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We present a theoretical technique for solving the quantum transport problem of a few photons
through a one-dimensional, strongly nonlinear waveguide. We specifically consider the situation
where the evolution of the optical field is governed by the quantum nonlinear Schrédinger equation
(NLSE). Although this kind of nonlinearity is quite general, we focus on a realistic implementation
involving cold atoms loaded in a hollow-core optical fiber, where the atomic system provides a
tunable nonlinearity that can be large even at a single-photon level. In particular, we show that
when the interaction between photons is effectively repulsive, the transmission of multi-photon
components of the field is suppressed. This leads to anti-bunching of the transmitted light and
indicates that the system acts as a single-photon switch. On the other hand, in the case of attractive
interaction, the system can exhibit either anti-bunching or bunching, which is in stark contrast to
semiclassical calculations. We show that the bunching behavior is related to the resonant excitation

of bound states of photons inside the system.

PACS numbers: 42.65.-k,05.60.Gg,42.50.-p

1. INTRODUCTION

Physical systems that enable single photons to inter-
act strongly with each other are extremely valuable for
many emerging applications. Such systems are expected
to facilitate the construction of single-photon switches
and transistors [2-4], networks for quantum information
processing, the realization of strongly correlated quan-
tum systems using light [5-8] and the investigation of
novel new many-body physics such as out of equilibrium
behaviors. Omne potential approach involves the use of
high-finesse optical microcavities containing a small num-
ber of resonant atoms that mediate the interaction be-
tween photons [2, 9]. Their nonlinear properties are rel-
atively straightforward to analyze or simulate because
they involve very few degrees of freedom (i.e., a sin-
gle optical mode) [10, 12, 13]. Recently, an alterna-
tive approach has been suggested, involving the use of
an ensemble of atoms coupled to propagating photons
in one-dimensional, tightly-confining optical waveguides
[14-20]. Here, the nonlinearities are enhanced due to the
transverse confinement of photons near the diffraction
limit and the subsequent increase in the atom-photon in-
teraction strength. The propagation of an optical field
inside such a nonlinear medium (e.g., systems obeying
the quantum nonlinear Schrodinger equation) is expected
to yield much richer effects than the case of an optical
cavity due to the large number of spatial degrees of free-
dom available. Simultaneously, however, these degrees
of freedom make analysis much more difficult and in
part cause these systems to remain relatively unexplored
[8, 21-24]. As we have recently discussed in Ref.[25],
the multi-mode, quantum nature of the system plays an
important role and results in phenomena that have no
analogue in either single-mode cavities or classical non-

linear optics. It is interesting to note that similar low-
dimensional, strongly interacting condensed matter sys-
tems are an active area of research, but most of this work
is focused on closed systems close to the ground state or
in thermal equilibrium [26-30]. On the other hand, as
will be seen here, the relevant regime for photons often
involves open systems and driven dynamics. We note
that such open driven systems have not been considered
in earlier studies of photonic nonlinear Schrodinger equa-
tion systems [22, 31-33].

In this article, we develop a technique to study the
quantum transport of a few photons inside a finite-length,
strongly nonlinear waveguide where the light propaga-
tion is governed by the quantum nonlinear Schrodinger
equation (NLSE), and apply this technique to study the
operation of this system as a single-photon switch. In
particular, we study the transmission and reflection prop-
erties of multi-photon fields from the system as well as
higher-order correlation functions of these fields. We find
that these correlations not only reflect the switching be-
havior, but reveal some aspects of the rich structure as-
sociated with the spatial degrees of freedom inside the
system, which allow photons to “organize” themselves.
In the regime where an effectively repulsive interaction
between photons is achieved, anti-bunching in the trans-
mitted field is observed because of the switching effect,
and is further reinforced by the tendency of photons to
repel each other. In the attractive regime, either anti-
bunching (due to switching) or bunching can occur. We
show that the latter phenomenon is a clear signature of
the creation of photonic bound states in the medium. Al-
though we focus on a particular realization involving the
propagation of light, our conclusions on quantum trans-
port properties are quite general and valid for any bosonic
system obeying the NLSE.



This article is organized as follows. In Sec. 2, we de-
scribe an atomic system whose interactions with an opti-
cal field can be manipulated using quantum optical tech-
niques such that the light propagation obeys the quan-
tum NLSE. This method relies upon electromagnetically
induced transparency (EIT) to achieve resonantly en-
hanced optical nonlinearities with low propagation losses
and the trapping of stationary light pulses using spa-
tially modulated control fields. Before treating the non-
linear properties of the system, we first consider the linear
case in Sec. 3, where it is shown that the light trapping
technique leads to a field build-up inside the medium
and a set of discrete transmission resonances, much like
an optical cavity. In Sec. 4, we then investigate the
nonlinear transport properties of the system such as re-
flectivity and transmittivity in the semi-classical limit,
where the NLSE is treated as a simple complex differ-
ential equation. Here we find that the presence of the
nonlinearity causes the transmission resonances to shift
in an intensity-dependent way — the system behaves as
a low-power, nonlinear optical switch, whose behavior
does not depend on the sign of the nonlinear interac-
tion. In Sec. 5, we present a full quantum formalism
to treat the NLSE transport problem in the few-photon
limit. Sec. 6 is dedicated to analytical solutions of the
NLSE with open boundary conditions when the system is
not driven. In particular, we generalize the Bethe ansatz
technique to find the resonant modes of the system, which
help to elucidate the dynamics in the case of the driven
system. The driven system is studied in Sec. 7, where
numerical solutions are presented along with a detailed
study of the different regimes of behavior. In particular,
we find that the correlation functions for the transmitted
light do depend on the sign of the nonlinear interaction,
in contrast to what the semi-classical calculations would
suggest. We conclude in Sec. 8.

2. MODEL: PHOTONIC NLSE IN 1D
WAVEGUIDE

In this section, we consider the propagation of light
inside an finite-length atomic medium under EIT con-
ditions and with a Kerr nonlinearity. We also describe
a technique that allows for these pulses of light to be
trapped within the medium using an effective Bragg
grating formed by additional counter-propagating optical
control fields. We show that in the limit of large optical
depth the evolution of the system can be described by a
nonlinear Schrédinger equation.

Following Ref. [8], we consider an ensemble of atoms
with the four-level internal structure shown in Fig. 1,
which interact with counter-propagating quantum fields
with slowly-varying envelopes £ inside an optical waveg-
uide. These fields are coupled to a spin coherence
between states |a) and |¢) via two classical, counter-
propagating control fields with Rabi frequencies QL
largely detuned from the |b) — |¢) transition. The case

where the fields propagate only in one direction (say in
the “+” direction) and where the detuning is zero cor-
responds to the usual EIT system, where the atomic
medium becomes transparent to £; and the group veloc-
ity can be dramatically slowed due to coupling between
the light and spin wave (so-called “dark-state polari-
tons”) [34]. On the other hand, the presence of counter-
propagating control fields creates an effective Bragg grat-
ing that causes the fields £4 to scatter into each other.
This can modify the photonic density of states and cre-
ate a bandgap for the quantum fields. This photonic
bandgap prevents a pulse of light from propagating and
can be used to effectively trap the light inside the waveg-
uide [35, 36]. The trapping phenomenon is crucial be-
cause it increases the time over which photons can inter-
act inside the medium. The presence of an additional,
far-detuned transition |¢) — |d) that is coupled to &y
leads to an intensity-dependent energy shift of level |c),
which translates into a Kerr-type optical nonlinearity
[37].

