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Abstract

The third level has great influence on the time evolution of the spontaneous decay from the
excited state, when the counter rotating terms are taken into account. The influence in the
cascade-type and V-type three-level systems is investigated for two initial states, excited from the
ground states of the whole system (atom plus vacuum modes) and from the bare atom. The third
level results in the additional virtual photon processes, emitting a photon from one level and
reabsorbing the same photon to another level and vice versus. The main influence of the third level
is to accelerate the decay, which leads to or enhances the anti-Zeno effect, especially for the initial
state excited from the ground state of the whole system. Therefore, the third level could not be
neglected, if the counter rotating terms are taken into account.

PACS number: 03.65.Xp, 03.65.Yz, 42.50.Ct

(I) Introduction

The time evolution of an atomic spontaneous decay in a vacuum reservoir has attracted a lot
of attention in recent years, where the Zeno and anti-Zeno effects can be realized [1-19]. For the
time evolution, the rotating wave approximation (RWA) cannot be applied, because the counter
rotating terms (CRTs) have great influence. It was found that the initial time evolution is quite
different for different initial states [20]. It was also found that in the very short time period, the
effective decay rate of the initial state is much slower than the exponential decay of the long time
limit, which is the so-called quantum Zeno effect (QZE) [1-9]. Further study finds that the
effective decay can be larger than the exponential decay after the QZE period, which is the
so-called quantum anti-Zeno effect (QAZE) [10-16]. The QAZE was first discussed in a two-level
system under the RWA. It was found that there is no QAZE if the CRTs are included for the initial
state [15-17] excited from the ground state of the whole system (the atom plus vacuum reservoir)
[15,20], while there is QAZE in a two-level atom if the initial state is the excited state of the bare
atom (atom alone) [21]. These studies tell us that the QZE and QAZE heavily depend on the initial
states and the CRTs. It is well known that the two-level atom is not a good model for the



spontaneous decay when the CRTs are included, because the difference of the energy between

other levels and the upper level and the energy of a photon, @, —@), (@, =&, — @,), could be

larger than sum of the transition energy and the energy of a photon, @, + @, . It is nature to ask

what influence of additional levels on the time evolution of the spontaneous decay from upper
level to the lower level is, and how the influence depends on the initial states.

In this paper, we investigate the influence of the third level on the time evolution of the
spontaneous decay from the upper level in a cascade-type and a V-type three-level atom for two
different initial states without the RWA. The two initial states are the excited states from the
ground state of the bare atom and from the ground state of the whole system, respectively. The
state excited from whole system ground state is more realistic, as the atom is always in the
reservoir. Our study shows that both the initial states and the additional third level have great
influence on the time evolution of the atom in the initial period. The third level usually results in
the acceleration of the decay, that is to say, the enhancement of the QAZE.

This paper is prepared as follows: In Sec. II, we give the unitary transformation of the
Hamiltonian of the system composed of a multilevel atom and vacuum reservoir. We obtain the
effective Hamiltonian with considering the counter-rotating terms. In Sec. III, we introduce two
kinds of ground and initial excited states in two pictures. In Sec. IV, we discuss the survival
probabilities and decay rates in a cascade-type and a V-type three-level atom for the two initial
states without the RWA, and Sec. V is a summary. The general formulae of the dynamic evolution

can be found in Appendix.

(IT) Effective Hamiltonian without RWA

The interaction between a multi-level atom and the vacuum reservoir can be described by the
Hamiltonian (setting 7 =1)[22],
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where @), is the energy of the |l> state, bl:r (b,) is the creation (annihilation) operator of the
kth mode vacuum field with frequency @, and g, , is the coupling constant between the
atomic transition (|i> ~ | j>) and the kth mode vacuum field. The interaction, /1,, contains the

rotating and the counter-rotating terms. Using the unitary transform [15,16] e®  with

—ig K.ij
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S = (b —bk)|i> < j |, and neglecting the terms higher than the second order of

8k (this approximation is used throughout the paper), we obtain the transformed Hamiltonian

