dt1(F2(· · · Dtn−1

(Fn(1X)) · · · )))
〉
.

Conditioned Averages.—In addition to statistical mo-
ments of the observable, we can also use the CV to con-
struct principled conditioned averages of the observable.
Recall that in the general case of an invasive measure-
ment sequence we can condition the observable measure-
ment in two distinct ways. If we condition on an out-
come z before the measurement of FX we obtain the pre-

selected conditioned average
〈
F̃X

〉
z
defined in (24). On

the other hand, if the invasive conditioning measurement
of z happens after the invasive observable measurement

then we must use the post-selected conditional probabili-
ties (27) to construct a post-selected conditioned average,

〈
F̃X

〉
z

=
∑

y∈Y

fY (y)
〈
ỹ
〉

z
, (37)

=

∑
y∈Y fY (y)

〈
Ey(Ẽ′

z)
〉
X∑

y∈Y

〈
Ey(Ẽ′

z)
〉
X

=

〈
FX(Ẽ′

z)
〉
X〈

E(Ẽ′
z)
〉 .

The observable operation FX and the non-selective mea-
surement E encode the relevant details from the first
measurement. When the disturbance to the reduced sys-
tem state vanishes, both the pre-selected and the post-
selected conditioned averages simplify to the pure condi-
tioned average

〈
FX

〉
z
defined in (18) that depends only

on the system observable FX .
While the pure conditioned average

〈
FX

〉
z
is inde-

pendent of the order of conditioning and is always con-
strained to the eigenvalue range of the observable, the

post-selected invasive conditioned average
〈
F̃X

〉
z

can,
perhaps surprisingly, stray outside the eigenvalue range
with ambiguous measurements. The combination of the
amplified CV and the disturbance can lead to a post-
selected average that lies anywhere in the full CV range,
rather than just the eigenvalue range. We will see an
example of this in §II D 2.
Inversion.—So far we have treated the CV in the ex-

pansion (32) as known quantities. However, for a realistic
detector situation the CV will need to be experimentally
determined from the characterization of the detector and
the observable that one wishes to measure. The reduced
system state PX will generally not be known a priori,
since the point of a detector is to learn information about
the system in the absence of such prior knowledge. We
can still solve for the CV without knowledge of the system
state, however, since the probability observables are only
specified by the conditional likelihoods P (y|x) that can
be obtained independently from detector tomography.
To solve for the CV when the system state is presumed

unknown, we rewrite (32) in the form,

FX =
∑

x∈X

x
∑

y∈Y

P (y|x)fY (y), (38)

=
∑

x∈X

x
〈
FY

〉
x
= S(FY ),

where S =
∑

x x
〈
·
〉
x
is the map that converts observ-

ables in the detector space to observables in the system
space S : ΣR

Y → ΣR

X . Our goal is to invert this map and
solve for the required spectrum of FY given a desired sys-
tem observable FX . However, the inverse of such a map
is not generally unique; for it to be uniquely invertible it
must be one-to-one between system and detector spaces
of equal size. If the detector space is smaller than the
system, then no exact inverse solutions are possible; it
may be possible, however, to find course-grained solu-
tions that lose some information. Perhaps more alarm-
ingly, if the detector space is larger than the system, then
it is possible to have an infinite set of exact solutions.
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When disturbance is taken into account as in (23), the
equality (38) becomes,

FX =
〈
D(FY )

〉
Y
= S(FY ), (39)

so the composition of the disturbance D and the detector
expectation

〈
·
〉
Y

produces the map S that must be in-

verted. Equation (38) is a special case when the reduced
system state is unchanged by the coupling disturbance.
Pseudoinversion.—The entire set of possible solutions

to (39) may be completely specified using the Moore-
Penrose pseudoinverse of the map S, which we denote as
S+. The pseudoinverse is the inverse of the restriction of
S to the space ΣR

Y \{F ∈ ΣR

Y | S(F ) = 0}; that is, the null
space of S is removed from the detector space before con-
structing the inverse. We will show a practical method
for computing the pseudoinverse using the singular value
decomposition in the examples to follow.
Using the pseudoinverse, all possible solutions of (39)

can be written compactly as,

FY = S+(FX) + (I − S+S)(G), (40)

where I is the identity map and G ∈ ΣR

Y is an arbi-
trary detector observable. The solutions specified by the
pseudoinverse in this manner contain exact inverses and
course-grainings as special cases.
Detector Variance.—Since (I − S+S) is a projection

operation to the null space of S, the second term of (40)
lives in the null space of S and is orthogonal to the first
term. Therefore, the norm squared of FY has the form,

||FY ||2 =
∑

y

(fY (y))
2, (41)

= ||S+(FX)||2 + ||(I − S+S)(G)||2,

making the G = 0 solution have the smallest norm.
The norm ||FY || of the CV solution is relevant be-

cause the second moment of the detector observable
FY is simply bounded by the norm squared

〈
(FY )

2
〉
=∑

y P (y)(fY (y))
2 ≤ ||FY ||2. The second moment is sim-

ilarly an upper bound for the variance of the detector
observable Var(FY ) =

〈
(FY )

2
〉
− (
〈
FY

〉
)2 ≤

〈
(FY )

2
〉
.

Therefore, the norm squared is a reasonable upper bound
for the detector variance that one can make without prior
knowledge of the state.
Mean Squared Error.—The variance of FY governs the

mean squared error of any estimation of its average with
a finite sample, such as an empirically measured sample
in a laboratory. Specifically, one measures a sequence of
detector outcomes of length n, (y1, y2, . . . , yn), and uses
this finite sequence to estimate the average of FY via the
unbiased estimator,

FY =
1

n

n∑

i

fY (yi), (42)

that converges to the true mean value
〈
FY

〉
Y

=
〈
FX

〉

as n → ∞. The mean squared error of this estimator

MSE(FY ) from the true mean is the variance over the
number of trials in the sequence Var(FY )/n. Hence, the
maximum mean squared error for a finite sequence of
length n must be bounded by the norm squared of the
CV divided by length of the sequence,

MSE(FY ) =
Var(FY )

n
≤ ||FY ||2

n
. (43)

That is, the norm bounds the number of trials necessary
to obtain an experimental estimation of observable aver-
ages to a desired precision using the imperfect detector.
Pseudoinverse Prescription.—Choosing the arbitrary

observable to be G = 0 therefore not only picks the so-
lution FY = S+(FX) that is uniquely related to FX by
discarding the irrelevant null space of S, but also picks
the solution with the smallest norm, which places a rea-
sonable upper bound on the statistical error. Without
prior knowledge of the system state, the pseudoinverse
solution does a reasonable job at obtaining an optimal
fit to the relation (39). Moreover, when (39) is not satis-
fied by the direct pseudoinverse then an exact solution is
impossible, but the pseudoinverse still gives the “best fit”
coursegraining of an exact solution in the least squares
sense. As such, we consider the direct pseudoinverse of
FX to be the preferred solution in the absence of other
motivating factors stemming from prior knowledge of the
state being measured.

1. Example: Ambiguous Marble Detector

As an illustrative example similar to the one given
in the introduction, suppose that one wishes to know
whether the color of a marble is green or red, but one is
unable to examine the marble directly. Instead, one only
has a machine that can display a blue light or a yellow
light after it examines the marble color. In such a case,
the marble colors are the propositions of interest, but
the machine lights are the only accessible propositions.
The lights may be correlated imperfectly with the mar-
ble color; for instance, if a blue light is displayed one may
learn something about the possible marble color, but it
may still be partially ambiguous whether the marble is
actually green or actually red.
The relevant Boolean algebra for the system is ΣX =

{0, g, r, 1X}, where g is the proposition for the color
green, r is the proposition for the color red, and 1X =
g + r is the logical or of the two possible color proposi-
tions. We consider the task of measuring a simple color
observable FX = (+1)g + (−1)r that distinguishes the
colors with a sign using an imperfectly correlated detec-
tor.
The relevant Boolean algebra for the detector is ΣY =

{0, b, y, 1Y }, where b is the proposition for the blue light,
y is the proposition for the yellow light, and 1Y = b +
y. In order to measure the marble observable FX using
only the detector, the experimenter must determine the
proper form of the corresponding detector observable FY .
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First, the experimenter characterizes the detector by
sending in known samples and observing the outputs of
the detector. After many characterization trials, the ex-
perimenter determines to some acceptable precision the
four conditional probabilities,

P (b|g) = 0.6, P (y|g) = 0.4, (44a)

P (b|r) = 0.2, P (y|r) = 0.8, (44b)

for the detector outcomes b and y given specific marble
preparations g and r. These characterization probabil-
ities completely determine the detector response in the
form of its probability observables (17),

Eb = P (b|g)g + P (b|r)r, (45a)

Ey = P (y|g)g + P (y|r)r. (45b)

By construction, Eb + Ey = g + r = 1X .

Second, the experimenter expands the system observ-
able FX using the detector probability observables (45)
and unknown contextual values (CV) fY (b) and fY (y)
(32),

FX = (+1)g + (−1)r = fY (b)Eb + fY (y)Ey. (46)

After expressing this relation as the equivalent matrix
equation,

(
+1
−1

)
=

(
P (b|g) P (y|g)
P (b|r) P (y|r)

)(
fY (b)
fY (y)

)
, (47)

it can be directly inverted to find the CV (40),

fY (b) = 3, fY (y) = −2. (48)

Therefore,

FX = (+1)g + (−1)r = (3)Eb + (−2)Ey, (49)

so FX can be inferred from a measurement of the equiv-
alent detector observable FY = (3)b+ (−2)y.

Notably, the CV (48) are amplified from the eigenval-
ues of ±1 due to the ambiguity of the detector. The
amplification compensates for the ambiguity so that the
correct average can be obtained after measuring an en-
semble of many unknown marbles described by the initial
marble state PX . The amplification also leads to a larger
upper bound for the variance (41) of the detector,

||FY ||2 = 13. (50)

Hence, we can expect the imperfect detector to display
a root-mean-squared (RMS) error (43) in the reported

average color that is no larger than
√
13/n ≈ 3.6/

√
n

after n repeated measurements. For contrast, a per-
fect detector would display an RMS error no larger than√
2/n ≈ 1.4/

√
n after n repeated measurements.

2. Example: Invasive Ambiguous Detector

The detector apparatus in the last example could be
generally invasive. In such a case, the characterization
probabilities (44) composing the probability observables
(45) would be a combination of the initial state of the
detector lights PY and a disturbance D from the mea-
surement coupling according to (23),

P̃ (b|g) = PY (b)(Dg,b(g b) +Dg,b(r b)) (51a)

+ PY (y)(Dg,y(g b) +Dg,y(r b)),

P̃ (y|g) = PY (b)(Dg,b(g y) +Dg,b(r y)) (51b)

+ PY (y)(Dg,y(g y) +Dg,y(r y)),

P̃ (b|r) = PY (b)(Dr,b(g b) +Dr,b(r b)) (51c)

+ PY (y)(Dr,y(g b) +Dr,y(r b)),

P̃ (y|r) = PY (b)(Dr,b(g y) +Dr,b(r y)) (51d)

+ PY (y)(Dr,y(g y) +Dr,y(r y)),

where we have used the marginalization identity
Dc,d(b) = Dc,d(g b) + Dc,d(r b) for c ∈ {g, r} and d ∈
{b, y}. For a noninvasive detector, the transition prob-
abilities that involve marbles changing color must be
zero Dg,b(r b) = Dg,b(r y) = Dg,y(r y) = Dg,y(r b) =
Dr,b(g b) = Dr,b(g y) = Dr,y(g b) = Dr,y(g y) = 0. How-
ever, they need not be zero for a general invasive detector.

As an example, suppose that the initial detector state
is unbiased, PY (b) = PY (y) = 1/2, and that the detector
has a 10% chance of flipping the color of a given marble.
The following possible values for the sixteen transition
probabilities would then lead to the same effective char-
acterization probabilities (44) as before,

Dg,b(g b) = 0.5 Dg,y(g b) = 0.5, (52a)

Dg,b(g y) = 0.3 Dg,y(g y) = 0.3, (52b)

Dr,b(r b) = 0.1 Dr,y(r b) = 0.1, (52c)

Dr,b(r y) = 0.7 Dr,y(r y) = 0.7, (52d)

Dg,b(r b) = 0.1 Dg,y(r b) = 0.1, (52e)

Dg,b(r y) = 0.1 Dg,y(r y) = 0.1, (52f)

Dr,b(g b) = 0.1 Dr,y(g b) = 0.1, (52g)

Dr,b(g y) = 0.1 Dr,y(g y) = 0.1. (52h)

Since the effective characterization probabilities are the
same, the probability observables are the same as (45),
leading to the same CV as (48) to measure the observable
FX = (+1)g + (−1)r.

The disturbance of the reduced marble state will be-
come apparent only when making a second measurement
after the first one. Suppose we make a second mea-
surement of the marble colors g and r directly. The
probability of obtaining a detector outcome d ∈ {b, y}
and then observing a specific marble color c ∈ {g, r}
will then be PX(g)(PY (b)Dg,b(c d) + PY (y)Dg,y(c d)) +
PX(r)(PY (b)Dr,b(c d) + PY (y)Dr,y(c d)). If we define an
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operation as in (25) to be,

Ed(c) =
〈
D(c d)

〉
Y
, (53)

= g (PY (b)Dg,b(c d) + PY (y)Dg,y(c d))

+ r (PY (b)Dr,b(c d) + PY (y)Dr,y(c d)),

then we can express the probability for the sequence com-
pactly as

〈
Ed(c)

〉
X
.