We now derive the evolution equations for the quan-
tum fields. We assume that all atoms are initially in their
ground states |a). To describe the quantum properties
of the atomic polarization, we define collective, slowly-
varying atomic operators, averaged over small but macro-
scopic volumes containing N, > 1 particles at position
2,
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Gap(2,t) = ]\TZM’M&" (1)
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The collective atomic operators obey the following com-
mutation relations,

[6ap(2), 60 (2')] = %05(2 — 2)(0ppbar(2) = bar0,8(2));

(2)
where ng is the linear density of atoms in the z direc-
tion as it is assumed to be uniform. The forward and
backward quantized probe fields in the z direction obey
bosonic commutation relations (at equal time),

[E4(2), EL ()] = 8(= = 2. (3)

The Hamiltonian for this system in the rotating frame
can be written as

H= — ng / [Gbe(2)(Qpe™* +Q_e ) 4 H.c (4)

+ gV2r[6pa(2)(Eqe*o® 4 € e7h0%) 4 Hoc)
+ gV2r[64c(2)(Epe*o® 4 E_em0%) 4 H ¢
+ Al&bb(z) + Agé’cc(z) + (Ag + Ag)&dd(z)dz

where g = p, /47;%% is the atom-field coupling strength,

1 is the atomic dipole matrix element, and A is the effec-
tive area of the waveguide modes. For simplicity, we have



assumed that the transitions a-b and c-d have identical
coupling strengths g and have ignored transverse varia-
tion in the fields. The terms A; denote the light field-
atomic transition detunings as shown in Fig. 1(a). k. is
the wavevector of the control fields, while kg = nywap/c
characterizes the fast-varying component of the quantum
field and ny, is the background refractive index. We define
Vg = 2?2 /2mg*ng as the group velocity that the quan-
tum fields would have if they were not trapped by the
Bragg grating (we will specifically be interested in the
situation where Q4 = Q_ = ). Following Ref. [34], we
can define dark-state polariton operators that describe
the collective excitation of field and atomic spin wave,
which in the limit of slow group velocity n = i > 1

are given by Wy ~ Lginoéi Note that the defini-
tion of the dark state polariton includes atomic polar-
ization operators which guarantee the bosonic commu-
tation relations for the polaritons, for any value of the
group velocity as long as the total number of excita-
tions are small compared to the number of atoms [34]:
[W4(z), ¥l (2)] = 6(z — 2/). The definition of the po-
lariton operators specifies that the photon flux entering
the system at its boundary is equal to the rate that po-
laritons are created at the boundary inside the system —
i.e., c<€l€+> = vg<\i/i\i!+>. In other words, excitations
enter (and leave) the system as photons with velocity
¢, but inside the waveguide they are immediately con-
verted into polariton excitations with group velocity v,.
Field correlations will also be mapped in a similar fash-
ion — in particular, correlation functions that we calcu-
late for polaritons at the end of the waveguide z = L will
also hold for the photons transmitted from the system.
The total number of polaritons in the system is given by
Npot. = [(IT 0 ) + (070 )de.

The optical fields coupled to the atomic coherences of
both the @ — b and ¢ — d transitions are governed by
Maxwell-Bloch evolution equations,

0 0\ s ) . .
<8t =+ caz) Ex(z,t) = igV2mno(Gap + Gea).  (5)

Similar to the photonic operators, the atomic coher-
ences can also be written in terms of slowly-varying com-
ponents,

Gap = 6;;6”““ +&;beﬂkoz, (6)

Gea = OLe*0% 6 om0z, (7)

We note that higher spatial orders of the coherence are
thus neglected. In practice, these higher orders are de-
stroyed due to atomic motion and collisions as atoms
travel distances greater than an optical wavelength dur-
ing the typical time of the experiment [38]. Alternatively,
one can use dual-V atomic systems that do not require
this approximation [39].

In the weak excitation limit (64, ~ 1), the population
in the excited state |b) can be neglected, (Gp)~0. In this

P,(0) Nonlinear Medium
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FIG. 1: (Color online) (a) Four-level atomic system for cre-
ating strong nonlinearity. Counter-propagating control fields
modulate the EIT for the forward- and backward-propagating
probe, and |¢) — |d) transition gives rise to a Kerr-type non-
linearity. (b) The light is confined in the transverse direc-
tion due to the presence of the waveguide and experiences an
effective Bragg grating due to the presence of the counter-
propagating light.

limit, the evolution of the atomic coherence is given by

A4 . ~+

., = (1A =T/2)67, (8)

+ g2y + iQ4 640 TAR
where Ak = k. — kg and T is the total spontaneous emis-
sion rate of state b (for simplicity we also assume that
state d has an equal spontaneous emission rate). For the
spin wave, we have:
Gae = 103640 +i(6,Q5e BF 4 67 QF A7)
+ gV 271'(:‘16_““02 + ET ettho2)5,4. (9)

In the adiabatic limit where gv/2m(5,.£+) < T, the
coherence 7,4 can be approximated by

gV 214

T (Bt £ ). (10
2

Oad =~

Therefore, the spin wave evolution can be written as,

&ac = iAgé’ac-i-Z'(a':bQ*Jre_iAkz+5-;bﬂieiAkz)
27ig? 5t 6 At A s
+ ———————(ELEL +ETE )b 11
—Ag—Ag—ig(++ )o (11)

Similarly, we can write the evolution equation for the
atomic polarization 6.4. We now consider the situation



where Q = Q_ = Q, such that the counter-propagating
control fields form a standing wave. In the adiabatic
limit [34], and keeping all terms up to third order in the
quantum fields, substituting these results into Eq. (5)
and simplifying yields the following evolution equations
for the dark-state polariton operators,

(0. + 0¥, — _g(m —0) - Do, 40
— ALV, O ) (B, 0
+ (U (0 )E,] (12)
(—cO. +0)W_ = +§(‘i’+ —) - g&s(\h T
— ALV, O ) (B, 0
+ (U O+ )], (13)
where the linear dispersion is characterized by £ =
2
% . The nonlinearity coefficient ii given by the
single photon AC-Stark shift: A,, = 2(A;-7qir/2)' We note

that the wave-vector mismatch Ak has been compen-
sated for by a small extra two-photon detuning equal
to (—Ake/n).

The above equations describe the evolution of two cou-
pled modes. It is convenient to re-write these equations
in terms of the anti-symmetric and symmetric combina-
tions A = (¥, —¥_)/v2and S = (¥, +¥_)/v2. By
subtracting Egs.(12,13), the time evolution of the anti-
symmetric mode takes the form

c0.S + 0 A= —EA —i2A,5TSA. (14)

For large optical depths (i.e. £ > 1), we then find that
the anti-symmetric equation of motion can be simplified:
A~ —(c/£)0,S, i.e. the anti-symmetric mode adiabati-
cally follows the symmetric mode. In this limit, now by
adding Eqs.(12,13), the evolution of the whole system can
be described by a single nonlinear Schrédinger equation,

0 c? 0? ) t a2
natS 3 6225+42An5 5% =0. (15)

Physically, the coupling between ¥, induced by the
Bragg grating causes them to no longer behave in-
dependently, much like the two counter-propagating
components of an optical cavity mode. We can
write the above equation in dimensionless units by
introducing a characteristic length scale L., =
c/[Im[¢]] = ¢(A} +T?/4)/2rg’np|A1| and time scale
teon = n//Im[€]| = (A2 +T2/4)/2Q%|A1|.  Leon corre-
sponds to the length over which the field acquires a 7-
phase in the propagation. The dimensionless NLSE then
reads

a8 1 928 P
OO0 L U &2
7 = Tom o + 215157, (16)
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where for Ay < 0, the effective mass is m = (1 +i%)

27, _ _wg’/c
c T A,pir/2

and the nonlinearity coefficient is k =

Note that W (z,t) and S(z,t) are also in units of y/L_}

coh’
such that [5}(2),5’1(2’)] = §(2 — Z'). For simplicity,
we omit tilde superscripts in the following. We can
also write the nonlinear coefficient as k = m,
where we have identified T'1p = 47wg?/c as the spon-
taneous emission rate into the guided modes (I'1p<T).
We are primarily interested in the limit |Aq o[>>T" such
that m, k are mostly real and the evolution is dispersive.
Note that in this notation, the anti-symmetric combi-
nation of forward and backward polaritons is given by
A~ —i/2md,S ~ —id,S.