H®=H,+H’+H, with
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where V, . = Z8i % .Note that A in Eq. (3) includes the non-diagonal terms with (i # j ),
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which represents the indirect transition (virtual photon processes), emitting a photon from |l> (or

| j>) and reabsorbing the photon to | ]> (or |i>) and were neglected in [15,16]. The self-energy

of the free electron [22,23] is due to its exchange of virtual photons with the vacuum, and has the
following form [18-23]
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with @), being the cutoff frequency. The self-energy should be subtracted from the Hamiltonian,

as it can’t be observed. With subtracting the self-energy, the Hamiltonian can be written as
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denoting the nondynamic shift

[15-19] independent of the atomic decay process and
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(IIT) Ground and initial excited states

When we make the unitary transform, not only the operators (e.g. the Hamiltonian H ) but
also the states (e.g. the initial state) are transformed. In the two pictures (before and after the
unitary transformation), which are called H-picture and S-picture, respectively, they are related
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where the superscript H represents the picture before the transformation, and the superscript S
represents the picture after the transformation. Here, we use the direct product of the atomic

eigen-states (|i>) and the modes of the reservoir (| {n, }> ) as the basis of the whole system. Let us

consider the expressions of the ground states and the excited states in the two pictures.

A. The ground state of the free Hamiltonian (/)
The ground state of the free Hamiltonian ( /1)) in H-picture is
|2")=]2.10,}). @®)
By the unitary transformation, the expression of the above state in the S-picture, ‘ gs> , 18
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Note that the energy of this state is much higher than that of the ground state of the whole system.

B. The ground state of the whole system (/7).

The ground state of the whole system ( /) in the S-picture, ‘GS> ,1s [15]

G*)=|2.10,}). (10)

By the inverse unitary transformation, one can obtain the expression of the above state in the

H-picture [20], ‘GH>,
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C. Excited states from the ground states of //, and /1.

Two excited states are used for the initial states in our calculations, which are generated by

the Hermitian operator U g> <e| + |e> < g| + Z | ]> < J |} acting on the ground states of H, and

Jj#e,.g

H , respectively. We use ‘eH> and ‘es> (note little letter) as the initial state excited from the

ground state of H, in H-picture (superscript H) and S-picture (superscript S), respectively. We



use ‘E H> and ‘E S> (note capital letter) as the initial state excited from the ground state of H
in H-picture and S-picture, respectively. Please note in the whole paper, we use little letter (e) for
the state excited from the ground state of the bare atom (/) and capital letter (E) for that of the
whole system ( H ), while the superscripts, H and S, are for H- and S-pictures.

In the H-picture, the excited state (using little letter ) from the ground state of H, is,
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and the excited state (using capitél l‘etterE) from that of H is,
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In the S-picture, the corresponding states of Egs. (12)-(13) are,
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Because the atom is always in the vacuum, the initial state excited from the ground state of the

whole system, ‘E H’S> is easy to obtain. The initial state excited from the ground state of the

bare atom, ‘eH”S> is difficult to be generated, because we don’t know how to have the ground
state of the bare atom when it is always in the cavity or we need a difficult method of injecting the

excited atoms into the cavity. Note the energy of ‘eH’S> is much higher than the energy of



‘E””S>.

(IV) Time evolution of survival probability and time-dependent

decay rate

Next we investigate the dynamic evolution of the multi-level atom. We consider the survival

probabilities P'*’(¢#) and P'(f), and the corresponding time-dependent effective decay rates
Y5)(¢) and 9'9(f) for the two initial states. Here the superscripts (E) and (e) indicate the

initial states ‘E S> and ‘eS> in the S-picture, respectively. Note the probabilities and effective

decay rates are the same in S- and H-pictures for the same initial state. The wave function at time
¢t is determined by the Schrédinger equation, which is
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The detailed derivation is shown in the Appendix.

The survival probability of the initial state ‘E H> (‘E S> ) is

PP ()= |<¢” (0)| o" (t)>|2 _ |<¢s (0)| o (t)>|2 — explr 0]
(17)
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where A is the normalization factor (note the superscript £ for the whole system). Note the

second term in the last line of Eq. (17) originates from the correlation between |e, {Ok}> and

j,1k> and the superscript e for the bare atom. The survival probability of the initial state
EE
P(t) = exp[-y (1)t]
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In above, the j summation is over all levels except e and g. In the following, we consider the
influence of the additional levels, for simplicity, with two configurations.