Averaging the outcomes for the detector lights using
the CV (48) and then conditioning on a particular mar-
ble color c in the second measurement produces a post-
selected conditioned average of the marble colors (37) as
reported by the invasive ambiguous detector,

〈
F̃X

〉
c

=
fY (b)

〈
Eb(c)

〉
X
+ fY (y)

〈
Ey(c)

〉
X〈

Eb(c)
〉
X
+
〈
Ey(c)

〉
X

. (54)

If we also pre-select the marbles to be a particular
color, we can compute the pre- and post-selected con-
ditioned averages of the marble colors as reported by the
invasive ambiguous detector from (48), (52), and (54),

〈
F̃X

〉
g g

= 1.125, (55a)
〈
F̃X

〉
r g

= 0.5, (55b)
〈
F̃X

〉
g r

= 0.5, (55c)
〈
F̃X

〉
r r

= −1.375. (55d)

Due to a combination of the invasiveness and the ambi-
guity of the measurement, the post-selected conditioned
averages can stray outside the eigenvalue range [−1, 1]
for the observable FX . However, they remain within the
CV range [−2, 3]. When the measurement is noninvasive,
then the pre- and post-selected conditioned averages in
(55) that remain well-defined reduce to the pure condi-
tioned averages

〈
FX

〉
g
= 1 and

〈
FX

〉
r
= −1.

3. Example: Redundant Ambiguous Detector

Consider a similar marble detection setup to the pre-
vious examples, but where the detector apparatus has
three independent outcome lights: blue, yellow, and
purple. Hence, the detector Boolean algebra is ΣY =
{0, b, y, p, b+y, b+p, y+p, 1Y}, where p is the new propo-
sition for the purple light, and 1Y = b+y+p. After char-
acterizing the detector the experimenter finds the condi-
tional probabilities,

P (b|g) = 0.5, P (y|g) = 0.3, P (p|g) = 0.2, (56a)

P (b|r) = 0.1, P (y|r) = 0.7, P (p|r) = 0.2, (56b)

that define the probability observables,

Eb = P (b|g)g + P (b|r)r, (57a)

Ey = P (y|g)g + P (y|r)r, (57b)

Ep = P (p|g)g + P (p|r)r. (57c)

By construction, Eb + Ey + Ep = 1X . Furthermore,
Ep = (0.2)1X , so the purple outcome cannot distinguish
whether the marble is green or red and can be imagined
as a generic detector malfunction outcome.
The experimenter now has a choice for how to assign

CV to a detector observable FY in order to infer the mar-
ble observable FX = (+1)g + (−1)r. A simple choice is
to ignore the redundant (and non-distinguishing) purple
outcome by zeroing out its CV fY (p) = 0, and then in-
vert the remaining relationship analogously to (47) to
find fY (b) = 3.125 and fY (y) = −1.875. The vari-
ance bound for this simple choice is ||FY ||2 = 13.2813,
leading to a root-mean-squared error no larger than√
13.2813/n≈ 3.6/

√
n after n repeated measurements.

However, a better choice is to find the preferred values
for all three outcomes using the pseudoinverse (40) of the
map between FY and FX . To do this, we write a matrix
equation similar to (47) that uses all three outcomes,

(
+1
−1

)
= S

(
fY (b)
fY (y)

)
, (58a)

S =

(
P (b|g) P (y|g) P (p|g)
P (b|r) P (y|r) P (p|r)

)
. (58b)

The pseudoinverse S+ can be constructed by using the
singular value decomposition, S = UΣVT , where U is an
orthogonal matrix composed of the normalized eigenvec-
tors of SST , V is an orthogonal matrix composed of the
normalized eigenvectors of STS, and Σ is a diagonal ma-
trix composed of the singular values of S (which are the
square roots of the eigenvalues of SST and STS). After
computing the singular value decomposition, the pseu-
doinverse can be constructed as S+ = VΣ+UT , where
Σ+ is the diagonal matrix constructed by inverting all
nonzero elements of ΣT . Performing this inversion we
find the following preferred CV,

S+ =
5

36




15 −7
−3 11
3 1


 , (59a)



fY (b)
fY (y)
fY (p)


 = S+

(
+1
−1

)
=

5

18




11
−7
1


 =




3.05̄
−1.94̄
0.27̄


 .

(59b)

This preferred solution has the smallest variance bound
of ||FY ||2 = 13.1944.
We find (perhaps counter-intuitively) that even though

the purple outcome itself cannot distinguish the marble
color, the fact that one obtains a purple outcome at all
still provides some useful information to the experimenter
due to the asymmetry of the blue and yellow outcomes.
Indeed, if for the red marble we instead found the sym-
metric detector response P (b|r) = 0.3, P (y|r) = 0.5, and
P (p|r) = 0.2, the pseudoinverse would produce the pre-
ferred CV fY (b) = 5, fY (y) = −5, and fY (p) = 0, indi-
cating that the purple outcome was truly noninformative.
A less principled approach to solving (58) would be for

the experimenter to assign a completely arbitrary value
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to one outcome, like fY (b) = B. The CV relation still
produces a matrix equation,
(
+1−BP (b|g)
−1−BP (b|r)

)
=

(
P (y|g) P (p|g)
P (y|r) P (p|r)

)(
fY (y)
fY (p)

)
, (60)

that can be solved to find,

fY (y) = B − 5, fY (p) = 12.5− 4B. (61)

The bound for the variance of this solution is ||FY ||2 =
18B2 − 110B + 181.25 ≥ 13.1944; the value of B that
minimizes the bound is B = 3.05̄, which recovers the
pseudoinverse solution.
Although picking an arbitrary solution gives mathe-

matically equivalent results, the experimenter will only
increase the norm of the solution without any physical
motivation. As such, the higher moments of the detector
observable FY can be correspondingly larger, and more
trials may be necessary for the estimated average of the
system observable FX to reach the desired precision.

4. Example: Continuous Detector

Consider the extreme example of a marble color de-
tector that has a continuum of outcomes, such as the
position of impact of a marble on a continuous screen.
In such a case, the detector sample space Y is indexed
by a real parameter y ∈ R, and the relevant Boolean al-
gebra ΣY can be chosen to be the set of all Borel subsets
of the real line [75, 76].
After characterizing the detector, the experimenter

finds that the detector displaces its initial probability dis-
tribution dPY (y) = pY (y) dy by an amount z from the
zero-point according to which marble-color is sent into
the detector,

dP (y|g) = dPY (y − z), dP (y|r) = dPY (y + z). (62)

These probabilities define the probability observables,

dE(y) = g dP (y|g) + r dP (y|r), (63)

such that
∫
R
dE(y) = 1X .

To infer information about the marble observable FX

using this detector, the experimenter must assign a con-
tinuum of CV fY (y) such that,

FX = (+1)g + (−1)r =

∫

R

fY (y) dE(y), (64)

or in matrix form,
(
+1
−1

)
= S[fY ] =

(∫
R
fY (y) dPY (y − z)∫

R
fY (y) dPY (y + z)

)
. (65)

Since fY is a function, S is a vector-valued functional,
which is why we adopt the square-bracket notation.
In this case, the detector outcomes are overwhelmingly

redundant. However, we can pick the least norm solution

using the pseudoinverse of the map S as before. To do
so, we first calculate SST ,

ST =
(
pY (y − z) pY (y + z)

)
, (66a)

SST =

(
a b(z)
b(z) a

)
, (66b)

where,

a =

∫

R

pY (y) dPY (y) =

∫

R

p2Y (y) dy, (67a)

b(z) =

∫

R

pY (y + z)pY (y − z) dy, (67b)

and find its eigenvalues of a + b(z) with corresponding

normalized eigenvector (1, 1)/
√
2 and a − b(z) with cor-

responding normalized eigenvector (−1, 1)/
√
2. We can

then construct the orthogonal matrix U composed of the
normalized eigenvectors of SST and the diagonal matrix
Σ composed of the square roots of the eigenvalues of SST ,

U =
1√
2

(
1 −1
1 1

)
, (68)

Σ =

(√
a+ b(z) 0

0
√
a− b(z)

)
. (69)

Next we calculate the relevant eigenfunctions of STS
that correspond to the same nonzero eigenvalues a± b(z)
of SST ; the remaining eigenfunctions belong to the
nullspace of S and do not contribute. Specifically, we
have,

STS[h](y) =pY (y − z)

∫

R

h(y) dPY (y − z) (70)

+ pY (y + z)

∫

R

h(y)dPY (y + z),

where h is an arbitrary function. Then the equations,

STS[v+](y) =(a+ b(z)) v+(y), (71a)

STS[v−](y) =(a− b(z)) v−(y), (71b)

define the normalized eigenfunctions,

v+(y) =
pY (y − z) + pY (y + z)√

2(a+ b(z))
, (72a)

v−(y) = −pY (y − z)− pY (y + z)√
2(a− b(z))

, (72b)

which allows us to construct the relevant part of the or-
thogonal map VT ,

VT [h] =
(∫
v+(y)h(y) dy

∫
v−(y)h(y) dy

)
, (73)

completing the nonzero part of the singular value decom-
position of S = UΣVT .
Finally, we construct the pseudoinverse,

S+ = VΣ+UT , (74)

=
(

v+(y)√
2(a+b(z))

− v−(y)√
2(a−b(z))

v+(y)√
2(a+b(z))

+ v−(y)√
2(a−b(z))

)
,
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and solve for the CV,

fY (y) = S+

(
+1
−1

)
=
pY (y − z)− pY (y + z)

a− b(z)
, (75)

where a and b(z) are as defined in (67).
The pseudoinverse solution (75) contains only the

physically relevant detector state density pY and pro-
vides direct physical intuition about the detection pro-
cess. Namely, everything in the shifted distribution cor-
responding to the green marble pY (y − z) is associated
with the eigenvalue +1, while everything in the shifted
distribution corresponding to the red marble pY (y+z) is
associated with the eigenvalue −1. The overall amplifi-
cation factor a− b(z) indicates the discrepancy between
the overlap of the shifted distributions and the distribu-
tion autocorrelation. The more the shifted distributions
overlap, the more ambiguous the measurement will be,
so the amplification factor makes the CV larger to com-
pensate. If the shifted distributions do not overlap, then
b(z) → 0 and the only amplification comes from the auto-
correlation a that indicates the ambiguity of the intrinsic
profile of the detector state. Moreover, the support of
the CV is equal to the support of both shifted detector
distributions, which is physically satisfying.
The bound for the detector variance using the pseu-

doinverse solution is ||fY ||2 = 2/(a−b(z)), which depends
solely on the amplification factor in the denominator. If
the measurement is strong, such that a− b(z) = 1, then
the variance bound reduces to the ideal variance bound
of 2, as expected, leading to a maximum RMS error of√
2/n. Any additional ambiguity of the measurement

stemming from distribution overlap or distributed auto-
correlation amplifies the maximum RMS error by a factor
of
√
1/(a− b(z)).

Contrast these preferred values with the generic lin-
ear solution fY (y) = y/z, which also satisfies (64) when
pY is symmetric about its mean [17, 23, 49]. While the
generic solution could be argued to be simpler in form,
it provides no information about the detector and pro-
vides no physical insight into the meaning or origin of the
values themselves. It has nonzero support in areas where
the detector has zero support and even gets progressively
larger in regions that will not contribute to the average.
Moreover, the bound for the detector variance diverges,
indicating that the RMS error can in principle be un-
bounded. Hence, despite the mathematical equivalence,
the linear solution is physically inferior as a solution when
compared to the pseudoinverse (75).

III. QUANTUM PROBABILITY THEORY

To transition from the classical theory of probability
to the quantum theory we shall take a somewhat uncon-
ventional approach that leverages what we have already
derived in the classical theory. Specifically, we shall con-
struct the quantum theory as a superstructure over the
existing classical theory, rather than developing it as an

independent logical system [2, 70] or as a restriction of
a larger classical theory [64, 65]. This approach serves
to illustrate the myriad similarities between the quan-
tum and classical theories, while also highlighting their
key differences. We shall see that the contextual values
formalism is essentially unchanged, despite the modifi-
cations that must be made to the operational theory of
measurement.