3. LINEAR CASE: STATIONARY LIGHT
ENHANCEMENT

In this section, we investigate the linear transmission
properties of the signal field as a function of its frequency.
The control field leads to a Bragg grating that couples
the forward and backward components of the signal field
together. We show that the system therefore acts as an
effective cavity whose finesse is determined by the optical
density of the atomic medium.

For the linear case (k = 0), it is sufficient to treat
the forward and backward field operators as two complex
numbers. In the slow light regime (1 > 1), the coupled
mode equations (Eqgs. 12,13) can be written in the Fourier
domain, with our dimensionless units, as

0.9 = Z6(QL+P_)+im(®L —d_) (17)

~

0N

—0.0_ = —§(By + D) —im(dL —D_), (18)

[\

where ¥, (z,7) = ®,(2,0)e ™ and ¥_(z,7) =
®_(z,0)e”"and 6 is the dimensionless two-photon de-
tuning § = Ast.on. Note that the above equations reduce
to the linear limit of Eq.(16) and the large optical depth
approximation is not required to adibatically eliminate
the anti-symmetric mode and replace it in the equation
of motion of the symmetric mode. We specify that a clas-
sical field @4 (z = 0,0) = « enters the system at z = 0
with no input at the other end of the system (z = d),
®_(z = d,0) = 0, as shown in Fig. 1(b). We note
that d = L/Lcop is the length of the system in units of
the coherence length introduced earlier. For negligible
losses (|A1[>T ) and A; < 0, m ~ 1/2 and the profile of
forward-going polaritons inside the system will look like:

D4 (2,0) 20V cos[(d — 2)Vd] + (1 + ) sin[(d — 2)V/3]
a 2iv/8 cos[dV/8] + (1 4 6) sin[dV/9)] '
(19)

Therefore, for a system with fixed length d, the trans-
mission coefficient varies with the frequency of the in-
cident field, with transmission resonances occurring at



the values /dod = nm (n is an integer). At these
resonances, the system transmittance is equal to one
(|1®(d,d)] = |9(0,6)]) and a field build-up occurs in-
side the medium with a bell-shaped profile, similar to
a cavity mode (see Fig. 2). The positions of these reso-
nances (quadratic in n) reflect the quadratic dispersion
in Eq. (16). Note that in real units, the positions of the
resonances will depend on the amplitude of the control
field, since Az = 62‘@;“2 In the limit of a coherent opti-

cally large system (d > 1), the intensity amplification in
the middle of the system is equal to (d/27)? for the first
resonance. In other words, the Bragg scattering creates a
cavity with an effective finesse proportional to the square
of the coherent length of the system (F oc d?).

We now derive the width of the first transmission reso-
nance. For small variations dg = d; around the resonance
frequency, we can write

@, (d) in m 3
- _1— W&, + —=d + O(6;).

3,(0) .

1663

Therefore, the width of the resonances (say where it
drops by half) is given by
T

26, ~ 65/ = (%)3.

- (21)

We have kept terms up to second order in &, since the
first order term does not give a decreasing correction to
the transmittance. While we have previously ignored ab-
sorption (as determined by the real part of £), we can
estimate that its effect is to attenuate the probe beam
transmission by a factor 8 = d I'/|A4]. As it is shown in
Fig. 3, for large optical densities, § can fully character-
ize the transmission coefficient on resonance (6 = dg). In
particular, for a fixed 3, the resonant transmission is con-
stant for any large optical density. In other words, since
the optical depth of the system is given by d°P! = d@,
the transmittivity of the system remains constant for any
d°P! with the choice |A;] = T'\/d°Pt/3. In this case the
effective cavity finesse for the system becomes propor-
tional to the optical density, i.e., F oc d°Pt.

The total number of polaritons in the system can be
estimated by,

Npol (22)

d
/0 |4 (2)]* + |@_(2)[*d=

(d% + 7%)? , d3 9
= —— 10, (0)]* = — [P, (0)]°.
2L O ~ @4 (0)
This again shows that the polaritons experience many
round trips inside the system before exiting. In par-
ticular, if we define the average intensity inside the
medium as [®9°¢|? = Npo/d, then we readily observe
that the intensity of the polariton field is amplified
inside the medium by the square of the system size
(|®5¢?/|@4(0)|* = (d/2m)?) — i.e. the finesse is pro-
portional to the optical density (d°P?).

T RN 12
== (@] 10
208 F ]
= E K AW 8
£06[ qf.0 |\
IS .' N ' 6
2] 1 .
c 0.4} . N .
E : '.‘ ,.' - = dT/A=01 4
0.2r!4\s. .0/ |---drir=05
AU 5
S —dT/A=1.0
I
% 4 % d/2 d
5 (d/m)® 2L,

FIG. 2: (Color online) Linear case: (a) Transmittivtiy as a
function of two-photon detuning. Transmission peaks are
attenuated because of linear loss on |a) — |b) transition
which are plotted for three different loss rates § = d I'/A;.
(b) When the system is tuned on a transmission resonance
(V/dod = nr), the field inside the medium is amplified.
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FIG. 3: (Color online) For large optical densities, the trans-
mission on resonance (§ = do), only depends on B =

qort <ZET)2-

The original proposal for observing an enhanced Kerr
nonlinearity with a four-level atomic system using EIT
makes use of an optical cavity to enhance the nonlin-
earity [10]. However, as pointed out in Ref. [12], the
scheme suffers from some inaccuracies in the effective
Hamiltonian. More specifically, in Ref. [10], the effective
Hamiltonian was evaluated at the center of the EIT trans-
parency window. However, in practice, EIT dramatically
decreases the cavity linewidth because of the large dis-
persion that accompanies the vanishing absorption [40];
this causes photons at frequencies slightly shifted from
the central frequency to be switched out of the cavity.
This leads to an extremely small allowable bandwidth
for the incoming photons [12] and was neglected in the



original analysis. We emphasize that the analysis pre-
sented here takes into account the dispersive properties
of the medium, as we have included the field dynamics
up to second order in the detuning from resonance (this
accounts for the effective mass of the photons in our sys-
tem). We verify the consistency of this derivation in Ap-
pendix A by solving the linear system including full sus-
ceptibilities. It is shown that the results are consistent
near the two-photon resonance (i.e., frequencies around
d=0).

4. SEMI-CLASSICAL NONLINEAR CASE
4.1. Dispersive regime

In this section, in contrast to the previous section, we
include the nonlinear term in the evolution equations to
investigate its effect in the semi-classical limit (where the
fields are still treated as complex numbers). In this pic-
ture, the effect of nonlinearity causes the transmission
peaks to shift in frequency in an intensity-dependent way
to the left or right depending on the sign of the nonlin-
earity coefficient k. We show that when |k|d°P* > 1, the
magnitude of the shift is large even at intensities corre-
sponding to that of a single photon. In this regime, we
expect that the system can act as a single-photon switch
and that signatures of quantum transport will become
apparent (the quantum treatment is described in Sec.5).