A. Cascade-type configuration (Eg <E < Ej)
In this case, the two electric dipole allowed transitions are e <> g and e <> j, while the

transition between j and g is forbidden (g, ;, = 0), see Fig. 1.

(A1) The evolution and effective decay rate for the excited state ‘E S> (‘E H>)

In the cascade-type, the initial state can be written, from Eq. (15), as
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Fig.1.Cascade configuration
The coefficients of the state evolution in Eq. (16) can be obtained as
(1) = or(0)exp[~; (1)t / 2—iAE, ()], (20)
and C,, (t)=C,,(0) with the initial values
1 g
a(0)=1-—) —=F . (Qla)
2 Zk: (0, +0,)
g je
C;u(0)=—=F— (21b)
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In Eq. (20) }ff (t) and AE3'“(¢) are the time dependent decay rate from the state |e> to the

dyn

state |g) and the time dependent shift of the state |e) without the third level [19,20],

respectively,
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The detailed derivation of Egs. (20)-(22) can be found in the Appendix, see Eqgs. (A9)-(A12).
Substituting Eqs. (20)-(22) into Eq. (17), for a very short time we have

exp[—y(¢)t] = 1 — p(2)t, and the survival probability of the initial state,
P (0)=exp[-y" (1)1]

[ 2(C, O)F
=~ a(0)] exp{ dUE

, (23)
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> . Accordingly, the effective decay rate of the initial
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state ‘ E H> (‘ E S> ) in the cascade configuration is,
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2sin? (a)t/Z)
Flo,t)=————F—= (25)
W't
G ()= g . b(w-a,), (26)
k
Gl (@)=Y o ! S(w-w,) 27)
« 4 (@, +@,) Bl e

In Fig. 2, we plot ¥'*’(¢) in the red dashed curve, where we see both the QZE and QAZE.

The first term in Eq. (24), 75(t) , 1s just the effective decay rate without the third level, which
results in only the QZE [20]. Therefore, the QAZE comes from the second term in Eq. (24) due to

the third level, which is dependent on the initial condition |C,, (0) & / |o(0)]* and the

frequencies @), and w, . In order to identify the effect of level | ]> , we plot the decay rates for



different coupling strength of ¥, in Fig. 3 (see the solid curves), which tells that the larger 7,

is the stronger the influence of level | j> will be. It is clear that level | j> leads to quite different

dynamic evolution. The great influence of the third level cannot be neglected for the dynamic

evolution of the atom in the short time region.

Normalized decay rates

0.0 0.1 0.2 0.3

Fig.2 The normalized decay rates vs time t=cw,,t for different initial states
in the cascade configuration with yj, = 8 X 107.g, Yo = 6.4X 107 g, 74
=0, wje = 0.30,,. Here y, is the long time decay rate in the free vacuum for
a two-level atom. Note w., = 1.55x10" rad/s and 70 =6.26x10® rad/s for
the 2p-1s transition of the hydrogen atom.

Fig.3. The normalized decay rates y(E)(r)/ o vs time 7 with y,, = 6.4 X 10'7weg

in the cascade type (solid lines) with w; = 0.3w,., for different coupling



strength 75, = 8 X (107'°-107)e,q, and in the V-type (dashed curves) with @,
= 0.700¢g, w¢ = 0.3, for different coupling strength y;, = 8X (10'10—10'7)

Weg.

(A2) The initial state ‘es> (‘eH>) (excited from the ground state of the bare atom)

In this case, the initial state, Eq. (14), becomes

R e T e ey
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)
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The survival probability of this initial state is determined by Eq. (18). Although @(¢) in Eq. (18)
has the same form as in Eq. (20), a(t) = c(0)exp[—y’ (t)t/2— iAE(f)f;)(t)t] (see Eq. (A12)),

its initial value @(0) is different,
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which are different from that in Eqs. (22a) and (22b) because of the different initial state ‘E S> in

Eq. (19). The S, (¢) inEq. (18) is (see Eq. (A13)),
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with the initial value 5, (0) = . The survival probability of the initial state ‘eH> (‘e5>)

eg k

is
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where F(@,t)and G, (@) are defined by Eq. (25) and Eq. (26), and
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In Fig. 2, 7'“(¢) is plotted in the black solid curve. The first term in the last equality of Eq.