A. Sample Spaces and Observables

Quantum Sample Space.—The quantum theory of
probability forms a superstructure on the classical the-
ory of probability in the following sense: given a classi-
cal sample space X , the corresponding quantum sample
space can be obtained as the orbit of X under the ac-
tion of the special unitary group of rotations. That is,
the entire classical sample space X can be rotated to a
different classical sample space X ′ = U(X) with some
special unitary rotation U . We call each classical sam-
ple space generated in this fashion a framework to be
consistent with other recent work [77]. The collection of
all such continuously connected classical sample spaces is
the quantum sample space, which we will notate asQ(X)
to emphasize that it can be generated from X .
Representation.—If the sample space X is represented

as a set of orthogonal rank-1 projections {|x〉〈x|} on a
Hilbert space, the rotated sample space X ′ = U(X) will
be represented by a different set of orthogonal projections
{U(|x〉〈x|)} on the same Hilbert space. Any such rotation
U can be given a spinor representation (see, e.g., [78–80])
as a two-sided product with a rotor U belonging to the
special unitary group, such that U †U = UU † = 1X , and
(U †)† = U . The involution (†) is the adjoint with re-
spect to the inner product of the Hilbert space. While
the projections {|x〉〈x|} correspond to subspaces spanned
by vectors {|x〉} in the Hilbert space, the rotated projec-
tions {U †|x〉〈x|U} correspond to subspaces spanned by
rotated vectors {U †|x〉}. In what follows we shall tend to
use the shorter algebraic notation x and adopt the equiv-
alent Hilbert space notation |x〉〈x| only when it readily
simplifies expressions.
Since the Hilbert space representation of a unitary ro-

tor U generally contains complex numbers in order to
satisfy the special unitary group relations, the Hilbert
space also becomes complex. However, it is important
to note that the complex structure arises solely from the
representation of the unitary rotations that specify the
relative framework orientations and will not appear di-
rectly in any calculable quantity to follow [81]. The rep-
resentation of the quantum sample space Q(X) therefore
consists of all possible rank-1 projections on the complex
Hilbert space in which the classical sample space X is
represented.
Quantum Observables.—Each classical framework X

has an associated Boolean algebra ΣX and space of ob-
servables ΣR

X exactly as previously discussed. The space
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of quantum observables is the collection of all classi-
cal observables that are independently constructed in all
the classical frameworks in Q(X). We will denote this
space as ΣR

Q(X). Quantum observables are therefore con-

structed entirely with real numbers that have empirical
meaning for a laboratory setting; hence, their represen-
tations on a complex Hilbert space will be Hermitian
operators.
For observables in the same framework A,B ∈ ΣR

X ,
we find that U(A)U(B) = U †AUU †BU = U †ABU =
U(AB), meaning that the rotations preserve their alge-
braic structure. As a corollary, all observables in ΣR

Q(X)

can be obtained by rotating observables constructed in
a single framework ΣR

X ; hence, our previous discussion
of observables carries over to the quantum theory essen-
tially unaltered.
Furthermore, the independence of the propositions in

a framework X remains unaltered by unitary rotation,
so every other framework X ′ has the same number of
independent propositions. Thus, the number of indepen-
dent propositions is an invariant known as the quantum
dimension; for a representation it fixes the dimension of
the Hilbert space. Similarly, the identity and zero observ-
ables are invariants, so are the same in every framework
and unique in the quantum observable algebra.
Since each different framework forms a separate well-

behaved classical sample space, the entire preceding dis-
cussion about classical probability theory applies unal-
tered when restricted to a particular framework in the
quantum theory. All observables constructed in a par-
ticular framework will commute with each other. We
expect distinctly quantum features to appear only when
comparing elements from different frameworks.
Noncommutativity.—The unitary rotations U are gen-

erally noncommutative, so introduce noncommutativity
into the quantum theory that is not present in the clas-
sical theory. Specifically, given A,B ∈ ΣR

X , A′ = U(A),
and B′ = V(B), then A′B′ = U †AUV †BV 6= B′A′, since
U and V do not necessarily commute with each other or
with A and B. Such noncommutativity is a manifesta-
tion of the fact that the Boolean algebras corresponding
to different frameworks are incompatible with each other;
propositions from one framework cannot form a Boolean
logical and with propositions from a different framework.
We shall see in the next section, however, that the notion
of disturbance followed by a logical and can be general-
ized to the noncommutative setting in the form of the
projection postulate.
Disturbance.—All non-conditioning disturbances D in

the quantum theory also take the form of unitary rota-
tions U . Indeed, we shall see that the parallels between
the quantum theory and the classical theory with distur-
bance are quite strong when one interprets all unitary
rotations as a form of classical disturbance.
Time Evolution.—As an example, the continuous time-

evolution of a closed quantum system is specified by a
disturbance in the form of a unitary rotation Ut with
corresponding rotor Ut, known as a propagator. For

nonrelativistic quantum mechanics, the time-dependence
of the rotor is specified by the Schrödinger equation:
∂tUt = (H/i~)Ut and a Hamiltonian observable H that
generates the time translation. We are not concerned
with the (well-established) details of continuous time-
evolution in this paper, so we will treat any unitary ro-
tations as given in what follows.

1. Example: Polarization

As an example quantum system we shall pick the sim-
plest possible nontrivial system: a qubit. Specifically, we
will consider the polarization degree of freedom of a laser
beam. Suppose we are interested in measuring the lin-
ear polarization of the beam with respect to the surface
of an optical table. We denote the polarization direction
parallel to the table as “horizontal” (h) and the direction
perpendicular to the table as “vertical” (v). Though we
casually refer to the polarizations h and v as if they were
properties of the light beam, the propositions h and v op-
erationally refer to two independent outcomes of a polar-
ization distinguishing device, such as a polarizing beam
splitter, that can be implemented in the laboratory.
The two orthogonal polarizations form a classical sam-

ple space X = {h, v} and a classical Boolean algebra
ΣX = {0, h, v, 1X}, where 1X = h + v, similar to the
classical sample space for the marble colors considered
in §II D 1. By extending the Boolean algebra over the
reals to ΣR

X as before we can define classical observables
FX = a h+b v in this sample space, such as the Stokes ob-
servable SX = h− v that distinguishes the polarizations
with a sign.
We can represent the commutative observable algebra

ΣR

X as diagonal 2x2 matrices,

h =

(
1 0
0 0

)
, v =

(
0 0
0 1

)
, FX =

(
a 0
0 b

)
, (76)

which can also be understood as commuting Hermitian
operators over a two-dimensional Hilbert space. The
atomic propositions h = |h〉〈h| and v = |v〉〈v| are pro-
jectors that correspond to disjoint subspaces spanned by
the orthonormal Jones’ polarization basis for the Hilbert
space,

|h〉 =
(
1
0

)
, |v〉 =

(
0
1

)
. (77)

To obtain the full quantum sample space Q(X) from
X , we introduce the group of possible polarization ro-
tations. Algebraically, an arbitrary rotation U(FX) =
U †FXU can be readily understood in terms of its rotor
U , which is an element of the group SU(2) and can be
parametrized, for example, in terms of the Cartan decom-
position Uα,β,γ = exp(iασz/2) exp(iβσy/2) exp(iγσz/2),
which for a qubit happens to correspond to an Euler an-
gle decomposition of a three dimensional rotation. Here
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iσz and −iσy are two of the three generators of the Lie
algebra for SU(2) in terms of the standard Pauli matrices,

σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (78)

Since the group generators have a complex representa-
tion, the unitary rotation Uα,β,γ will also have a complex
representation in the Hilbert space,

ei
α
2
σz =

(
ei

α
2 0
0 e−iα

2

)
, (79a)

ei
β
2
σy =

(
cos β

2 sin β
2

− sin β
2 cos β

2

)
, (79b)

Uα,β,γ =

(
ei(α+γ)/2 cos β

2 ei(α−γ)/2 sin β
2

−e−(α−γ)/2 sin β
2 e−i(α+γ)/2 cos β

2

)
. (79c)

The algebraic involution U †
α,β,γ is the complex transpose

in the matrix representation.
Physically, the factor exp(iβσy/2) corresponds to a

rotation of the apparatus around the axis of the light
beam by an angle β/2, while the factors exp(iασz/2) and
exp(iγσz/2) correspond to the action of phase plates that
shift the relative phases of h and v by α/2 and γ/2, re-
spectively. Hence, the ubiquitous quantum phase also
appears as a consequence of the unitary rotations.
Using the unitary rotations, we can gener-

ate other incompatible frameworks Uα,β,γ(X) =
{Uα,β,γ(h),Uα,β,γ(v)} in Q(X),

Uα,β,γ(h) = U †
α,β,γhUα,β,γ , (80a)

=

(
cos2 β

2
1
2e

−iγ sinβ
1
2e

iγ sinβ sin2 β
2

)
,

Uα,β,γ(v) = U †
α,β,γvUα,β,γ , (80b)

=

(
sin2 β

2 − 1
2e

−iγ sinβ

− 1
2e

iγ sinβ cos2 β
2

)
,

that depend solely on the two parameters β and γ. The
atomic propositions of such a rotated framework are pro-
jectors corresponding to each disjoint subspace spanned
by a rotated orthonormal Jones’ polarization basis,

U †
α,β,γ|h〉 =

(
e−i(α+γ)/2 cos β

2

e−i(α−γ)/2 sin β
2

)
, (81a)

U †
α,β,γ |v〉 =

(
−ei(α−γ)/2 sin β

2

ei(α+γ)/2 cos β
2

)
. (81b)

Physically, one could in principle construct an appa-
ratus corresponding to such a rotated framework using
three lab elements: 1) attach a tunable phase plate to
the incident port of a polarizing beam splitter with fast
axis aligned to the table; 2) rotate both the beam splitter
and attached phase plate with respect to the table; and
3) attach a second tunable phase plate to the incident
port of the first phase plate with fast axis aligned to the
table. Of course this is only one possible parametrization

for the unitary rotations; other parametrizations will cor-
respond to other experimental implementations.
It follows that any observable in the full quantum ob-

servable space ΣR

Q(X) can be obtained by rotating a clas-

sical observable FX = a h+ b v to the appropriate frame-
work,

FX′ = Uα,β,γ(FX) = aUα,β,γ(h) + bUα,β,γ(v), (82)

=

(
a+b
2 + a−b

2 cosβ a−b
2 e−iγ sinβ

a−b
2 eiγ sinβ a+b

2 − a−b
2 cosβ

)
.

We see that a general qubit observable depends on four
parameters: the eigenvalues a and b, as well as the frame-
work orientation angles β and γ. The complex represen-
tation of an observable stems solely from the unitary ro-
tation of the atomic propositions h and v to a different
relative framework. The observables no longer generally
commute since the unitary rotations need not commute.

B. States, Densities, and Collapse

Quantum States.—A quantum state P is a classical
state defined in a particular framework X that is then
extended to apply to the entire quantum Boolean alge-
bra ΣQ(X). The extension of a classical state P that
has been defined in a framework X to a proposition
x′ = U(x) ∈ X ′ = U(X) in a different framework can be
accomplished by heuristically breaking down the state
into a composition of the classical state in framework
X and transition probabilities Dx(x

′) that connect the
framework X to the different framework X ′,

P (x′) =
∑

x∈X

P (x)Dx(x
′). (83)

The transition probabilities characterize a disturbance
(11) that connects the classical state P to propositions
in incompatible frameworks.
To define the transition probabilities, we assume that

atomic propositions in the frameworkX are undisturbed,
so Dx(x) = 1. The only classical state with this prop-
erty is the pure state which has a trace-density (6) ρ = x.
Hence, we assume that we can consistently write the tran-
sition probability Dx(x

′) in terms of the extension of the
trace to the full Boolean algebra ΣQ(X),

Dx(x
′) = Tr(xx′). (84)

Notably, this definition makes the transition between
frameworks symmetric.
Born Rule.—We pick the trace extension to be

the unique measure that satisfies the cyclic property
Tr(AB) = Tr(BA) for all A,B ∈ ΣQ(X) and agrees with
the classical trace (7) within any specific framework [82].
On a Hilbert space, (84) has the familiar form,

Dx(x
′) = Tr(|x〉〈x||x′〉〈x′|) = |〈x|x′〉|2, (85)



19

which we immediately recognize as the Born rule [83].
Hence, the complex square of the Hilbert space inner
product can be seen as a disguised form of the nat-
ural extension of the trace to define transition prob-
abilities between propositions in incompatible frame-
works. If we recall that x′ = U(x) = U †xU we can
also write the transition probability (85) in terms of
the unitary rotor that connects the two propositions,
Dx(x

′) = Tr(|x〉〈x|U †|x〉〈x|U) = |〈x|U |x〉|2.
Density Operator.—We can rewrite (83) in a more fa-

miliar form by using the Born rule (84) and the full trace-
density (6) of the original state ρ =

∑
x∈X P (x)x, which

is traditionally known as the density operator,

P (x′) =
∑

x∈X

P (x)Tr(xx′) = Tr(ρ x′). (86)

This form of the probability functional conforms to Glea-
son’s theorem [84]. We note, however, that it is the ex-
tension of the trace that extends the state to the non-
commutative quantum setting since the trace-density ρ
is identical to a classical trace-density in some particular
framework X .
Moments.—Since the probabilities P (x′) are well-

defined for a proposition in any framework x′ ∈ X ′, we
can linearly extend P to an expectation functional

〈
·
〉

on the entire quantum observable algebra ΣR

Q(X),

〈
FX′

〉
=
∑

x′∈X′

fX′(x′)P (x′) = Tr(ρFX′). (87)

Similarly, observable moments will be well-defined by the
expectation functional,

〈
(FX′)n

〉
=
∑

x′∈X′

fn
X′(x′)P (x′) = Tr(ρ (FX′)n). (88)

Hence, the unitary rotations and resulting extension of
the trace completely construct the quantum probability
space from a single classical probability space and its
associated observables.
Double-sided And.—To be consistent with the assump-

tions made in (84), we must also ensure that conditioning
a quantum state on an atomic proposition will collapse
the state to a pure state with a trace-density equal to that
atomic proposition. In other words, we must generalize
the logical and of the classical case to the noncommuta-
tive incompatible frameworks in the quantum case. The
consistent way to do this is through a double-sided prod-
uct : given atomic propositions x ∈ X and x′ ∈ X ′ then
x′xx′ = |x′〉〈x′|x〉〈x|x′〉〈x′| = Tr(xx′)x′ = Dx(x

′)x′.
The double-sided product with x′ produces a transition

probability Dx(x
′) from x to x′ as a proportionality factor

in addition to collapsing the original proposition x to
x′. In this sense, the double-sided product includes a
form of disturbance in addition to the logical and of pure
conditioning. If X = X ′, so the frameworks coincide,
then x and x′ will commute; the disturbance will vanish,
reducing the transition probability Dx(x

′) to either 0 or

1; and, the classical and will be recovered as a special
case.
Lüders’ Rule.—Using the double-sided product as a

disturbance followed by a logical and, we find the quan-
tum form of the invasive conditioning rule (13),

〈
F̃X

〉
y
=

〈
yFXy

〉

P (y)
= Tr(ρy FX), (89a)