Because of the self-phase modulation term in the evo-
lution equations (Eqs. 13), the forward and backward
fields acquire a phase shift proportional to their inten-
sity. Moreover, due to the conjugate-phase modulation
terms, each field undergo an extra phase shift propor-
tional the intensity of the other field. Classically, this
yields a frequency shift in the transmission spectrum
when the nonlinearity is small. The shift in the trans-
mission peak can be approximated by A§ ~ 2k|®%ve|?
where [$4V¢]? ~ %\®+(0)|Q is the average intensity of
polaritons in the system. Suppose that we want the non-
linearity to be strong enough to shift the transmission
peaks at least by half of their widths, A§ ~ £5%/2. Then,
from Eq.(21) this condition can be written as

127 (0)]2 = (g)5 ﬁ (23)

On the other hand, according to Eq.(23), we can write
this condition in terms of the critical number of polari-
tons inside the system,

3
r ™
= (21)

Since the nonlinearity coefficient is given by the light
shift on the |¢) — |d) transition, in the dispersive

regime (Ay > T'), we have k = +112 ALZ' Thus, we ex-

pect to have substantial nonlinearities at the level of one

polariton (i.e., one incoming photon), Ng% = 1, if
r A,
R S p— 25

where I'1 p is the rate of spontaneous emission rate into
the guided modes. Strictly speaking, note that a single
photon cannot actually have a nonlinear phase shift (as
correctly derived later using a fully quantum picture);
however, we can still use the results of this semiclassi-
cal calculation to qualitatively understand the relevant
physics.

We can also rewrite the above condition in term of the
optical density (d°P* = d4+) needed in the system. From
the linear case, we know that an optimal detuning, for
a transmission of 90%, should satisfy dALl ~ 0.5. Then,
Eq. (25) can be written as

r A
dort = 27T3E?2. (26)

Taking for example a system where Ay ~ 5I" and FlTD ~
0.1, nonlinearities at a few-photon level can be observed
for an optical density d°P* ~ 6200.

First, let us consider the case of positive k. In Fig.
4, we observe that at large enough optical density, the
system can have very different transmission spectra for
low and high intensities that classically correspond to
having one and two polaritons (photons) inside the sys-
tem, respectively. Although we have ignored the quan-
tization of photons in this section, we can develop some
insight into the transmission properties of one- and two-
photon states. Loosely speaking, if we fix the input field
frequency to lie at the one-photon (linear) transmission
peak (dp), the system would block the transmission of
incident two-photon states. More realistically, suppose
we drive the system with a weak classical field (coher-
ent state), which can be well-approximated as containing
only zero, one, and two-photon components. We then
expect that the one-photon component will be transmit-
ted through the system, while the two-photon component
will be reflected, leading to anti-bunching of the trans-
mitted light. We note that the general spirit of this con-
clusion is sound; however, the correct description of the
system is achieved by taking into account the quantiza-
tion of photons which is presented in the next sections.

A similar analysis holds for the case of negative k. Note
that the sign of k depends on the detuning of the pho-
tonic field from the atomic transition |¢) — |d), which
can easily be adjusted in an experiment. This is in con-
trast to conventional nonlinear optical fibers and non-
linear crystals, where the nonlinearity coefficient is fixed
both in magnitude and sign. We find that a negative
nonlinearity simply shifts the transmission spectrum in
the opposite direction as for the positive case, as shown in
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FIG. 4: (Color online) Due to nonlinearity, in the perturbative
limit, the transmission spectrum shifts for different intensities.
The integrated intensities inside the system is related to the
number of present field quanta. The optical depth for these
calculations is chosen to be d°?* = 3000.

Fig. 5, but all other conclusions remain the same. In par-
ticular, we would expect anti-bunching to occur for this
case as well, when a weak coherent field is incident with
its frequency fixed to the linear transmission resonance.
Surprisingly, the quantum treatment (Sec.7), shows that
the above conclusion is wrong and system behaves very
differently for negative nonlinearity. We show that this
difference in behavior can be attributed to the presence
of additional eigenstates (photonic bound states) in the
medium and their excitation by the incident field.

For even larger nonlinearities or intensities, the trans-
mission spectrum can become even more skewed and ex-
hibit bistable behavior, as similarly found in Ref. [41]
in the context of transport of Bose-Einstein condensates
in one dimension. There, the classical NLSE (Gross-
Pitaevskii equation) was solved to find the mean-field
transport properties of a condensate scattering off a po-
tential barrier.

Instead of considering the switching effect as a func-
tion of number of photons inside the medium, we can
also consider the number of photons that need to be sent
into the system. Clearly, to have a well-defined trans-
mission amplitude without substantial pulse distortion,
the incident pulse must be long enough so that it fits
within the bandwidth of the system resonance, as given
in Eq. (21). To be specific, we consider an input pulse
whose duration is equal to the inverse of the bandwidth,
ty, = (%)%coh. We can relate the number of incoming
photons to an average incident intensity:

2 AEB, o jv;oL
|®.4(0)] *Npol- - (d/ﬂ')?’

teon
Now, since the number of incident photons and incom-
ing polaritons are the same, we can assign an average am-
plitude to any incoming photons number by Eq. (27), and

(27)

Lp

IP=0.1, 1A,1/T=10, A1 /T=50, o "=3000

0.7}
2 0.6}

=negative]
--positive
—linear

» 0.5}

o 0.3F

|

< 0.2}
0.1}

87 08 09 1 11 12 13 14
§(d/m)?

FIG. 5: (Color online) For positive (negative) nonlinearity,
in the perturbative limit, the transmission spectrum shifts to
the right (left) of linear transmission spectrum (solid line),
which is shown in dotted line (dashed line). The incoming
intensity corresponds to one-photon in the system.
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FIG. 6: (Color online) Transmission vs. the number of in-
cident photons. For each d°”*, T'/A; is chosen so that the
system exhibit a similar transmission for one photon.

evaluate the transmission. Hence, we can evaluate the
number of incident photons needed to observe a signifi-
cant nonlinearity and saturate the system. Fig. 6 shows
the transmittivity of the nonlinear system as a function
of number of photons in the incoming wavepacket. We
observe that for high optical densities (d°?* > 1000), the
transmittivity drops as the number of incoming photons
increases and the system gets saturated for even few pho-
tons.
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FIG. 7: (Color online) Due to nonlinear absorption, the trans-
mission is suppressed for higher intensities. The integrated in-
tensities inside the system is related to the number of present
field quanta. The optical depth for these calculations is cho-
sen to be d°?* = 3000.

4.2. Dissipative Regime

In this section, we investigate the system in the pres-
ence of nonlinear absorption, where x is imaginary. The
nonlinear dispersion of the previous case can simply be
turned into nonlinear absorption by setting the nonlinear
detuning to zero (Ay = 0, k = I;;FD) In the quantum
picture, this term does not affect the one-photon state,
while two-photon states can be absorbed by experienc-
ing three atomic transitions, |a) — |[b) — |¢ — |d), and
subsequently being scattered from excited state |d) [42].
We consider the quantum treatment of absorption later
and first study the semiclassical limit here.

The presence of nonlinear absorption suppresses the
transmission of multi-photon states through the medium
by causing them to decay. This suppression becomes
stronger for higher intensities as shown in Fig. 7. We
have used the same optical density (d°P!) and 1D confine-
ment (I'1p/T') as in Fig. 4. We observe that the effects
of nonlinear absorption are stronger than that of nonlin-
ear dispersion studied in Sec.4.1, since it occurs at reso-
nance (Ag = 0) where the atomic response is strongest.
It is thus possible to observe its effect at even lower inten-
sities, corresponding to effective photon numbers two or-
ders of magnitude smaller than the dispersive case. Much
like the dispersive case, the suppression of transmission
of multi-photon components should yield anti-bunching
in the transmitted field. In this case, however, these com-
ponents are simply lost from the system (as opposed to
showing up as a bunched reflected field).

5. QUANTUM NONLINEAR FORMALISM:
FEW-PHOTON LIMIT

In this section, we describe a quantum mechanical ap-
proach that enables one to solve the problem of quantum
transport of a small number of photons through the finite,
nonlinear system described in Sec.2. This few-photon
number limit is of particular interest since it captures
the physics of single-photon switching.