(33) is the decay rate of a two-level atom with RWA [20, 23-25], which results in the QAZE. The
second term in Eq. (33) is the same as the second term in Eq. (24), which enhances the QAZE as

shown in the black curve. We would like to mention that for the lambda configuration (| J> below

|e> ), its dynamic evolution is similar to the cascade one discussed above.
B. V-type configuration (E, < E ,E,)

In this case, the two allowed electric dipole transitions are e <> g and j <> g, and the

transition between e and j is forbidden ( 8y = 0), see Fig. 4.

11
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Fig.4. V-configuration

e initial state excited from the ground state of the whole system
B1) The initial ES) (lE" ited fi h d f the whol )

In this V-type, the initial state van be written from Eq. (15) as

S\ _ _l gi,jg _ gk,jg .
‘EHI 2Z<co,g+wk>2}e’{O“}> Lo, va " h) )

k

The survival probability of the initial state is determined by Eq. (17), where (f) has the same

form as Eq. (20), a(f)=c(0)exp[—y; ()t /2—iAE," ()] with 7 () and AE;" (1)

dyn dyn

determined by Eq. (22a) and (22b), and /(0)

1 8,
0)=1-—=p ——*—, (36)
2 Zk: (0, +@,)’
and C;, (1)=C,,(0) =—M. See Egs. (A21)-(A28) in the Appendix for details. The
Jg k

survival probability of the initial state |E" ) (|E°)) s
PP (1)=exp[-y"" (0)1]

0 2|C (O
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} (37)
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where A= a(0)[* exp{zM

> . Accordingly, the effective time-dependent decay
v a(0)]

rate of the initial state ‘ EH> ( ‘ ES> ) is
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where F(@,t)and G;g(a)) are the same as Eq. (25) and Eq. (27), and

2
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G;g (w) = Z )2 gk,jg

k (wjg t @,
In Fig. 5, 7/(E)(t) is plotted in the red dashed curve, where we have QAZE. The first term in
Eq. (38), }/es(t) , results in the QZE. Therefore, the QAZE arises from the second term in Eq. (38),

that is to say from level | ]> .

(B2) The initial state ‘es> (‘eH>) excited from the bare atom ground state.

In this case, the initial state, Eq. (14), becomes

S\ _ _l gi,"g gk,eg
€ >_{1 2Z(weg+wk)2} e’{ok}>+zk:w + o, L) 40

k eg k

The survival probability of the initial state is determined by Eq. (18), with ¥’ (¢) and AEjy(,f)(l‘)

determined by Eq. (30a) and (30b), [, (¢) is the same as Eq. (31) (see Eq. (A31)), and
1 Siece
a(0)=1--) —=x= (41)

b
25 (0, +@,)

and C,, (¢1)=C,,(0)=0. Therefore, the survival probability of the initial state ‘eH> (‘es> ) is

13



P(t) =exp[-7"(t)]
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. The corresponding time-dependent decay rate is
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. —Q,
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=27 Gr e (43)
k
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where F(@,t)and G, (@) are defined by Eq. (25) and Eq. (34).
In Fig. 5, #(¢) is plotted in the black curve. It is seen from Eq. (43) that »'“(f) is

independent of | j> and is the same as that in a two-level system under the RWA, which is

known to lead to the QAZE [20,23-25].

The influence of the third level on the dynamic evolution is plotted in Fig. 3 with the dashed
curves. It is clear that influence of the third level is great in the initial short period. For long time
all the curves in Fig. 3 will approach one.

40

Normalized decay rates

0.0 0.1 0.2 0.3

Fig. 5 The normalized decay rates vs time 7 for different initial states in V
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configuration with y,; = 6.4X 107 wq, 7;e =8 X 107w,g, 0y = 0.3, wjg =
0.7eg.