ρy =
yρy

Tr(ρy)
, (89b)

for any Boolean proposition y in a framework algebra ΣX

measured prior to the observable FX . As with the clas-
sical case, we use the tilde to indicate the intrinsic quan-
tum invasiveness of the measurement process. If ρ and y
commute, or if FX and y commute, then the noninvasive
classical conditioning rule (8) is properly recovered. This
generalization of (13) is known as the projection postu-
late, or Lüders’ Rule [85]. If y is an atomic proposition
in X , then ρy = y as in the classical case (8) and we
consistently recover the assumption (84).
For contrast, Leifer and Spekkens [67] provide a care-

ful quantum generalization of the noninvasive condition-
ing rule (8) using a formalism based around conditional
density operators. They confirm that Lüder’s Rule (89)
cannot be obtained with pure conditioning, so it must
imply additional disturbance from the measurement pro-
cess itself, as indicated here.
Aharonov-Bergmann-Lebowitz Rule.—Just as with

classical invasive conditioning, the order of conditioning
will generally matter. Specifically, substituting a system
proposition z ∈ ΣX into (89) yields

〈
z̃
〉
y
= P (yzy)/P (y);

however, P (yzy) 6= P (zyz), so the “joint probability” in
the numerator is order-dependent unless y and z com-
mute, just as in (26). That is,

〈
z̃
〉
y
explicitly describes

the case when the conditioning proposition y is measured
first as a pre-selection, followed by the proposition z.
To obtain the converse case when the conditioning

proposition z is measured second as a post-selection, we
must derive the quantum form of (27). As in the clas-
sical case, we reinterpret the denominator of (89) as a
marginalization P (y) =

∑
z P (yzy) of the ordered joint

probability that renormalizes the conditioning procedure;
the identity

∑
z z = 1X permits the equality. With this

interpretation, the post-selected form of conditioning be-
comes straight-forward,

〈
ỹ
〉

z
=

P (yzy)∑
y′∈Y P (y

′zy′)
. (90)

As in the classical case, the different position of the sub-
script serves to distinguish the two conditioned expecta-
tions

〈
·̃
〉
z
and

〈
·̃
〉

z
corresponding to different measure-

ment orderings.
For a pure state ρ = x = |x〉〈x|, this post-selected

conditioning is known as the Aharonov-Bergmann-
Lebowitz (ABL) rule [86], and has the form

〈
ỹ
〉

z x
=

|〈z|y〉|2|〈y|x〉|2/∑y′∈Y |〈z|y′〉|2|〈y′|x〉|2. Unlike Lüders’
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rule (89), the generalized ABL rule (90) does not per-
form a simple update to the trace-density ρ; moreover,
it depends on the entire disturbance of the first mea-
surement via the normalization sum in the denominator.
If y and z commute, then the disturbance vanishes and
we again correctly recover the classical case (8) that is
order-independent.
Bayes’ Rule.—The two forms of quantum invasive con-

ditioning also lead to a modified form of Bayes’ rule that
relates the pre-selected conditioning of a sequence to the
post-selected conditioning of the same sequence, similarly
to the classical case (29),

〈
ỹ
〉

z
=
〈
z̃
〉
y

P (y)∑
y′∈Y P (y

′zy′)
. (91)

If y and z commute, then the disturbance vanishes and
we correctly recover Bayes’ rule (10).
The unusual form of (90) has led to post-selected quan-

tum conditioning being largely overlooked. The lack of
symmetry in the density update under such post-selected
conditioning has even prompted works in multi-state-
density time-symmetric reformulations of quantum me-
chanics [17, 19–21, 24, 25, 87], which are outside the scope
of this work. However, we see here that the form of the
conditioning is the same as the classically invasive post-
selected conditioning (27). Later we shall use a fully
generalized form of the ABL rule (90) together with CV
to consider the subtle case of post-selected averages of
observables in some detail, so we will delay their consid-
eration for now.

1. Example: Polarization State

A quantum state for a single system is a classical state
in some particular framework. For a two-dimensional
framework such as {h, v}, all probabilities for such a clas-
sical state can be completely specified by a mixing an-
gle θ such that P (h) = cos2(θ/2) and P (v) = sin2(θ/2).
Hence, after rotating the trace-density ρ = P (h)h+P (v)v
to an arbitrary framework according to (82), any quan-
tum state trace-density of polarization must have the
form,

ρθ,β,γ = cos2(θ/2)Uα,β,γ(h) + sin2(θ/2)Uα,β,γ(v), (92)

=
1

2

(
1 + cosβ cos θ e−iγ sinβ cos θ
eiγ sinβ cos θ 1− cosβ cos θ

)
.

The α parameter of the rotation disappears in favor of
the θ parameter characterizing the classical state, leav-
ing only three net parameters, in contrast to the four
parameters of an arbitrary observable (82).
The expectation functional

〈
·
〉
θ,β,γ

is then defined from

the trace-density ρθ,β,γ and the unique extension of the
trace Tr to the whole observable algebra ΣR

Q(X) according

to
〈
FX′

〉
θ,β,γ

= Tr(ρθ,β,γ FX′). The trace extension is

the sum of the diagonal matrix elements in the matrix

representation. Hence for the expectation of an arbitrary
observable (82) under an arbitrary state (92) we find,

〈
Uα′,β′,γ′(FX)

〉
θ,β,γ

=
a+ b

2
+
a− b

2
(cos θ) Ξ, (93a)

Ξ = cosβ cosβ′ + sinβ sinβ′ cos(γ − γ′), (93b)

where Ξ ∈ [−1, 1] is an interference factor that depends
only on relative orientation between the state framework
and the observable framework. If the frameworks coin-
cide, then Ξ = 1 and the classical result is recovered.

C. Detectors and Probability Observables

Joint Observable Space.—As with the classical case, we
can couple a system to a detector by enlarging the sam-
ple space to the product space XY of a particular pair
of frameworks. We can then perform local unitary rota-
tions on each space independently to form a joint quan-
tum sample space from the classical joint observables
Q(X)Q(Y ). However, the quantum observable space also
admits global unitary rotations on the classical joint ob-
servables to form a larger joint quantum sample space
Q(XY ). Just as with a single sample space, any two
propositions in Q(XY ) can be continuously connected
with some global unitary rotation.
The full quantum observable space ΣR

Q(XY ) is con-

structed from Q(XY ) in the usual way. Product ob-
servables will maintain their product form under local
unitary rotations, UX(VY (AXBY )) = UX(AX)VY (BY ).
However, global unitary rotations can create unfactorable
correlated joint observables in ΣR

Q(XY ) even from product

observables U(AXBY ).
Joint States.—Similarly, joint states on a classical

product framework extend to joint quantum states on
the quantum product observable space. Under local uni-
tary rotations, product states remain product states and
classically correlated states between two specific frame-
works remain classically correlated. However, global uni-
tary rotations performed on any state can also form en-
tangled states that have no analogue in the classical the-
ory [88]. Entangled states have some degree of local-
rotation-independent correlation between frameworks, so
display a stronger degree of correlation than can even
be defined with a classically correlated state that is re-
stricted to a single pair of frameworks. As an extreme ex-
ample, maximally entangled states are completely local-
rotation-independent and perfectly correlated with re-
spect to any pair of frameworks.
Quantum Operations.—The specifics of entanglement

do not concern us here, since any type of correlation is
sufficient to represent detector probabilities within the
reduced system space. For the purposes of measurement,
we only assume that the correlated state with density
ρ = U†(ρXρY ) = UρXρY U

† is connected to some ini-
tial product state with density ρXρY via a unitary ro-
tation U†. Since all quantum states can be continuously
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connected with some global unitary rotation that acts
as a disturbance (21), this is always possible. Physi-
cally, the unitary rotation couples the known detector
state ρY to an unknown system state ρX . Further-
more, we assume that the initial state of the detector has
some (not necessarily unique) pure-state expansion that
is meaningful with respect to the preparation procedure
ρY =

∑
y′∈Y ′ P ′(y′)y′.

It then follows that the numerator for the conditioning
rules (89) and (90) becomes,

〈
yFXy

〉
= Tr(ρyFXy), (94)

= TrX(TrY (UρXρY U
†yFXy)),

=
〈
Ey(FX)

〉
X

= TrX(E†
y(ρX)FX),

with the operations Ey and E†
y defined as,

Ey(FX) =
〈
U †yFXyU

〉
Y
, (95a)

=
∑

y′∈Y ′

P ′(y′)TrY (y
′U †yFXyU),

=
∑

y′∈Y ′

M †
y,y′FXMy,y′ ,

E†
y(ρX) = TrY (yUρXρY U

†y), (95b)

=
∑

y′∈Y ′

P ′(y′)TrY (yUρXy
′U †y),

=
∑

y′∈Y ′

My,y′ρXM
†
y,y′,

My,y′ = eiφy,y′
√
P ′(y′)〈y|U |y′〉, (95c)

M †
y,y′ = e−iφy,y′

√
P ′(y′)〈y′|U †|y〉. (95d)

Here, the Hilbert space representations of the Kraus op-
erators {My,y′} have the form of partial matrix elements
and are only well-defined up to the arbitrary phase fac-
tors eiφy,y′ . We also stress that {My,y′} depend not only
on the measured detector outcome y, but also on a par-
ticular detector preparation y′.
As a result, we find the quantum versions of the prob-

ability observables (23),

P (y) =
〈
Ey(1X)

〉
X

=
〈
Ey

〉
X
, (96)

Ey = Ey(1X) =
〈
U †yU

〉
Y
, (97)

=
∑

y′∈Y ′

M †
y,y′My,y′,

and the general invasive measurement (24),

〈
F̃X

〉
y
=

〈
Ey(FX)

〉
X〈

Ey(1X)
〉
X

, (98)

=

∑
y′∈Y ′ TrX(ρXM

†
y,y′FXMy,y′)

TrX(ρXEy)
.

Similarly to the invasive classical case (25), the mea-
surement of y on the detector must be described by a

quantum operation Ey in (94), which is a completely pos-
itive map [2, 6–14, 16, 70, 89] that performs a generalized
measurement on the system state corresponding to the
detector outcome y. The operation Ey acting on the iden-
tity in (97) produces a positive operator known as a quan-
tum effect, Ey. By construction, the set of operations
{Ey} preserves the identity,

∑
y Ey(1X) = 1X ; hence, the

effects form a partition of the identity,
∑

y Ey = 1X ,
making them probability observables over a particular
detector framework exactly as in (23).
Sequences of measurements emphasize the temporal

ordering of operations, just as in the invasive classical
case (26). Given two sets of quantum operations that
define the sequential interaction of two detectors with
the system and their subsequent conditioning, {Ey} and
{E ′

z}, the joint probability of the ordered sequence of de-
tector outcomes (y, z) is,

P (y)P (z|y) = P (yzy) = P (yz1Xzy), (99)

=
〈
Ey(E ′

z(1X))
〉
X

=
〈
Ey(E′

z)
〉
X
,

where E′
z = E ′

z(1X). The proper sequential probability

observable Ey(E′
z) =

∑
y′ M

†
y,y′E′

zMy,y′ is not a simple
product of the individual probability observables Ey and
E′

z.
These sequence probabilities then give us the full gen-

eralization of the ABL rule (90),

〈
ỹ
〉

z
=

〈
Ey(E′

z)
〉
X〈

E(E′
z)
〉
X

=

〈
Ey(E′

z)
〉
X∑

y′′∈Y

〈
Ey′′(E′

z)
〉
X

, (100)

=

∑
y′∈Y ′ TrX(ρXM

†
y,y′E′

zMy,y′)
∑

y′′∈Y

∑
y′∈Y ′ TrX(ρXM

†
y′′,y′E′

zMy′′,y′)
,

and the most general version of the invasive quantum
Bayes’ rule (91),

〈
ỹ
〉

z
=
〈
Ẽ′

z

〉
y

〈
Ey

〉
X〈

E(E′
z)
〉
X

, (101)

As with (27) and (90), the post-selected conditioning
(100) depends on the entire disturbance of the first
measurement via the non-selective measurement E =∑

y′′∈Y Ey′′ in the denominator.
The noncommutativity of the detection operations Ey

emphasizes the fact that measurement is an active pro-
cess : an experimenter alters the quantum state by cou-
pling it to a detector and then conditioning on acquired
information from the detector. Without some filtering
process that completes the disturbance implied by (94),
there is no measurement. The non-selective measure-
ment E also includes the active disturbance of the mea-
surement process, but does not condition on a particular
outcome. Furthermore, measuring a quantum state in
a different order generally disturbs it differently. The
state may also in certain conditions be probabilistically
“uncollapsed” back to where it started by using the cor-
rect conditioning sequence [3–5]. In this sense, sequential
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quantum conditioning is analogous to a stochastic con-
trol process that guides the progressive disturbance of a
state along some trajectory in the state space [16].
Measurement Operators.—Since the quantum opera-

tion Ey performs a measurement, we will refer to its Kraus
operators {My,y′} (95) as measurement operators. How-
ever, a quantum operation generally has many equiva-
lent double-sided product expansions like (95a) in terms
of measurement operators. Each such set of measure-
ment operators {My,y′} corresponds to a specific choice
of framework for the preparation of the detector state
ρY =

∑
y′∈Y ′ P (y′) y′.