We find it convenient to study the dynamics of the sys-
tem of photons in the Schrédinger picture, where one can
explicitly solve for the few-body wave functions. This ap-
proach is made possible by truncating the Hilbert space
so that only subspaces with n,,,, photons are less are
present. In the following, we will consider the case where
Nmaz = 2, although our analysis can be easily extended
to cover any other value. This truncation is justified
when the incident coherent field is sufficiently weak that
the average photon number is much smaller than one in-
side the system (Jag|?d® < 1, where ayg is the amplitude
of the incoming field). Thus, we can write the general
state of the system as:

(1) ~ / dordzad (21, 22,8)ST (1)1 (22)[0) (28)
+ /dzé)(z,t)SWz)\O)—%—e\O).

The first, the second and the third term correspond to
two-photon, one-photon and vacuum state, respectively.
Note that because of bosonic symmetrization, ¢(z1, 2o, t)
should be symmetric in z; and z. This formalism allows
us to capture any non-trivial spatial order between
photons in our system (e.g., the de-localization of two
photons as represented by the off-diagonal terms in
@(21,22)). Since the NLSE Hamiltonian commutes with
the field number operator STS, manifolds with different
field quanta are decoupled from each other inside the
medium. Therefore, the evolution for the one-photon
and two-photon manifolds under the NLSE Hamiltonian
can be written as,

2 2
i2 e t) = —= (8 + 2 )¢<z1,z2,t>

5 TACEREE:
+ 2r¢(z1, 22,1)0(21 — 22) (29)
2oty = -2 o (30)
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However, the system is driven with an input field at
z = 0, which allows different manifolds to be coupled
at the boundaries. This is analogous to fiber soliton
experiments where a classical input field mixes quantum
solitons with different photon numbers [43-45]. In
particular, for a classical input field,



Uy(z=0)[e(t) = at)w(t)
U_(z=d)|Y(t)) = 0[p(t)),

which corresponds to a coherent state with (possibly
time-dependent) amplitude a(t) as an input at z = 0,
and no input (i.e., vacuum) at z = d. Since we specify
that the input coherent field is weak (o < 1), the
amplitude of the vacuum state is almost equal to one
(¢ ~ 1). The annihilation operator in these equations
reduces the photon number on the left-hand side by
one. Thus, such boundary conditions relate different
photon subspaces whose photon number differ by one,
e.g. the two-photon and one-photon wavefunctions. In
the adiabatic limit where the anti-symmetric part of the
field (A = (U, — ¥_)/\/2) follows the symmetric part
(S = (¥, +¥_)/\/2), we have

(31)
(32)

1 i 1 i

U, =—(5——0.,5) , V_=—(S+—

Therefore the boundary conditions at z = 0 can be re-
written as

9.9). (33)

)
% /dzleQ [S — %325]z:05T(Zl)ST(ZQ)d)(Zl,Zg,t)|0>

= a/dz&(z,t)ST|0>, (34)
e /dz (S — ﬁ@zS]ZZOST(z)H(zJﬂO) = al0).
Using the identity [[0.5(z) SN f(2)d2 = 0.f(2),

the boundary conditions on the one-photon and two-
photon wave functions can be written as:

\@ (ZQ, t)
V2a, (35)

)
¢(Zl - 0722’t) N %3(1)¢(21,227t)|21=0 =
1

0,0(z=0,t) =
where (1) acts on the first parameter. This type of open
boundary condition is known as a Robin or mixed bound-
ary condition, which involves a combination of both the
function and its derivative. In the present case, the open
boundary conditions allow particles to freely enter and
leave the system. We emphasize that this process is
noise-less, in that the loss of population from the interior
of our system is related by our boundary condition equa-
tions to the flow of particle current through the system
boundaries. This is in contrast to an optical cavity, for in-
stance, where photons inside the cavity leak dissipatively
into the environment [46]. Similarly the boundary con-
dition at z = d reads

B, 2,8) +5-00p(d =) = 0 (36)

0(d,t)+%829(d,t) _ 0. (37)

Given the boundary conditions and the equations of mo-
tion in the interior, we can completely solve for the pho-
ton wavefunctions.

Once the wavefunctions are determined, it is possible
to determine the intensity profile as well as any other
correlation function for the photons. For example, the
intensity of the forward-going polariton is

(38)
+(2)12),

where |j) denotes the component of the total wavefunc-
tion |¢(t)) containing j photons. The first and second
terms on the right thus correspond to the one- and two-
photon contributions to the intensity. By re-writing ex-
pressions in terms of S instead of (¥, ¥_), we obtain:

I(z,t) = (1) ¥}
(2)

U (2)9(1))
= (el (2)

(2)
W (2)[1) + 2¥] (2) @

. 2
7

I(Z7t) = %

;’9(2) -

2/dz'

Similarly, the second-order correlation function for the
forward field is

(W12 (2) 82 (2)|0) =
‘gb(z, z) — %5‘(1)(;5(2, z) —

8.0(2)

(39)

2

o2, 2) — %8(2%(2’, 2)

(40)

3(1)3(2)(;5(2, z)

which in our truncated space only depends on the two-
photon wave function. Now, we evaluate the normalized
second-order correlation function go(z), which character-
izes the photon statistics of an arbitrary field. This func-
tion takes the form

go(z) = LVEEVEE)IY)

WIT (2) T4 (2)[0)

(41)

and physically characterizes the relative probability of
detecting two consecutive photons at the same position
z. If this quantity is less (greater) than one, the pho-
tonic field is anti-bunched (bunched). In particular, if
g2(z) = 0, the field is perfectly anti-bunched and there
is no probability for two photons to overlap in position.
In our truncated Hilbert space, g2(2) of the transmitted
field is given by

2P (@)w
L)1)

2 (d)[2)
+ (2w (d)

g2(z=d) ~ 5
(1w (a)w v ()2)]

(42)

We note that this expression can be simplified, since at

z = d, we have ¥_ = (S+2’8S)—Oand\11+—

V28. Therefore,



1lo(d, D)2
(16(@)* +4 [ d=' o (=", D))

g2(d) = 5. (43)

We can also evaluate the stationary two-time correlation,
which is defined in the Heisenberg picture as:

golon7) = LATL O (2 1) ¥ (2, 1) ¥ (2, O)19)
([T (2,004 (2,0)[)

b

(44)
where the denominator is simplified in the stationary
steady-state regime. This correlation function charac-
terizes the probability of detecting two photons at posi-
tion z but separated by time 7. We can re-write go2(z, 7)
in terms of wavefunctions in the Schrodinger picture in
the following way. We first note that the expression
[(0)) = Wi(z,0)|y) appearing in the equation above
can be thought of as a new wavefunction, which describes
the state of the system after a photon is initially detected
at time ¢t = 0 and position z. This new state naturally
has one less photon than the original state, and by sim-
plifying the expressions, it can be written as:

[4(0)) :/9“6W(Z')ST(Z’)\0>+6“6W|0> (45)

where the new one-photon and vacuum amplitudes are
given by

pnew B oL L ) oL
N #(d, 2t =0) — 2ma Vo(d, 7', t =0) (46)
o = L o= 0)—iofd,t=0).  (47)

V2

Here we have assumed that z = d, since we are interested
in the transmitted field. Now, Eq. (44) can be written as

g2(d, 7) = (P(0)| ¥l (d, 7). (, T)\?/f(o))/\<¢(0)|¢(0)(>J128-)
The numerator describes the expectation value for the in-
tensity operator I(r) = \ﬂ_(d, )W, (d,7) in the Heisen-
berg picture given an initial state |¢)(0)). However, we
can easily convert this to the Schrodinger picture by mov-
ing the evolution from the operator to the state, i.e.,
by evolving |¢(0)) under the same evolution equations
(Egs. 29-30) and boundary conditions (Eq. 35) that we
used earlier. Therefore, the correlation function go(z, 7)
will be given by:

) T t z z ) T
o) = LOWLRUEEO o

((0)[ Wl (2) 4 (2)[(0))
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6. ANALYTICAL SOLUTION FOR NLSE WITH
OPEN BOUNDARIES

In this section, we show that a NLSE system with
open boundary conditions yields analytical solutions in
absence of an outside driving source (ag = 0). To obtain
the analytical solutions, we use the Bethe ansatz tech-
nique [26, 33]. This ansatz specifies that the eigenstates
consist of a superposition of states in which colliding par-
ticles exchange their wavenumbers k;. Unlike the typical
formulation, the values of k; here can be complex to re-
flect the open nature of our boundary conditions, which
allow particles to freely enter or leave. In particular,
we present the one-, two- and many-body eigenmodes of
the system along with their energy spectra. Finding cer-
tain eigenmodes of the system (e.g., bound states) helps
us understand the correlation functions and also spatial
wavefunctions which are numerically calculated later in
Sec.7 for a driven system.