(V). Conclusion

We have studied the important influence of the third level on the time evolution of the
spontaneous decay in the cascade-type or V-type atom with two different initial states, when the
counter-rotating terms and the self-energy are taken into account in the Hamiltonian. The third
level results in the acceleration of the effective decay in the short-time regime, which leads to or
enhances the anti-Zeno effect, because of the re-absorption of the photon by one level emitted
from another level (virtual photon processes). This influence is sensitive to the third level, but not
sensitive to the initial states discussed. The third level could not be neglected, if the counter

rotating terms are taken into account.
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APPENDIX: DYNAMIC EVOLUTION AND THE SOLUTIONS

In the interaction picture, the interaction Hamiltonian in Eq. (5) reads as

N i<j o i<j o i#j
H} = Z Vk,.iiel(wﬂ_wk)tbk |J> <l| + Z n,jie_l(wﬂ_wk)tblj |’> <j|+ Z’?em””
i

i,j.k i,j.k

iy (jl, (an

gk,iqgk,qj 2 | a)iqa)qj | +a)qja)k + a)qia)k

where 77 = Z

|i> < ]| The time evolution of the wave
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function,

l0(0)), =a(t)]e,{0})+ B(1)]g. {0 )+ Y. C,(1)].10,})

j#e.g (A2)
+Zak(t) eﬂlk>+2ﬂk(t)|g91k>+ Z C_j,k(t) jﬂlk>

Jj#e.g Kk

is governed by the Hamiltonian H IS Note that the relation between the Schrodinger picture and
s
e

the interaction picture is |(0(t )>S = exp(—iH 1) | o(t )>

1) Cascade configuration (£, <E, < E))

The equations of motion are
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a(t) =iy B (), e, (A3)
k

B()==iy C (e, (Ad)
Jj>e
Ci () == o (O, & =if(eme ™, (AS)
k
G, (1) ==Y C ()W, e, (A6)
j>e
:Bk (t) = —iO((t)Vk’egefi(w;giwk )t’ (A7)
C,, (1)=0. (A8)
From Eq. (A8) we can get,
C, (1)=C,(0). (A9)
Integrating Eq. (A7),
B(0)= B O) =i &t W, e ar, (A10)
and then inserting into Eq. (A3), we get
a(ty=—iy B (O, e =y jo dt' ot W2, & %, (A1)
k k

For a sufficient short time ¢, we can replace @(¢’) by @(0)[11,21] and

a(t) = a(0) - a(O)[ d' [ di"Y Ve N i Ay B (0 e
k k

oy ’ (-0 1 i(ay -~ )
= a/(0)— a(0) jo At (t=1)Y V2 e —i jo 'y B (0, &%
k k

(@)t .
z(x(o)exp — _lZVl‘ZBg |:1_lBk(0)I/k—;g(a)e/ —[()k):|e . 21_ . it
4 k ' a(o) | (weg - a)k) a)e‘g - a)/c
. (A12)
ZSiHZ(a)‘?g % tJ
2

(w;g - wk )2t

= a(0)exp? —t Zk: sz,eg [1 - il((((()o)) [/l;lg(we'g -, )}

+i{ZVkZ,eg{ _ —{l—ﬁk(O)ij;g(w;g_wk)}w}}

@, - o, a(0) (@, —®,)’t
= a(0)exp{ [y (1) / 2+iAE, ()]}
The solutions of /[ (f) is obtained by replacing /(') with o(0) in Eq. (A10) [21],

1— —i( )y~ )t
B.(t) = B.(0)- (O, ,, ——— (A13)

€8 (a):g _a)k)

Integrating Eqs. (A4) and (A6), we have
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B(t)=—i J' Ot > C (e, (A14)

Jj>e

o, (1) = —ijo A’y C (W, e %, (A15)

j>e

where (0)=0, ¢, (0)=0 have been used. By substituting Eqs. (A14) and (Al5) into Eq.