Given a specific set of measurement operators, the
substitution My,y′ → Uy,y′My,y′ with unitary Uy,y′ will
produce the same effect Ey according to (97) but will
correspond to a different operation E ′

y. Hence, we con-
clude that many measurement operations can produce
the same probability observables on the system space
[90]. Therefore, probability observables are not sufficient
to completely specify a quantum measurement : one needs
to specify the full operations as in the classically invasive
case (25).
Quantum Process Tomography.—Just as classical prob-

ability observables can be characterized via process to-
mography, operations can be characterized by quantum
process tomography. One performs quantum process to-
mography by sending known states into a detector, mea-
suring the detector, then measuring the resulting states
to see how the state was changed by the detector. Since
quantum operations contain information about distur-
bance as well as conditioning, quantum process tomog-
raphy generally requires more characterization measure-
ments than pure classical process tomography.
Pure Operations.—An initially pure detector state

with density y′ produces a pure operation Ey(FX) =
M †

yFXMy with a single associated measurement oper-

ator My = eiφy 〈y|U |y′〉 that is unique up to the arbi-
trary phase factor eiφy . Most laboratory preparation
procedures for the detector are designed to produce a
pure initial state, so pure operations will be the typical
case. A pure operation has the additional property of
partially collapsing a pure state to another pure state.
It is also most directly related to the probability observ-
able Ey =M †

yMy, since the single measurement operator

has a polar decomposition My = UyE
1/2
y in terms of the

positive root of the probability observable E
1/2
y .

Weak Measurement.—If we wish for such a condition-
ing process to leave the state approximately unchanged,
we must make a weak measurement, just as in the classi-
cal case (19). However, a quantum weak measurement
requires a strict condition regarding the measurement
operations and not just the probability observables due
to the additional disturbance in the measurement. For-
mally, the measurement operations typically depend on
a measurement strength parameter ǫ such that,

∀y ∈ Y lim
ǫ→0

Ey(ǫ;FX) = PY (y)I(FX), (102)

where I is the identity operation and PY (y) is the proba-
bility for obtaining the detector outcome y in the absence
of interaction. As with the classical case, the limit as
ǫ→ 0 is an idealization known as the weak measurement
limit and is not strictly achievable in the laboratory.
The definition (102) implies that subsequent measure-

ments will be unaffected, ∀y ∈ Y, limǫ→0

〈
F̃X

〉
y
=
〈
FX

〉
,

and that the probability observables are proportional to
the identity in the weak limit, ∀y ∈ Y, limǫ→0Ey(ǫ) =
PY (y)1X , just as in the classical case (19). It also follows
that any set of measurement operators {My,y′(ǫ)} that
characterize Ey(ǫ) must also be proportional to the iden-
tity in the weak limit ∀y ∈ Y, y′ ∈ Y ′, limǫ→0My,y′(ǫ) ∝
1X .
Weak measurements are more interesting in the quan-

tum case than in the classical case due to the existence
of incompatible frameworks. Since a weak measurement
of an observable does not appreciably affect the quantum
state, subsequent measurements on incompatible observ-
ables can be made that will probe approximately the
same state. This technique allows (noisy) information
about two incompatible frameworks to be gleaned from
nearly the same quantum state in a single experiment,
which is strictly impossible using strong measurements
that collapse the state to a pure state in a particular
framework after each measurement. The penalty for us-
ing weak measurements is that many more measurements
are needed than in the strong measurement case to over-
come the ambiguity of the measurement, as discussed in
the classical case.

1. Example: Coverslip Polarization Detector

To cement these ideas, we consider the task of indi-
rectly measuring polarization in a particular framework.
For specificity, we will consider the passage of a laser
beam with unknown polarization through a glass micro-
scope coverslip. Fresnel reflection off the coverslip leads
to a disparity between transmission and reflection of the
polarizations, so comparing transmitted to reflected light
allows a generalized measurement of polarization, as we
demonstrated experimentally in [51].
The system sample space we wish to measure is the

polarization with respect to the table (h = |h〉〈h|) and
(v = |v〉〈v|), which could in principle be measured ide-
ally with a polarizing beam splitter. The detector sample
space is the spatial degree of freedom of the transmitted
(t = |t〉〈t|) and reflected (r = |r〉〈r|) ports of a cov-
erslip rotated to some fixed angle with respect to the
incident beam around an axis perpendicular to the ta-
ble. The initial state of the detector is the pure state
indicating that the beam enters a single incident port
(b = |b〉〈b|) of the coverslip with certainty. The rota-
tion U†(ρXb) = UρXbU

† that couples the system to the
detector describes the interaction of the beam with the
coverslip and has a unitary rotor U corresponding to the
polarization-dependent scattering matrix of the coverslip.
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Assuming that the scattering preserves beams of pure
polarization, so h remains h and v remains v, the rotor
decouples into a direct sum of rotors that are specific to
each polarization,

U = Uh ⊕ Uv, (103)

meaning that U has a block-diagonal structure when rep-
resented as a matrix.
Selecting each output port of the coverslip produces

the two measurement operators according to (95),

Mt = 〈t|U |b〉 =
(
〈t|Uh|b〉 0

0 〈t|Uv|b〉

)
, (104a)

Mr = 〈r|U |b〉 =
(
〈r|Uh|b〉 0

0 〈r|Uv|b〉

)
, (104b)

that characterize the pure measurement operations that
modify observables according to (95a),

Et(FX) =M †
t FXMt, (105a)

Er(FX) =M †
rFXMr, (105b)

and their adjoints that modify the state density according
to (95b),

E†
t (ρX) =MtρXM

†
t , (106a)

E†
r (ρX) =MrρXM

†
r . (106b)

The pure measurement operations in turn produce
probability observables according to (97),

Et = Et(1X) =M †
tMt, (107a)

=

(
|〈t|Uh|b〉|2 0

0 |〈t|Uv|b〉|2
)
,

Er = Er(1X) =M †
rMr, (107b)

=

(
|〈r|Uh|b〉|2 0

0 |〈r|Uv|b〉|2
)
,

in the same framework as h and v. These probability
observables are therefore equivalent to classical proba-
bility observables (23) specified by the effective charac-

terization probabilities P̃ (t|h) = |〈t|Uh|b〉|2, P̃ (r|h) =

|〈r|Uh|b〉|2, P̃ (t|v) = |〈t|Uv|b〉|2, and P̃ (r|v) = |〈r|Uv|b〉|2.
The measurement operators (104) have a polar decom-

position in terms of the roots of the probability observ-
ables and an extra unitary phase contribution,

Mt =


e

iφh,t

√
P̃ (t|h) 0

0 eiφv,t

√
P̃ (t|v)


 , (108a)

Mr =


e

iφh,r

√
P̃ (r|h) 0

0 eiφv,r

√
P̃ (r|v)


 . (108b)

Any nonzero relative phase, such as φh,t − φv,t, will af-
fect the framework orientation for subsequent measure-
ments; however, it will not contribute to the acquisition

of information from the measurement since it does not
contribute to the probability observables. Such relative
phase is therefore part of the disturbance of the measure-
ment process.
Specifically, the initial state of polarization PX will be

conditioned by a selection of a particular port on the
detector according to,

〈
F̃X

〉
t
=

〈
Et(FX)

〉
X〈

Et(1X)
〉
X

=
TrX(MtρXM

†
t FX)

TrX(ρXEt)
, (109a)

〈
F̃X

〉
r
=

〈
Er(FX)

〉
X〈

Er(1X)
〉
X

=
TrX(MrρXM

†
rFX)

TrX(ρXEr)
. (109b)

Though the probabilities in each denominator only de-
pend on the probability observables, the altered states in
each numerator depend on the measurement operations
and will include effects from the relative phase in the
measurement operators (108).

D. Contextual Values

Operation Correspondence.—The introduction of con-
textual values in the quantum case proceeds identically
to the classical case of invasive measurements (34). Since
we must generally represent detector probabilities by op-
erations {Ey} within the reduced system space according
to (97) and (99), we must also generally represent detec-
tor observables by weighted operations within the reduced
system space,

〈
FY

〉
=
∑

y∈Y

fY (y)P (y), (110)

=
∑

y∈Y

fY (y)
〈
Ey(1X)

〉
X

=
〈
FX(1X)

〉
X
,

FX =
∑

y∈Y

fY (y)Ey. (111)

If we are concerned with only a single measurement, or
are working within a single framework as in the classical
formalism, then for all practical purposes the operation
FX reduces to its associated system observable FX =
FX(1X) as in the classical definition (31).
Contextual Values.—We observe a corollary exactly as

in the classical case (32): if we can expand a system
observable in terms of the probability observables gener-
ated by a particular measurement operation, then that
observable can also be expressed as an equivalent detector
observable,

FX =
∑

y∈Y

fY (y)Ey =⇒ FY =
∑

y

fY (y)y, (112)

which is the quantum form of our main result originally
introduced in [49]. As in the classical case, we dub the
required detector labels fY (y) the contextual values

(CV) of the quantum observable FX with respect to the
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context of a specific detection scheme as represented in
the system space by the measurement operations {Ey}.
Since many measurement operations produce the same
probability observables {Ey(1X) = Ey}, many detection
schemes can use the same CV to reproduce an observable
average.
Moments.—As with classically invasive measurements

(35), higher statistical moments of the observable require
more care to measure. For instance, we require the fol-
lowing equality in order to accurately reproduce the nth

moment of an observable indirectly using the same CV,

〈
(FX)n

〉
X

=
∑

y1,...,yn∈Y

fY (y1) · · · fY (yn)
〈
Ey1

· · ·Eyn

〉
X
.

(113)

However, as indicated in (99), performing a sequence
of n measurements produces the measurable probabil-
ity

〈
Ey1

(· · · (Eyn
) · · · )

〉
X

6=
〈
Ey1

· · ·Eyn

〉
X
. Indeed,〈

Ey1
· · ·Eyn

〉
X

will not generally be a well-formed prob-

ability. To obtain the equality (113) with a particular
choice of CV, we need the additional constraint that
all the measurement operators must commute with each
other. As a result, they must be part of the same frame-
work as the system observable and hence commute with
that observable as well. We will call any detector with
commuting measurement operators with respect to a par-
ticular observable a fully compatible detector for that ob-
servable. Evidently, this is a strict requirement for a
detector.
Alternatively, as with the classical case, we can change

the CV to define new observables that correspond to pow-
ers of the original observable, such as GX = (FX)n =∑

y∈Y gY (y)Ey. These new observables can then be mea-
sured indirectly using the same experimental setup with-
out the need for measurement sequences. The CV gY (y)
for the nth power of FX will not be a simple power of the
CV fY (y) for FX unless the measurement is unambigu-
ous.
Correlation Functions.—If a time-evolution unitary ro-

tation Ut is inserted between different observable mea-
surements, then we obtain a quantum correlation func-
tion instead,

〈
˜FX(0)GX(t)

〉
=
〈
FX(Ut(GX(1X)))

〉
X
, (114)

which should be compared to the classical case (36).
Similarly, n-time correlations can be defined with n − 1
time-evolutions between the observable measurements〈
F1(Ut1(F2(· · · Utn−1

(Fn(1X)) · · · )))
〉
.

Inversion.—Since the CV depend only on the prob-
ability observables, which commute with the measured
observable for a fully compatible detector, the procedure
for determining the CV will be identical to the classi-
cal case. That is, the contextual values of a quantum
observable exactly correspond to the detector labels for a
classically ambiguous detector. We shall refer the reader
back to the classical inversion (40) for discussion on how

to solve the relation (112). As a reminder, we advocate
the pseudoinverse as a principled approach for picking
the CV in the event of redundancy or course-graining.
Conditioned Averages.—We can construct a general

post-selected conditioned average from the CV and the
fully generalized ABL rule (100) analogously to the clas-
sical case (37),

〈
F̃X

〉
z

=
∑

y

fY (y)
〈
ỹ
〉

z
=

〈
FX(E′

z)
〉
X〈

E(E′
z)
〉
X

, (115)

=

∑
y∈Y

∑
y′∈Y ′ fY (y)Tr(ρXM

†
y,y′E′

zMy,y′)
∑

y∈Y

∑
y′∈Y ′ Tr(ρXM

†
y,y′E′

zMy,y′)
.

We introduced this type of conditioned average in [49]
for the typical case of pure operations {Ey} with single
associated measurement operators {My}.
If the post-selection is defined in the same frame-

work as the measurement operation, then the nonselec-
tive measurement E in the denominator will reduce to
unity, leaving a classical conditioned average,

〈
FX

〉
z
=

∑
y∈Y fY (y)

〈
EyE

′
z

〉
X〈

E′
z

〉
X

=

〈
FXE

′
z

〉
X〈

E′
z

〉
X

, (116)

of the same form as (18). Similarly, the pre-selected con-
ditioning (98) will also reduce to (116) for such a case.
This special case cannot exceed the eigenvalue range of
the observable: the observable FX will always reduce to
its eigenvalues since either the state or the post-selection
commute with it.
More generally, however, the combination of amplified

CV and the context-dependent probabilities in the gen-
eral post-selected average (115) can send it outside the
eigenvalue range of the observable. As we discussed in
[51, 91], having such a conditioned average stray outside
the eigenvalue range of the observable is equivalent to a
violation of a Leggett-Garg inequality that tests the as-
sumptions of macrorealism under noninvasive detection.
As a result, an eigenvalue range violation gives a direct
indication of either nonclassicality present in a measure-
ment sequence, or intrinsic measurement disturbance be-
yond that of noninvasive classical conditioning as we saw
in the example in §II D 2. We refer the reader to [51, 91]
for more detail on this matter.
Strong Conditioned Average.—There are two other im-

portant special cases of the conditioned average (115)
worth mentioning: strong measurement and weak mea-
surement. The strong measurement case is distinguished
by being constrained exclusively to the eigenvalue range
of the observable. Specifically, (115) reduces to the form,

〈
F̃X

〉
z

=

∑
x∈X fX(x)P (x)Dx(z)∑

x∈X P (x)Dx(z)
, (117)

=

∑
x∈X fX(x)〈x|ρ|x〉|〈x|z〉|2∑

x∈X〈x|ρ|x〉|〈x|z〉|2 ,
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that contains only the eigenvalues fX(x) of the observ-
able and factored probability products. However, it can-
not be expressed solely in terms of the observable FX

and a conditioned state as in the classical case (37) due
to the disturbances Dx(z). Only when the state or post-
selection commutes with the observable does (117) reduce
to a special case of (116) and become free from distur-
bance.
Weak Values.—The weak measurement case is distin-

guished by being the only case of the quantum post-
selected conditioned average (115) that can become
context-independent for any state and post-selection (un-
der certain conditions). The context-independent weak
limit of the conditioned average (115) is the weak value
[17, 19–21, 24, 25, 49],

〈
F̃X

〉
z

w =

〈
E′

zFX + FXE
′
z

〉
X

2
〈
E′

z

〉
X

, (118)

and is expressed entirely in terms of the system expecta-
tion functional

〈
·
〉
X
, the post-selection probability ob-

servable E′
z, and the observable FX . Written in this form

it is clear that it is a symmetrized version of the context-
independent commuting case (116); however, unlike (116)
the weak value (118) is not constrained to the eigenvalue
range and can even diverge. For a pure initial state with
trace-density x and pure post-selection z, the weak value
(118) takes the traditional form,

〈
F̃X

〉w
z x

→ Re
〈z|FX |x〉
〈z|x〉 . (119)

We will consider under what conditions one can obtain
such a weak value in §III E.