6.1. One-particle problem

First, we calculate the fundamental modes for the one-
particle states. These modes are of particular interest
when we later want to construct the many-body wave-
function of the interacting system in the absence of an
input field.

Specifically, we want to find solutions of the
Schrédinger equation for a single particle in a system of
length d,

0 1 02
—0(2,t) = ———6(z,t 50
i 0z, 0) = —5 == 0(2,0) (50)
subject to open boundary conditions. The boundary con-
dition for the undriven system at z = 0 is given by

i
- = 1
0(0) ~ 5-0.6(0) =0 (51)
and similarly for z = d,

i
0(d) + 2mazﬁ(d) =0. (52)
We look for stationary solutions of the form 6(z,t) =
e~9(z), where 0(z) = Asin(kz) + Bcos(kz). For sim-
plicity, we assume m = 1/2. Therefore, we recover the
quadratic dispersion relation § = k2. The values of k
are allowed to be complex to reflect the open nature of
our boundary conditions, which allows particles to freely
enter or leave. By enforcing the boundary conditions we

get a set of equations for the coefficients A, B,

B —iAk =0,
(A —iBk)sin(kd) + (B + iAk) cos(kd) = 0,



which yields the characteristic equation for finding eigen-
modes and eigen-energies of system,

. E+1)2
2ikd __
e _(k—l) . (53)

Therefore the normalized corresponding wave function
for each allowed k& will be:

0(z) = A(sin(kz) + ik cos(kz)), (54)
5 4k
2dk(1 4 k?) + (k? — 1) sin(2dk)

We note that in the limit of large optical density d > 1,
the lowest energy modes of the open system are very
close to those of a system with closed boundary condi-
tions, whose characteristic equation is given by kd = n.
For example, at d = 100, the wave number correspond-
ing to lowest energy is k~0.0314 —¢0.00063 ~ 7/100. We
note that the many-body solutions of the system in the
presence of very strong interactions (large ) can be con-
structed from these single-particle solutions and proper
symmetrization, as we show in Sec.6.5.

6.2. Two-particle problem

In this section, we study the problem of two particles
obeying the NLSE with mixed boundary conditions. We
wish to solve

E¢(z1,2) = _1 iz+i2 d(z1, 22)
1,<2) — 82% 822 1,2

2m 5
+ 2Kp(21,22)0(21 — 22), (55)

where F is the energy of the system and can be complex.
Again, we assume the mass is entirely real, m = 1/2.

We should note that the conventional method of sep-
aration of variables cannot be applied in this case. The
reason for this can be understood in the following way.
On one hand, if we ignore the delta interaction term
in the evolution equation of the two particles, finding
the eigenfunctions is essentially equivalent to solving the
Laplace equation in a box with mixed boundary condi-
tions. Therefore, for this problem the natural separation
of variables involves solutions given by products of func-
tions f(z1) and g(z2). On the other hand, if we neglect
the boundaries, the problem of two particles interacting
at short range can be solved by utilizing the center of
mass and relative coordinates and invoking solutions in-
volving products of functions f(z; + 22) and g(z1 — 22).
We immediately see that the two sets of solutions are ir-
reconcilable and thus separation of variables is not appli-
cable when both the boundary conditions and interaction
term are present.

We thus take a different approach, using a method
similar to the Bethe ansatz method for continuous, one-
dimensional systems [26]. Specifically, we solve the
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Schrédinger equation in the triangular region where 0 <
21 < z3 < d, and we treat the interaction as a boundary
condition at z; = z5. In other words, when two particles
collide with each other at z; = z5, they can exchange mo-
menta, which is manifested as a cusp in the wave function
at z; = z9. Hence, for the boundary conditions in this
triangular region, we have

¢(0,22) = i0:,4(0,22) = 0 (56)

d)(zhd) +7:822¢(217d) 0 (57)

(02, — 0zy) B(21, 22) 2=z, = K(21,22)]25=2, (58)

We note that the last boundary condition is deduced from

integrating Eq. (55) across z; = 23 and enforcing that the
wavefunction is symmetric,

(822 - a21) ¢(Zl, 22)|22:ZT - (822 - 821) ¢(Zl7 22)|32:z1_
= 2’€¢(217Z2)|Z1:22' (59)

Inside the triangle, the solution consists of superpositions
of free particles with complex momenta. Since particles
can exchange momenta when they collide at z; = 29, we
should consider solutions of the following form,

d)(zla 22) _ ZA5€i€1k121+i62k222 + Béei€1k221+i62k122
{e}

(60)
where the summation should be performed on all sets of
signs € = +1. Given the terms containing A., the terms
B. then arise from the scattering of the particles off each
other. Let’s first consider the portion of the wavefunction
containing the terms A., which we can write in the form:

¢A(21722) — 67,]{)1Z1+’Lk}222 +a€*lk121+’bk}222 (61)
4 567ik1217ik222 +,_Y€+ik)1zlf’ik222
)

where the energy is equal to E = k} + k3 and could
be complex. Similar to the single-particle solutions, the
presence of the imaginary part in the energy reflects the
fact that the two-particle state stays a finite amount of
time inside the system. Applying boundary conditions at
z = 0 and z = d subsequently generates four equations
relating «, 3, where one of them is redundant. Their
solution reduces the wavefunction to

ik1z1+ikozo

k 1 _. .
+ ki i— 16—1k121+zk2Z2 (62)

e*ikl z1—1tkozo + 76+ik1 z1—1tkozo

¢A(21722) = €

ki+1

R

where v = %e

the portion of ¢(z1, 22) containing the B, terms, once the
boundary conditions at z = 0 and z = d are applied:

b8(z1,22) = : (eik”‘“klz"‘ G Rtl 16_ik221+ik122>
’ t

2ik2d A similar expression results for

ko —1

!
Y <k2 + 1e—ik221—ik)1Z2 + 6+ik221—i/€122>

t \ky—1




where v = %emkld, and t is a coeflicient to be de-

termined from the boundary condition at z; = 25. To
find ¢, it is convenient to re-write each of ther terms in
¢ 4.8 as a product of relative coordinate (r = 22 —21) and
center-of-mass coordinate (R = (21 + 22)/2) functions,

ki+1

1 r) — ei —iqr + 677; ipr
Pa(R,r) = ePhT A (63)
ki—1
k 1 . . ) )
,}/kl + 1e—sz+1qr + ,_Ye’LqR—’Lp’I”7 (64)
1—
~ 1 . ) k 1 . .
¢B(R7 T) _ 7(61pR+zqr + LezqRJrlpr (65)
t ko — 1
k 1 . . ) )
+ ’Y/ kz i_ 1e—sz—zqr + ,y/e—zqR—zpr), (66)

where p = (k1 + k2) and ¢ = (k1 — k2)/2. The bound-
ary condition at z; = 2o leaves the center-of-mass parts
of the wavefunction unaffected, but yields the following
condition on the relative coordinates,