(A5), one can easily prove with neglecting the higher order terms

()=, (1) =C,(0) = 0. (A16)

2) V configuration (Eg < Ej E,))

() =iy B (W, e " =i Y C(tme™, (A17)
k Jj*e.g
C.()=—iY. BV, &P ™" —ia(t)me™, (A18)
k
Bty ==ie0); e =i 3 C L0, e (A19)
Jj#e.g
B(t)=0, ¢, (t)=0, and C,,(1)=0. (A20)

From Eq. (A20), we can get

BO)=0,(1)=0,and C,, (1) =C,, (0) =——2L— (A21)
a)jg +

Integrating Eq. (A20),

Loy ’ —i(af, -t . Loy ’, —i(,—w )t
O ﬁk(O)—ijodt oWy e N =iy jodz C((W, e ™", (A22)

Jj*e.g

then substituting into Egs. (A17) and (A18), one has

(@), — t N it
a(t) = —lz ﬂk (O)Vk,gge (W =@ )t _ZIO dt'a(t')sz’ege (@~ )(t—1)
k k

A23
Loy ’ it i(@,—w)t—t) . i)t ( )
-y Iodth(t Wi oVi € e -y C,(me™,
Jj*e.g.k Jj*e.g
- _ (@)~ )t Loar o —idlt i(w,—w, )11
C() ==Y B O, ™ = [ di ', i o "
‘ k (A24)

t oy o i),
- jo dr'’C (W e —ia(tye ™™
k

Replacing a(t’), C;,(t) by a(0), C,,(0) [11,21], we have
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i), — to i(W, )t~
ot) = —iz B (O, e —a(0)Y jo AtV e
k

o ) » (A25)
= Y GO, deV, (T i Come™,
Jj#e,g .k Jj#e.g
C,(==iy B O, a(@ZIszkenge el
: (A26)

_ C_/‘ (O)Z J.O dt/n%.jgei(wjg*%)(tfz) _ ia(f)ﬂeiingt,
Kk

Integrating Eq. (26) and substituting into Eq. (25) and replace a(¢) by (0) [11,21], we have

z(w - )t R
ot) = or(0) — za(())j dtz kegﬁ—zj dt Z,b’k(O) gl
J. z w;/t' e:(w o d J’ Z Sy
—i| df C,0V ", ——l dr C(O)?]e i
Jj#e,g.k . k « (a)jg c) Jj*e.g
- (A27)
| — o/ a 1= /e
=(0) Ce| = + BON ,—F——
{ ;kg|:(@g_@)2 (a)eg @):|} Z k kg( )
N Z C (0) keg ng l:l—eiw;/t _l—ei(@,g—@)t:l_i_ z C (0)77 —
Jjre.gk W, — @, a); (a);g —@) | e ¢
Dueto C,(0)=0, Eq. (A27) becomes
2 ) _AO o }1—5‘”&“&” i
) =a(0)31- I/keg keg g / 2+ ’
= ){ L5 {[ a0 = %N [ oy g
= 0 - Vkeg I/keg ez
«“« )e"p{ 25 { a(0) = J( &-ay  d,-a
) a)e' — @,
2sin’| —&——¢
_ _ A0, [ 2 j (A28)
= aO)exp|—t ZV{ T )} s

.1 B0 1 (g |50 — )]
+Z{Zneg{ P { ) Viewe @)}—(@g_@)zt }}}

= o(0)exp{ 7, (1) | 2+iAE; (1)]}.

Integrating Eq. (A25) and substituting into Eq. (A26) and replace C, @) by C,x(0), we

have
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et(w,g -t

z(w;-g— W
g ( _ZJ. dt Z@(O) kjg€ "
e

e _ elw/g —a)’

(d,-a)

1— “”’/"g7w)c )

C,(t) = C,(0)~iC,(0) j dt ZV,?

—ie(0) j dt Z A — i 0y jo dfe™

way (A29)

l—e
(d,—a,) (w aa{)} ;ﬁ‘()"’g (d,-@,)

{l—eiw“’t I

_C(O) 1= ZVk2/g|:

-
}01(0)77 ;
1)

g

7 + 7
LA C ALY

—al0 keg k/g
a()z "o

With C;(0) =0, we obtain,

-, )t we/t

1-¢ (e
Cj(f)~;ﬁk(0) k,g(,—k)—a( )77 o

—i);t (@~ )t
k eg k \Jg l-e 7 l1—e
_ a(())z o { — t— .

— @, o (a)jg - wk)

(A30)

and from Eq. (A22) and replacing a(¢) by a(0), we have [21],

1 7i(w;g — Wy )[

Bo(0) = B.(0)— a(O)mgg(e—a)). (A31)
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