1. Example: Coverslip Detector Revisited

Continuing the example from §III C 1, observables de-
fined in the same framework as the probability observ-
ables may be expressed in terms of the probability observ-
ables according to (112) using contextual values (CV),
exactly as in the classical example (47),

FX = fX(h)h+ fX(v)v, (120a)

= fY (t)Et + fY (r)Er ,(
fX(h)
fX(v)

)
=

(
P̃ (t|h) P̃ (r|h)
P̃ (t|v) P̃ (r|v)

)(
fY (t)
fY (r)

)
. (120b)

Inverting this relation according to (40) produces the
unique CV,

fY (t) =
P̃ (r|v)fX(h)− P̃ (r|h)fX(v)

P̃ (t|h)P̃ (r|v) − P̃ (r|h)P̃ (t|v)
, (121a)

fY (r) = − P̃ (t|v)fX(h)− P̃ (t|h)fX(v)

P̃ (t|h)P̃ (r|v) − P̃ (r|h)P̃ (t|v)
. (121b)

The denominator is unity when the output ports of the
coverslip are perfectly correlated with the polarization.
Otherwise, the denominator is less than one and serves to
amplify the CV to compensate for the ambiguity of the
detection. The numerator contains cross-compensation
factors that correct bias in the detector; that is, the
eigenvalue fX(h) for h in the contextual value fY (t) for

t is weighted by the conditional probability P̃ (r|v) cor-
responding to the complementary quantities of v and r,
and so forth.
The CV define the detector observable that is actually

being measured in the laboratory,

FY = fY (t)t+ fY (r)r. (122)

This detector observable corresponds to a detection op-
eration on the system space according to (111),

FX = fY (t)Et + fY (r)Er , (123)

that fully describes the interaction with the detector,
subsequent conditioning, and experimental convention
for defining the observable. When no subsequent con-
ditioning is performed on the system, this operation con-
structs the system observable FX = FX(1X) = fY (t)Et+
fY (r)Er , as desired.
Since the pure measurement operations all belong to

the same framework and commute with FX , the opera-
tion FX is also fully compatible with the observable FX ,
meaning it can measure any moment of that observable
using the same CV according to (113),
〈
Fn

X(1X)
〉
X

=
〈
(FX)n

〉
X
, (124)

=
∑

i1...in

fY (i1) . . . fY (in)
〈
Ei1 . . . Ein

〉
X
.

The quantity Fn
X(1X) indicates a sequence of n consec-

utive measurements made by the same coverslip on the
beam to construct the observable (FX)n for the nth mo-
ment of FX . That is, the output from each port of
the coverslip is fed back into the coverslip to be mea-
sured again. There are 2n possible outcome sequences
(i1, . . . , in) for n traversals through the coverslip, each
with probability

〈
Ei1 . . . Ein

〉
X
of occurring. These prob-

abilities are weighted with appropriate products of corre-
sponding CV and summed to correctly construct the nth

moment of FX .
Alternatively, one can change the CV to directly mea-

sure the observable GX = (FX)n = gY (t)Et + gY (r)Er

from one traversal of the coverslip. The required CV for
GX ,

gY (t) =
P̃ (r|v)(fX (h))n − P̃ (r|h)(fX(v))n

P̃ (t|h)P̃ (r|v) − P̃ (r|h)P̃ (t|v)
, (125a)

gY (r) = − P̃ (t|v)(fX(h))n − P̃ (t|h)(fX(v))n

P̃ (t|h)P̃ (r|v) − P̃ (r|h)P̃ (t|v)
, (125b)

are not simple powers of the CV (121) for FX unless the
measurement is unambiguous.
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Laser x-Polarizer z-PolarizerCoverslip

FIG. 2. Coverslip polarization measurement. A laserbeam passes through a pre-selection x-polarizer, a glass microscope
coverslip, and a post-selection z-polarizer. The transmission probabilities for each segment of the apparatus are shown. By
assigning appropriate contextual values fY (t) and fY (r) (121) to the output ports of the coverslip, the polarization observable
FX = fX(h)h + fX(v)v can be measured using the equivalent expansion in terms of the appropriate measurement context
FX = fY (t)Et(1X) + fY (r)Er(1X). Averaging the same contextual values with pre- and post-selected conditional probabilities〈
t̃
〉

z x
=

〈
xEt(z)x

〉
X
/(
〈
xEt(z)x

〉
X
+
〈
xEr(z)x

〉
X
) and

〈
r̃
〉

z x
=

〈
xEr(z)x

〉
X
/(
〈
xEt(z)x

〉
X
+
〈
xEr(z)x

〉
X
) produces the conditioned

average (127)
〈
F̃X

〉
z x

= fY (t)
〈
t̃
〉

z x
+ fY (r)

〈
r̃
〉

z x
.

In addition to moments of FX , we can obtain post-
selected conditioned averages of FX by conditioning on a
second measurement outcome characterized by a proba-
bility observable E′

z after the measurement by the cover-
slip according to (115),

〈
F̃X

〉
z

=

〈
FX(E′

z)
〉
X〈

E(E′
z)
〉
X

, (126)

where E = Et+Er is the non-selective measurement by the
coverslip. The second measurement could be a polarizer,
another coverslip, or any other method for measuring
polarization a second time.
If the initial state is pure with a density ρ = x = |x〉〈x|

and the final post-selection is also pure z = |z〉〈z|, then
(126) simplifies to a pre- and post-selected conditioned
average,

〈
F̃X

〉
z x

=
fY (t)|〈z|Mt|x〉|2 + fY (r)|〈z|Mr |x〉|2

|〈z|Mt|x〉|2 + |〈z|Mr|x〉|2
. (127)

If we relate both pure states to the reference state h via
unitary rotations as defined in (79), x = Uα,β,γ(h) and
z = Uα′,β′,γ′(h), then the probabilities take the form,

|〈z|Mt|x〉|2 = P̃ h(t) cos2(β/2) cos2(β′/2) (128a)

+ P̃ v(t) sin2(β/2) sin2(β′/2)

+

√
P̃ h(t)P̃ v(t)

2
sinβ sinβ′×

cos(γ − γ′ − φh,t + φv,t),

|〈z|Mr|x〉|2 = P̃ h(r) cos2(β/2) cos2(β′/2) (128b)

+ P̃ v(r) sin2(β/2) sin2(β′/2)

+

√
P̃ h(r)P̃ v(r)

2
sinβ sinβ′×

cos(γ − γ′ − φh,r + φv,r).

We see that each probability possesses an interference
term that stems from the relative orientations of the

incompatible frameworks for the preparation, measure-
ment, and post-selection. In addition, the relative phases
in the measurement operators (108) will affect the orien-
tations of the frameworks and further disturb the mea-
surement, as mentioned. For the classical case, the frame-
works coincide, so β, β′ ∈ {0, π}; the interference term
vanishes; and, the probabilities reduce to the conditional
probabilities that characterize the probability observ-
ables.
The combination of the expanded range of the CV

(121) and the interference term in the probabilities (128)
can make the post-selected conditioned averages (126)
counter-intuitively exceed the eigenvalue range of the ob-
servable FX . Such a violation of the eigenvalue range
cannot occur from classical conditioning without distur-
bance as in §II D 2.

2. Example: Calcite Polarization Detector

We can also measure polarization using a von Neu-
mann measurement [2] that uses a detector with a con-
tinuous sample space detector, such as position. For ex-
ample, passing a beam of polarized light through a calcite
crystal will continuously separate the polarizations h and
v along a particular position axis. Measuring the position
profile of the resulting split beam along that axis allows
information to be gained about the polarization.
For such a setup, measuring the position with a lin-

ear scale corresponds to measuring a detector observ-
able Q =

∫
Y
y d|y〉〈y| for a continuous sample space

of distinguishable positions. The observable Q has a
conjugate DQ that satisfies [Q,DQ] = i1Y . The con-
jugate can thus generate translations in Q with a uni-
tary rotor, exp(iqDQ)Q exp(−iqDQ) = Q + [iqDQ, Q] +
[iqDQ, [iqDQ, Q]] + · · · = Q+ q1Y . Hence, we can model
the calcite crystal as a rotation governed by a unitary
rotor of the form

U = exp(−i(ǫhh− ǫvv)DQ), (129)
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FIG. 3. Preferred CV fY (y) given in (132c) for a calcite position measurement that targets the polarization observable
FX = h − v, shown for strong separation (ǫ = 1), wimpy separation (ǫ = 0.1), and weak separation (ǫ = 0.02) of the
polarizations. Top Row : Initial Gaussian beam profile. Middle Row : Initial Laplace beam profile. Bottom Row : Initial
top-hat beam profile. Note that the top-hat CV are the eigenvalues of ±1 under strong separation, but become amplified as
the distributions start to overlap; moreover, the top-hat CV cancel out in the perfectly ambiguous overlapping region. The
amplification and cancellation behavior of the CV is more complicated for less definite detector profiles.

which will translate h polarization by some amount ǫh
while simultaneously translating v polarization by some
amount ǫv in the opposing direction. The parameters ǫh
and ǫv will depend on the geometry of the crystal with
respect to the incident beam.
Suppose the light beam has an initially pure beam pro-

file state described by a density ρ = |ψ〉〈ψ|. The proba-
bility for obtaining a particular pure position y = |y〉〈y|
in the profile would then be dPY (y) = pY (y)dy =
Tr(ρy)dy = |〈y|ψ〉|2dy. Each complex factor 〈y|ψ〉 is the
“wave function” of the transverse beam profile, whose
complex square is the probability density with respect to
the integral pY (y) = |〈y|ψ〉|2.
If we then pass the beam through the crystal described

by the rotor (129) and measure its position in a pure po-
sition state y = |y〉〈y|, we will have enacted a pure opera-
tion on the polarization of the beam that is characterized
by a single measurement operator,

dEy(FX) =M(y)†FXM(y)dy, (130a)

M(y) = 〈y|U |ψ〉, (130b)

= h〈y − ǫh|ψ〉+ v〈y + ǫv|ψ〉,

with components equal to the initial wave function of the
detector profile shifted in position by an appropriate ǫ.
The pure measurement operations define a continuous set
of probability observables,

dE(y) = dEy(1X) =M(y)†M(y)dy, (131)

= h dPY (y − ǫh) + v dPY (y + ǫv),

with components equal to the initial transverse beam pro-
file shifted in position by an appropriate ǫ. Unless the
shifts become degenerate with ǫv = −ǫh then these prob-
ability observables can be used to indirectly measure any
observable in the framework of h and v.
Since the observable ǫhh− ǫvv appears as a generator

for the rotation U , it could be tempting to assert that
the detector must specifically measure this observable.
However, only the framework in which the generating
observable is defined determines which observables can
be measured. The choice of CV, which can be made in
post-processing, will calibrate the detector to measure
specific observables in that framework.
We considered a classical version of similar probabil-

ity observables in §II D 4. Generalizing that derivation
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FIG. 4. Pre- and post-selected detector probability densities p̃z x(y) for the calcite position measurement (131), shown for
strong separation (ǫ = 1), wimpy separation (ǫ = 0.1), and weak separation (ǫ = 0.02) of the polarizations. The pre-selection
is x = |x〉〈x| with associated vector |x〉 = cos(4π/6)|h〉 + sin(4π/6)|v〉. The post-selection is z = |z〉〈z| with associated vector
|z〉 = (|h〉+ |v〉)/

√
2. Top Row : Initial Gaussian beam profile. Middle Row : Initial Laplace beam profile. Bottom Row : Initial

top-hat beam profile. Note that the Gaussian profile tilts to approximate a single shifted Gaussian under weak separation, as
leveraged in the weak measurement protocol introduced in [17].

only slightly, we can find the preferred contextual val-
ues (CV) fY (y) for an arbitrary polarization observable
FX = fX(h)h+ fX(v) v,

fY (y) = fX(h)
v+(y) + v−(y)

2
(132a)

+ fX(v)
v+(y)− v−(y)