09, 1)lr=o+ = 50BN (67)
where ¢ = ¢4 + ¢ is the total wavefunction in the tri-
angular region. We should satisfy this boundary condi-
tion separately for each of the center-of-mass momentum
terms etPR 4R in the total wavefunction. This leads
to three independent equations (one out of four is redun-
dant). However, we introduce a new parameter (¢') to
simplify the equations, which turns them into four equa-
tions:

k1 — ko + ik , k1t ke +ik
=7, U= 68
k‘l—k'g—iﬁ k1+k2—7,l*i ( )
ki1 +1 2 .
t t/ _ 2ik1d
<k1 — 1) e (69)
ko+1 2 .
/ _ 2ikod
t (kgl) = te , (70)
which can be written in the following short form:
sited (ki +1)% 31 (ki — by +i5) (ki + k; + ir)
= 71
€ (ki—l)QH(k}i—kj—ilﬂ)(k‘i—‘rk'j—iH) ( )

J#i
where i, can be (1,2). These are transcendental equa-
tions for (ki,ks2), which generate the spectrum of two
interacting particles. We can also write the wave func-
tions (¢ = ¢a(z1,22) + PB(21,22)) in the region (0 <
21 < z9 < d) in a more compact way, by using the single
particle solutions 7 (z) = sin(kz) + ik cos(kz):

4 eikzd

da(z1,22) = ﬁmﬂkl(m)ﬂm(d*@) (72)
4t_1 eilﬁd

b5(21,22) = Mk (21)7, (d — 22). (73)

ko —1ki+1
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It is interesting to note that in the limit of strong in-
teraction (either for positive or negative &), the solutions
are very similar to the non-interacting case. The reason
can be seen from the transcendental Egs. (71), in the
limit Kk — £oo. We then recover the same characteris-
tic equations e**¥ = (££1)2 for both wavevectors as the
non-interacting case, Eq. (53). We should note that there
are some trivial solutions to the transcendental Egs. (71),
which do not have any physical significance. For exam-
ple, equal wave vectors k1 = k. Although one can find
such wave vectors, this solution is readily not a solution
to Eq.(55), since it does not satisfy the interacting part
(this solution only contains center of mass motion). One
can also plug back the wave vectors into wave function
and arrive at a wave function equal to zero everywhere.
Another example is when one of the wave vectors is zero.
In this case, one can also show that the wave function
is zero everywhere. If (k1,k2) are solutions to the tran-
scendental equations, then (+kq, +ko) are also solutions
with equal energies. In next two sections, we investigate
non-trivial solutions to the transcendental equation for
two particles and discuss the related physics.

6.3. Solutions close to non-interacting case

The transcendental equations allow a set of solu-
tions with the wavevectors close to two different non-
interacting modes say (m,n). In the non-interacting
regime, any mode can be populated by an arbitrary num-
ber of photons. However, once the interaction is present,
photons can not occupy the same mode and therefore,
the photons will reorganize themselves and each acquire
different modes. Fig. 8 shows a normal mode wavefunc-
tion of a non-driven system in both non-interacting and
strongly interacting regime (kd > 1). The wave func-
tion has a cusp on its diagonal and diagonal elements are
depleted for both repulsive and attractive strong interac-
tion.

This is a manifestation of fermionization of bosons in
one dimensional system in the presence of strong interac-
tion [26, 47]. Such solutions can exist both for repulsive
and attractive interactions. However, we note in the case
of attractive interaction such solutions are not the ground
state of the system and solutions with lower energies ex-
ist which will be discussed below. We later argue that
indeed on the repulsive side, the anti-bunching behavior
of a driven system is due to the repulsion of the photons
inside the medium. We can also estimate the energy of
such modes which is always positive. In the strong inter-
acting regime, particles avoid each other and therefore,
their energy of a strongly two interacting bosons E(m,n)
will be equal to the energy of a system which has two
non-interacting bosons, one in state m and the other in
state n. This is shown in Fig. 9, where by increasing
the interaction strength the energy of interacting parti-
cles reaches that of the non-interacting particles. As we
pointed out in the previous section (Sec.6.1), the energy



of modes (E(n)) in an open box has an imaginary part
which represents how fast the particle leave the system.
However, for large systems (d > 1), this decay is very
small compared to the energy of the mode and one can
approximate the energy of an open system by that of a
closed box (i.e. E(n) ~ (ZF)?). Therefore, the energy of
two strongly interacting photons (kd > 1), in the limit
of large system (d > 1), will be given by:

nmy2 mm\ 2
E(”’m)—<d) +<d> (74)
We note that our strongly interacting system is char-
acterized by the parameter xd which is the same ~-
parameter conventionally used for interacting 1D Bose
gas. More precisely, the v-parameter which is the ratio
of the interaction to kinetic energy can be simplified in
our case for two particles: mrd/2 = rd/4.

Kd=-50 k=0 ds0

Z;

Z

FIG. 8: (Color online) The amplitude of the two-photon wave-
function for (m=1, n=2) mode when the system is not driven.
By increasing the interaction, photons self-organize inside the
medium and exhibit anti-bunching (depletion of diagonal el-
ements). For this plot: d = 30.
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closed box

kd

0 50 100 150

FIG. 9: (Color online) Energy of two-photon states: by in-
creasing the interaction strength (kd >> 1) the energy of in-
teracting particles (red:E(1,2) and blue:E(1,3)) reaches that
of the non-interacting particles (black). For large system (in
this case d = 30 > 1), the energy limit is equal to energy of
particles in a closed box (green). The error bars show that
imaginary part of the energies.

6.4. Bound States Solution

For attractive interaction (k < 0), the mode equa-
tion (71) admits solutions which take the form of pho-
tonic bound states [31-33]. Specifically, in the reference
frame of the center of mass, two particles experience an
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attractive delta function interaction —2|k|d(z2 — 21) —
—v/2|k|8(r), which allows one bound state in the relative
coordinate. Therefore, the part of the wavefunction de-
scribing the relative coordinate roughly takes the form
%"l where the relative momentum q = (k; — k) /v/2 ~
i|k|/v/2 is imaginary and its energy is about —2/2. On
the other hand, the center of mass momentum can take
a discrete set of values that are determined by the sys-
tem boundary conditions. We find that the center of
mass solutions can be approximately described by two
different types. The first type is where the real part of
each photon wavevector roughly takes values allowed for
a single particle in a box, such that k; >~ (%) +15 and
ko o~ (%) — zg In this case the center of mass has
wavevector p = ki + ko ~ 2(%F). The corresponding
energies for these states are

b oo (T2 K2

B ~2 () -5 (75)
Here, the first term on the right corresponds to the en-
ergy of the center of mass motion, and the second term
corresponds to the bound-state energy of the relative mo-
tion. Fig. 12 shows that the energies estimated in this
way agree very well with the exact values obtained by
solving the transcendental Eqgs. (71).

FIG. 10: (Color online) Energy of bound states versus
strength of nonlinearity. Green (solid) curves are obtained by
solving transcendental Egs. (71). Blue (dashed) curves are

estimated based on EY ~ 2 (%)2 - “2—2 In this plot d = 30.

The second type of solution allowed for the center of
mass motion is where its energy approximately takes a

single-particle value, %jn) = (%7)? where p = k1 + ko ~
V2(%r). Therefore, the momentum of individual parti-
cles will be given by ki ~ (%) +i5, ko = (%) —igy
and the energy of this paired composite can be estimated
as

nm\2 K2
Eb ~ (7) -5 76
Again, the estimated energies agree well with exact so-

lutions, as shown in Fig. 12. We note that some of the
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FIG. 11: (Color online) The amplitude of the two-photon
wavefunction for a bound state when the system is not driven.
By increasing interaction, photons becomes more bunched.
(K1, k2) ~ (%) +i%. For this plot: d = 60,n = 3.

estimated allowed energies for the two types of center
of mass solutions coincide (e.g., the lowest lying energy
level in Fig. 10 and Fig. 12).