2
,

v+(y) =
pY (y − ǫh) + pY (y + ǫv)

a+ b(ǫh, ǫv)
, (132b)

v−(y) =
pY (y − ǫh)− pY (y + ǫv)

a− b(ǫh, ǫv)
, (132c)

a =

∫

Y

p2Y (y) dy, (132d)

b(ǫh, ǫv) =

∫

Y

pY (y − ǫh) pY (y + ǫv) dy. (132e)

In particular one can measure the orthogonal observables

h− v and 1X using the expansions,

h− v =

∫

Y

v−(y) dE(y), (133)

1X = h+ v =

∫

Y

v+(q) dE(y). (134)

For the specific case of an initial Gaussian beam cen-
tered at zero, we have,

p(y) = exp

(
− y2

2σ2

)
/σ

√
2π, (135a)

ǫ = (ǫh + ǫv)/2, (135b)

δ = (ǫh − ǫv)/2, (135c)

a = 1/2σ
√
π, (135d)

b(ǫ) = a exp(−(ǫ/σ)2), (135e)

v−(y) =
√
2
exp(− (y−δ)2

2σ2 ) sinh( ǫ(y−δ)
σ2 )

sinh( ǫ2

2σ2 )
, (135f)

v+(y) =
√
2
exp(− (y−δ)2

2σ2 ) cosh( ǫ(y−δ)
σ2 )

cosh( ǫ2

2σ2 )
, (135g)
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What matters for the measurement is the average trans-
lation ǫ away from the midpoint (y − δ). The amplifica-
tion of the CV is controlled by the parameter ǫ/σ, which
serves as an indicator for the ambiguity of the measure-
ment. When the shift ǫ is large compared to the width
of the Gaussian σ, then ǫ/σ ≫ 1; the shifted Gaussians
for h and v are distinguishable; the CV approach the
eigenvalues of the measurement; and, the measurement
is unambiguous. When the shift is small compared to the
width of the Gaussian, then ǫ/σ ≪ 1, the Gaussians for
h and v largely overlap, the CV diverge, and the mea-
surement is ambiguous. Figure 3 shows the CV (135f) for
the Gaussian initial beam profile, as well as for a Laplace
and top-hat profile for comparison.
This sort of detection protocol was used in the original

paper on weak values [17] in the form of a Stern-Gerlach
apparatus that measures spin analogously to polarization
using a continuous momentum displacement generated
by a magnetic field. The initial Gaussian beam profile
shifted an amount ǫ away from the midpoint of the ini-
tial beam profile in a direction corresponding to the value
of the spin. Since the beam profile was symmetric about
its mean, the generic CV fY (y) = y/ǫ were implicitly as-
signed as a linear calibration of the detector, which tar-
gets a specific observable analogous to h− v. Motivating
this implicit choice was the fact that when ǫ is sufficiently
small, the two overlapping Gaussians produce to a good
approximation a single resulting Gaussian with a shifted
mean consistent with such a linear scaling, as shown in
Figure 4. That such a choice was being made was later
pointed out explicitly in [23] before we identified the role
of the CV in [49] and derived the preferred form (135f).
The proposed spin measurement protocol was adapted to
a polarization measurement using a calcite crystal, as we
have developed in this section, and then verified experi-
mentally [18, 34].
To produce the weak value from the polarization mea-

surement, we post-select on a second measurement to
form a conditioned average. If the initial polarization
state is pure with a density ρ = x = |x〉〈x| and the final
post-selection is also pure z = |z〉〈z|, then we have the
form,

〈
F̃X

〉
z x

=

∫
Y
fY (y)|〈z|M(y)|x〉|2dy∫
Y |〈z|M(y)|x〉|2dy . (136)

If we choose the symmetric Gaussian case (135) with
δ = 0, take the form of M(y) without additional uni-
tary disturbance,

M(y) = h exp

(
− (y − ǫ)2

4σ2

)
/

√
σ
√
2π, (137)

+ v exp

(
− (y + ǫ)2

4σ2

)
/

√
σ
√
2π,

and relate both pure states to the reference state h via
unitary rotations as defined in (79), x = Uα,β,γ(h) and
z = Uα′,β′,γ′(h), then the post-selected probability den-

sity p̃z x(y) takes the form,

|〈z|M(y)|x〉|2 =
exp(− y2+ǫ2

2σ2 )

2σ
√
2π

× (138)

(
(1 + cosβ cosβ′) cosh

yǫ

σ2

+ (cosβ + cosβ′) sinh
yǫ

σ2

+ sinβ sinβ′ cos(γ − γ′)
)
,

Choosing the CV (135f) to target the observable h − v,
the conditioned average (136) then takes the form,

〈
h̃− v

〉
z x

=
cosβ + cosβ′

1 + cosβ cosβ′ + Ξ(ǫ, σ)
, (139a)

Ξ(ǫ, σ) = sinβ sinβ′ cos(γ − γ′) exp

(
− ǫ2

2σ2

)
.

(139b)

The interference term Ξ(ǫ, σ) in the denominator is the
only part of the conditioned average that depends on the
details of the measurement context through the exponen-
tial dependence on ǫ/σ, which was also noted in [27, 91].
This conditioned average can exceed the eigenvalue range
of the observable due to the combination of the amplified
CV and the disturbance linking the incompatible frame-
works in the conditional probabilities. Figure 5 shows the
Gaussian measurement of the conditioned average (139),
as well as top-hat and triangular measurements for com-
parison.
The conditioned average (139) has two limiting cases

that eliminate the explicit context-dependence: 1) in the
strong measurement limit, ǫ/σ → ∞, the interference
term vanishes, leaving a conditioned average of projective
measurements that always stays in the eigenvalue range
of the observable; and 2) in the weak measurement limit,
ǫ/σ → 0, the conditioned average reduces to the weak
value,

〈
h̃− v

〉w
z x

= Re
〈z|(h− v)|x〉

〈z|x〉 , (140)

=
cosβ + cosβ′

1 + cosβ cosβ′ + sinβ sinβ′ cos(γ − γ′)
.

The weak value is distinguished by being the only case
that can be written entirely in terms of the observable,
the post-selection, and the pre-selected state without ref-
erence to the intermediate measurement. In this sense, it
is the only context-independent form of the conditioned
average. However, we shall see in §III E that the weak
value is not guaranteed as a limit point of the conditioned
average in the weak measurement limit.

3. Example: Three Box Paradox

We can also use contextual values and the general con-
ditioned average to analyze an often repeated paradox
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FIG. 5. Pre- and post-selected conditioned average densities fY (y) p̃z x(y) for a calcite position measurement targeting the
observable FX = h − v with CV as in Figure 3, shown for strong separation (ǫ = 1), wimpy separation (ǫ = 0.1), and

weak separation (ǫ = 0.02) of the polarizations. The conditioned averages
〈
F̃X

〉
z x

=
∫
Y
fY (y) p̃z x(y) dy are the areas under

the curves and are shown inset. As in Figure 4, the pre-selection is x = |x〉〈x|, where |x〉 = cos(4π/6)|h〉 + sin(4π/6)|v〉.
The post-selection is z = |z〉〈z|, where |z〉 = (|h〉 + |v〉)/

√
2. Top Row : Initial Gaussian beam profile. Middle Row : Initial

Laplace beam profile. Bottom Row : Initial top-hat beam profile. For strong enough separation all three detector profiles

will produce the strong conditioned average
〈
F̃X

〉
z x

= −1/2. For weak separation all three profiles approximate the weak

value
〈
F̃X

〉w
z x

= −2−
√
3 ≈ −3.73. However, the different detector profiles converge to the weak value at different rates with

decreasing ǫ.

related to the logic of weak values: the three box para-
dox [92–95]. Suppose one has three boxes, only one of
which may be occupied by some quantum particle. The
boxes form a classical sample space, X = {a, b, c}, with
Boolean algebra ΣX = {0, a, b, c, a+ b, b + c, c + a, 1X},
with 1X = a + b + c. Suppose that the boxes are prese-
lected in the pure state with density x = |x〉〈x| and asso-

ciated Hilbert space vector |x〉 = (|a〉+ |b〉+ |c〉)/
√
3 and

then later post-selected with the pure projector z = |z〉〈z|
and associated vector |z〉 = (|a〉 + |b〉 − |c〉)/

√
3. The

post-selected state has a transition probability from the
pre-selected state of Dx(z) = |〈z|x〉|2 = 1/9.

According to the weak value definition (119), the weak
values of the box-occupation observables for this pre- and

post-selected situation are,
〈
ã
〉w

z x
= 1, (141a)

〈
b̃
〉w

z x
= 1, (141b)

〈
c̃
〉w

z x
= −1. (141c)

These values have occasionally been interpreted as
the counterfactual conditional probabilities of box-
occupation given the double boundary conditions; that
is, the box-occupation was not checked in between the
pre- and post-selection, but if it had been without dis-
turbing the system, then these probabilities would have
been observed. Part of the paradox is that the weak
value for c is negative, despite the fact that the eigenval-
ues for the occupation projector c are 1 and 0 and can-
not produce such a negative conditioned average unless
negative conditional probabilities average the eigenvalues.
Moreover, if the weak values do represent counterfactual
probabilities, then the weak values for a and b both indi-
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cate a counterfactual certainty of occupation, and hence
require a negative counterfactual probability for c to cor-
rectly maintain the probability normalization condition.

Operationally, the weak value is an idealized limit
point of a pre- and post-selected conditioned average.
Since measuring it is not strictly achievable in the labora-
tory, we prefer to analyze this situation by considering a
specific measurement context containing experimentally
observable quantities. In particular, we shall consider a
detector for the three-box occupation that has the three
outcomes 1, 2, and 3. The measurement operations are
fully characterized by the single measurement operators,

M1 = a
√
(1 + ǫ)/3 + b

√
(1− ǫ)/3 + c

√
1/3, (142a)

M2 = a
√
(1− ǫ)/3 + b

√
1/3 + c

√
(1 + ǫ)/3, (142b)

M3 = a
√
1/3 + b

√
(1 + ǫ)/3 + c

√
(1− ǫ)/3, (142c)

corresponding to the probability observables E1 = M2
1 ,

E2 = M2
2 and E3 = M2

3 . For the particular pre- and
post-selection under consideration, these measurement
operators produce the generalized ABL conditional prob-
abilities,

〈
1̃
〉

z x
=

Tr(zM1xM1)∑3
i=1 Tr(zMixMi)

, (143a)

=
3− 2

√
1 + ǫ− 2

√
1− ǫ+ 2

√
1− ǫ2

9− 2
√
1 + ǫ− 2

√
1− ǫ− 2

√
1− ǫ2

,

=
1

3
− ǫ2

3
+O(ǫ3),

〈
2̃
〉

z x
=

Tr(zM2xM2)∑3
i=1 Tr(zMixMi)

, (143b)

=
3− 2

√
1 + ǫ+ 2

√
1− ǫ− 2

√
1− ǫ2

9− 2
√
1 + ǫ− 2

√
1− ǫ− 2

√
1− ǫ2

,

=
1

3
− 2ǫ

3
+
ǫ2

6
+O(ǫ3),

〈
3̃
〉

z x
=

Tr(zM3xM3)∑3
i=1 Tr(zMixMi)

, (143c)

=
3 + 2

√
1 + ǫ− 2

√
1− ǫ− 2

√
1− ǫ2

9− 2
√
1 + ǫ− 2

√
1− ǫ− 2

√
1− ǫ2

,

=
1

3
+

2ǫ

3
+
ǫ2

6
+O(ǫ3),

These detection probabilities are all positive and well-
formed, since they are operationally accessible quantities.

If we target a particular observable OX = oX(a)a +
oX(b)b+ oX(c)c for the three boxes, we can solve for the
appropriate CV by inverting the matrix equation,



oX(a)
oX(b)
oX(c)


 =

1

3



1 + ǫ 1− ǫ 1
1− ǫ 1 1 + ǫ
1 1 + ǫ 1− ǫ





oY (1)
oY (2)
oY (3)


 , (144)

producing,


oY (1)
oY (2)
oY (3)


 =

oX(a) + oX(b) + oX(c)

3
(145)

+
1

ǫ



oX(a)− oX(b)
oX(c)− oX(a)
oX(b)− oX(c)


 .

In particular, we can use these CV to expand the box-
occupation observables in terms of the probability ob-
servables,

a =

(
1

3
+

1

ǫ

)
E1 +

(
1

3
− 1

ǫ

)
E2 +

1

3
E3, (146a)

=
1

3
1X +

1

ǫ
(E1 − E2),

b =

(
1

3
− 1

ǫ

)
E1 +

1

3
E2 +

(
1

3
+

1

ǫ

)
E3, (146b)

=
1

3
1X +

1

ǫ
(E3 − E1),

c =
1

3
E1 +

(
1

3
+

1

ǫ

)
E2 +

(
1

3
− 1

ǫ

)
E3, (146c)

=
1

3
1X +

1

ǫ
(E2 − E3).

Hence, all three box-occupation observables can be mea-
sured simultaneously from the same set of probabilities
for the three detector outcomes. Notably, the CV as-
signed to each outcome can be negative for sufficiently
small ǫ, even though all eigenvalues are positive or zero.
Hence the values being averaged can be negative and thus
can lead to negative averages in principle.
Computing the appropriate conditioned averages we

find to O(ǫ3),

〈
ã
〉

z x
= 1− ǫ

2
− ǫ2

4
+O(ǫ3), (147a)

〈
b̃
〉

z x
= 1 +

ǫ

2
− ǫ2

4
+O(ǫ3), (147b)

〈
c̃
〉

z x
= −1 +

ǫ2

2
+O(ǫ3). (147c)

which shows that the weak values (141) are the ǫ → 0
limit of the conditioned averages with this specific mea-
surement context.
The paradox of the negative weak value (141) can

therefore be largely resolved in the following sense: the
combination of the amplified negative CV and the dis-
turbance in the detector probabilities linking pre- and
post-selection frameworks leads to the negative result for〈
c̃
〉

z x
given sufficiently small ǫ. No negative probabilities

are required to obtain the negative limit point since neg-
ative CV are being averaged in the weak limit and not
eigenvalues. All operationally accessible probabilities are
positive and well-behaved: the negative CV are assigned
by the experimenter and highlighted by the disturbance
in the well-behaved probabilities.
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We leave the reader to ponder how to interpret the
operationally accessible negative conditioned average
(147c). However, we note that with at least this mea-
surement context the conditioned averages do obey the
equality,

〈
ã
〉

z x
+
〈
b̃
〉

z x
+
〈
c̃
〉

z x
= 1, (148)

for all values of ǫ. The three sets of CV sum to unity for
each detector outcome, leaving only the normalized sum
of detector probabilities

〈
1̃
〉

z x
+
〈
2̃
〉

z x
+
〈
3̃
〉

z x
= 1. For

more discussion of this paradox, see, e.g., [92–95].

E. Deriving the Weak Value

Weak Value Controversy.—As we have seen for the
case of the calcite detector (140) and the three box para-
dox (141), the weak value (118) seems to arise naturally
as the weak limit of post-selected conditioned averages.
Indeed, much of the existing literature on weak values
(e.g. [17, 19–21, 24–26]) operates under the assump-
tion that it is the only weak limit of a conditioned av-
erage, or that it is a well-defined property of a pre- and
post-selected ensemble prior to the ensemble being mea-
sured. However, a conditioned average does not neces-
sarily converge to the weak value in the weak measure-
ment limit, as has been noted independently by several
groups [22, 23, 27, 32, 49, 96], making its interpretation
as a well-defined property worthy of more careful con-
sideration. To obtain correct laboratory predictions for
a conditioned average, the formula (115) must be used,
which generally requires the specification of the detec-
tion strategy and the protocol for assigning CV to target
a specific observable.

Despite the interpretational controversy, the weak
value (118) is distinguished by being a context indepen-
dent weak limit of the conditioned average that is easy
to compute theoretically and appears quite commonly in
typical laboratory situations. The formal expression of
the weak value can also appear in other measurement
scenarios, such as in “modular values” [97], or even per-
turbative corrections to energy spectra [98], which makes
it an independently interesting quantity to study.

Theorem.—We will now demonstrate how the weak
value (118) can be uniquely defined from the general
conditioned average (115) by imposing a set of sufficient
conditions that the measurement should satisfy. First we
note from (95c) that each measurement operator has a
polar decomposition, My,y′ = Uy,y′|M |y,y′ , in terms of a
unitary operator Uy,y′ and a positive operator |M |y,y′ . It
then follows that,

M †
y,y′E

′
zMy,y′ = |M |y,y′U †

y,y′E
′
zUy,y′|M |y,y′ , (149)

=
{
|M |2y,y′, Uy,y′(E′

z)
}
/2

−
[
|M |y,y′,

[
|M |y,y′, Uy,y′(E′

z)
]]
/2,

where
{
A, B

}
= AB + BA is the anticommutator,[

A, B
]
= AB −BA is the commutator, and Uy,y′(E′

z) =

U †
y,y′E′

zUy,y′ is a unitary rotation of the post-selection.
Next we make the following sufficient assumptions re-

garding the dependence of the relevant quantities on the
measurement strength parameter ǫ:

1. The measurement operators My,y′ are analytic
functions of ǫ, and thus have well defined Tay-
lor expansions around ǫ = 0 such that they are
proportional to the identity in the weak limit,
∀y, y′, limǫ→0My,y′ ∝ 1X .

2. The unitary parts of the measurement operators
Uy,y′ = exp(iGy,y′(ǫ)) are generated by Hermi-

tian operators of order ǫk, Gy,y′(ǫ) = ǫkG
(k)
y,y′ +

O(ǫk+1), for some integer k ≥ 1. Furthermore,
each Uy,y′ must commute with either the system
state or the post-selection, ∀y, y′, [Uy,y′, ρX ] = 0,
or ∀y, y′, [Uy,y′ , E′

z] = 0.

3. The equality FX =
∑

y fY (ǫ; y)Ey(ǫ) must be sat-

isfied, where the CV fY (ǫ; y) are selected according
to the pseudo-inverse prescription.

4. The minimum nonzero order in ǫ for all |M |y,y′(ǫ)
is ǫn such that #3 can also satisfied for some CV
by the truncation to order ǫn. That is, |M |y,y′ =

cy,y′1X + |M |(n)y,y′ǫn + O(ǫn+1), where
∑

y′ c2y,y′ =

PY (y) is the detector probability in absence of in-
teraction.

5. The probability observables Ey(ǫ) =∑
y′ M

†
y,y′(ǫ)My,y′(ǫ) commute with the observable

FX .

Finally, we have the following theorem: in the weak
limit ǫ→ 0 the context dependence of the conditioned av-
erage (115) vanishes and the weak value (118) is uniquely
defined.
Proof.—To prove the theorem, we will expand (115)

to the minimum necessary order of ǫn and then take the
weak limit as ǫ → 0. First, we expand (149) to order ǫn

using assumptions #1, and #4,

M †
y,y′E

′
zMy,y′ = c2y,y′Uy,y′(E′

z) (150)

+ cy,y′

{
|M |(n)y,y′ , Uy,y′(E′

z)
}
ǫn +O(ǫn+1).

Generally, the remaining unitary rotation of the post-
selection will disturb the weak limit. However, if[
Uy,y′ , E′

z

]
= 0 as in assumption #2, then Uy,y′(E′

z) =
E′

z and the unitary disturbance disappears. If instead[
Uy,y′ , ρX

]
= 0, then we can apply the state to (150)

and find,

〈
M †

y,y′E
′
zMy,y′

〉
X

= c2y,y′

〈
Uy,y′(E′

z)
〉
X

(151)

+ cy,y′

〈{
|M |(n)y,y′ , Uy,y′(E′

z)
}〉

X
ǫn

+O(ǫn+1).
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Since
〈
Uy,y′(E′

z)
〉
X

= TrX(U†(ρX)E′
z) =

〈
E′

z

〉
X
, the

first term simplifies. The unitary rotation in the second
term expands to Uy,y′(E′

z) = E′
z +O(ǫk), and the O(ǫk)

correction can be absorbed into the overall O(ǫn+1) cor-
rection.
Therefore, after summing over y′ we find up to correc-

tions of order ǫn+1,

∑

y′

〈
M †

y,y′E
′
zMy,y′

〉
X

=
〈{
Ey(ǫ), E

′
z

}〉
X
/2, (152)

where the probability observable has the expansion to
order ǫn,

Ey(ǫ) =
∑

y′

|M |2y,y′(ǫ), (153)

=
∑

y′

(c2y,y′1X + 2cy,y′ |M |(n)y,y′ǫ
n +O(ǫn+1)).

Inserting (152) into (115), we find,

〈
F̃X

〉
z

=

〈{
FX , E

′
z

}
/2
〉
X
+
∑

y fY (ǫ; y)O(ǫ
n+1)

〈{
1X , E′

z

}
/2
〉
X
+O(ǫn+1)

,

(154)

where we have simplified
∑

y fY (ǫ; y)Ey(ǫ) = FX in the

numerator, and
∑

y Ey(ǫ) = 1X in the denominator.
Hence, unless the CV in the numerator have poles larger
than 1/ǫn the correction terms of order ǫn+1 will vanish,
producing (118) in the weak limit ǫ→ 0, as claimed.
The last step in obtaining (118), therefore, is to show

that the pseudoinverse solution for fY that was indicated
by assumption #3 cannot have poles larger than 1/ǫn.
To see this, we note that FX commutes with {Ey(ǫ)} by
assumption #5. As such, we will replace the CV defini-
tion FX =

∑
y fY (ǫ; y)Ey(ǫ) with an equivalent matrix

equation,

~fX = S ~fY , (155a)

S =

(〈
Ey(ǫ)

〉
x

· · ·
...

. . .

)
. (155b)

The pseudoinverse is constructed from the singular value
decomposition S = UΣVT as S+ = VΣ+UT , where U and
V are orthogonal matrices such that UTU = VVT = 1,
Σ is the singular value matrix composed of the square
roots of the eigenvalues of SST , and Σ+ is composed of
the inverse nonzero elements in ΣT .
In order to satisfy (155a), we have the equivalent con-

dition for each component of UT ~fX = ΣVT ~fY ,

(UT ~fX)k = Σkk(VT ~fY )k. (156)

Therefore, all singular values Σkk corresponding to

nonzero components of UT ~fX must also be nonzero;
we shall call these the relevant singular values. Singu-
lar values which are not relevant will not contribute to

the solution ~fY = VΣ+UT ~fX . We can see this since

(~fY )j = (VΣ+UT ~fX)j =
∑

k VjkΣ
+
kk(UT ~fX)k, so any

zero element of UT ~fX will eliminate the inverse irrele-

vant singular value Σ+
kk from the solution for (~fY )j .

Since the orthogonal matrices U and V do not contain

any poles, and since ~fX is ǫ-independent, then the only

poles in the solution ~fY = S+ ~fX = VΣ+UT ~fY must
come from the inverses of the relevant singular values in
Σ+. If a singular value Σkk has leading order ǫm, then its
inverse Σ+

kk = 1/Σkk has leading order 1/ǫm; therefore, to
have a pole of order higher than 1/ǫn then there must be
at least one relevant singular value with a leading order
greater than ǫn. However, if that were the case then the
expansion of S to order ǫn could not satisfy (156) since to
that order it would have a relevant singular value of zero,
contradicting the assumption #4 about needing to satisfy
the CV definition with the minimum nonzero order in ǫ.
Therefore, the pseudoinverse solution ~fY = S+ ~fX can
have no pole with order higher than 1/ǫn and the theorem
is proved.

Exceptions.—As the theorem indicates, the weak value
will arise as the weak limit of a conditioned average
in many common laboratory situations, which explains
its seeming stability in the literature. However, if the
sufficiency conditions of the theorem are not met, then
a different weak limit may be found. For example, if
there is ǫ-dependent unitary disturbance in the measure-
ment, then the post-selection can be effectively rotated
to a different framework for each measurement outcome,
which creates additional terms in the weak limit. Simi-
larly, if the CV are ǫ-dependent and diverge more rapidly
than 1/ǫn then additional terms will become relevant
in the weak limit. This latter case can happen either
from a pathological choice of CV by the experimenter
in the case of redundancy, or from a set of probability
observables that cannot satisfy the constraint equation
FX =

∑
y fY (ǫ; y)Ey(ǫ) with their lowest nonzero order

in ǫ. Such probability observables that do not satisfy
the constraint equation to lowest order are poorly corre-
lated with the observable in the weak limit. We refer the
reader to [53] for more discussion on the uniqueness issue
of weak values. The theorem presented here is a slight
generalization of one presented therein.

IV. CONCLUSION

In this work, we have detailed the contextual val-
ues approach to the generalized measurement of observ-
ables that we originally introduced in the Letter [49] and
further developed in [51–53]. This approach completes
the well-established operational theory of state measure-
ments by directly relating the state-transformations to
traditional observables. Each such operation typically
corresponds to a distinguishable outcome of a correlated
detection apparatus. An experimenter can construct an
observable from such an apparatus by assigning values to
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its outcomes. The assigned values can be generally am-
plified from the eigenvalues of the constructed observable
due to ambiguity in the measurement, and thus form a
generalized spectrum that depends on the specific mea-
surement context. Hence, we call these values contextual
values for the constructed observable that allow its indi-
rect measurement using such a correlated detector.
Constructing an observable using contextual values re-

quires only classical probability theory, according to (32).
Hence, the technique may be used wherever Bayesian
probability theory applies. We have outlined an alge-
braic approach to operational measurements from within
Bayesian probability theory to encourage applications
along these lines.
We have also shown how to construct a quantum prob-

ability space as the orbit of a classical probability space
under the special unitary group. This point of view illus-
trates that quantum observables can be constructed from
contextual values in precisely the same way (112) as their
classical counterparts. The approach also highlights the
similarity between the von Neumann/Lüder’s rule (89)
for updating a quantum state and invasive classical con-
ditioning (13), which leads to a similarity between quan-
tum operations (95) and classically invasive measurement
operations (25). Numerous physical examples have been
given.
By putting all observable measurements on the same

footing, the contextual values formalism subsumes not
only projective measurements but also weak measure-
ments as special cases. To emphasize this point, we have
analyzed the quantum weak measurement protocol in-

troduced by Aharonov et al. [17] in detail as an exam-
ple using a calcite crystal and a polarized laser beam.
We have also derived the quantum weak value (118) as
a limit point of a general pre- and post-selected condi-
tioned average (115) as the measurement strength goes to
zero and have given sufficient conditions for the conver-
gence to hold. Like the classically invasive conditioned
average (37), the quantum conditioned average, with the
quantum weak value as a special case, can exceed the
eigenvalue bounds of the observable.

The use of contextual values considerably clarifies and
formalizes the process of measuring observables, particu-
larly within a laboratory setting. The elements of the for-
malism directly describe operationally accessible quan-
tities that can be tomographically calibrated. As such,
the technique should be of considerable interest to exper-
imentalists working on measurement and control of both
quantum and classical systems. Furthermore, the for-
malism prompts interesting theoretical questions about
the foundations of quantum mechanics by highlighting
its myriad similarities to classical probability theory.
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