The energies of this series of bound states decrease with
increasing strength of nonlinearity |x|. Now, suppose we
drive the system with a coherent field of fixed frequency
0, while varying k. The system is expected to display a
set of resonances as || is increased, each time 0 is equal
to some particular bound state energy E%. This effect in
fact gives rise to oscillatory behavior in the correlation
functions as a function of k, as we will see later (Fig. 18(a)
and (b)).

The wavefunction amplitude of a typical bound state
is shown in Fig. 13. Due to the attractive interaction,
diagonal elements z; = 25 become more prominent as |k
increases, indicating a stronger bunching effect for the
photons, and these states become more tightly bound in
the relative coordinate. The center of mass of the bound
states can acquire a free momentum that is quantized
due to the system boundary conditions (e.g., k ~ nw/d).
Fig. 13 shows the wavefunction of the third bound state
(n=3). The three peaks evident for large || reflect the
quantum number of the center of mass motion.

_kd=-10
‘ —

Kd=0
A

J&

Kd=-4

YA

FIG. 12: (Color online) Energy of bound states versus
strength of nonlinearity. Green (solid) curves are obtained
by solving transcendental Egs. (71). Blue (dashed) curve are

estimated based on EY ~ (”777)2 - "‘—22 In this plot d = 30.

6.5. Many-body problem

In this section, we obtain the general solution for
the many-body case. For the many-body system, the
Schrédinger equation takes the form

FIG. 13: (Color online) The amplitude of the two-photon
wavefunction for a bound state for a non-driven system.
By increasing interaction, photons becomes more bunched.

(K1, k) ~ (%) +£4%. For this plot: d = 60,n = 3.

1 o
E¢(z1,....,28) = “om 9.2 (21,0, 2N) (77)
+ Z 2k0(21, ..., 2N )0 (2 — 25),(78)
<i,j>

where < 4,j > indicates pairs of particles. The open
boundary conditions for the many-body problem are
given by

|:¢(Zl7"')ZN)iazi¢(zla"'aZN):|Zi=0 =0 (79)
|:¢)(Zl7m’ZN)+iaazi¢(21’“,ZN):|Zid = 0. (80)

Before presenting the general many-body solution, we
first study the limit of very large interaction strength for
two particles. In the limit of hardcore bosons where k —
00, the expressions can be simplified since ¢, = —1 and
ethd — % for both k = kq 2. Then, the two components
of the wavefunction ¢ 4 and ¢p take very similar forms,

pa(z1,22) = mnkl(%)%z(%) (81)
¢B(21,22) = - ks (21)10, (22)- (82)

(k1 = 1) (k2 = 1)

The generalization to the many-body solution is straight-
forward for the hardcore boson case (also see Ref. [48]):

N

1
11 (k; —1)

j=1

¢(z1,227"'7ZN) = nj(zk)

det
1<), k<N

(83)
Similar to two-body solution, we note that such solutions
are present both for positive and negative x. Since the
system is one dimensional, strong interaction leads to
fermionization of bosons ( in this case photons)[26, 47].
We can also extend the many-body solution for an ar-
bitrary interaction strength, following Refs.[26, 49]. Sim-
ilar to the two-body case, we can construct the general



many-body wave function of the form:
STAY Bpeiwtnn (s4)
€ P

where the first sum is over forward and backward going
waves (e = £1) and the second sum is over different mo-
mentum permutations of the set {k} = (k1,k2,....,kN),
therefore there are 2V N! terms. We can find Bp co-
efficient by requiring > p Bp[];_; e*rikriZi to be solu-
tion to the Schrodinger equation (Eq.78). We can write
these coefficients in a compact way according to Gaudin

50, 51], Bp = [T (1+ o ) with the total

€p; kp7
energy F = ), k2. Now, we apply the boundary con-
dition Eq.(79) which relates coefficient A.. For a given
momentum permutation P = (p1,ps,, ..., pn), by consid-
ering the terms corresponding to different signs of e,
the boundary condition requires A, to satisfy equations

of the form
PR
€p,kp, — €5k

d(21, 22, .., 2N) =

(1+6pikpz) €1,--€p; --€N H

J(#pi)

(1 - Epikpi)Aq, —€p;)-€N H

< ik
§(£pi) —€p; kPi -

The above equations can be satisfied by the following
solution for A,

. N
1K 1
A, = l1-— 1-— .
€ H ( ki + Ejkj> ng ( Emk'm) (85)

i<j 1

Therefore, the wavefunction can be written as:

¢ (21,22, ZN): (86)
ZZ H < >e[i(eplkp1z1+..+eka:pNa:N)]
€ P m=1
K
x - V(1 —
E {< eik; JFGJk ) ( €p; kp, epjkpj)]

Similar to two-body case, we have to subject this solution
to the boundary condition at other end (i.e., z = d) to
determine the momenta k;’s. This condition yields the
transcendental equations for momenta:

Gikid _ (Ki+ 1) pp (ki =k + iR) (ks + k; + i5) (87)

(kl — 1)2 ki (]ﬂ — kj — Zli)(kl + kj — ZKZ)
If we assume only two particles in the system, one can
easily verify the the above transcendental equations re-
duce to two-body transcendental equation derived in the
previous section (Eq.(71)).

7. QUANTUM TRANSPORT PROPERTIES

In this section, we investigate transport properties of
the photonic nonlinear one-dimensional system in the

—_
63"%‘)

15

regimes of attractive, repulsive, and absorptive interac-
tions between photons. We present numerical solutions
for the transport of photons incident from one end of
the waveguide (a driven system), while using the analyt-
ical solutions of the non-driven system (Sec. 6) to eluci-
date the various behaviors that emerge in the different
regimes.

7.1. Repulsive Interaction (k > 0)

We first study the quantum transport properties of the
system in the dispersive regime where the nonlinearity
coefficient is almost real and positive (x > 0), such that
photons effectively repel each other inside the system.

We assume that a weak coherent field is incident to the
waveguide at one end, z = 0, with no input at the other
end, z = d [similar to Fig. 1(b)]. We fix the detuning of
the input field to o = (7/d)?, which corresponds to the
first transmission resonance in the linear regime (Sec. 3).
Because we have assumed a weak input field, we can ap-
ply the techniques described in Sec. 5 to describe the
transport. Our numerical techniques for solving these
equations are given in Appendix B. While the numerical
results presented in this and the following sections are
evaluated for a specific set of parameters (system size,
detuning, etc.), the conclusions are quite general. Nu-
merically, we begin with no photons inside the medium,
and evaluate quantities such as the transmission intensity
and correlation functions only after the system reaches
steady state in presence of the driving field. In Fig. 14,
the transmission of the single-photon intensity

_ (@) vy @))
(1w (0)w(0)[1)

the transmission of the two-photon intensity

: (88)

7, - VLD )
L OV, 0)2)

and the transmitted correlation function go(z = d,7 =
0) is shown as the system evolves in time. The system
reaches its steady state after a time of the order of the
inverse of the system bandwidth (Sec. 3). In fact, T}
coincides with the linear transmission coefficient of the
system in the absence of the nonlinearity.

First, we note that the single-photon wave function is
not affected by the presence of the nonlinearity and will
be perfectly transmitted in the absence of linear losses.
Thus, in our truncated Hilbert space, the only subspace
affected by « is the two-photon wave function, which is
shown in Fig. 15. We clearly observe that the nonlin-
earity causes repulsion between two photons inside the
system, as the wave function along the diagonal z; = 29
becomes suppressed while the off-diagonal amplitudes be-
come peaked (indicating the de-localization of the pho-
tons). This behavior closely resembles that of the natural
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FIG. 14: (Color online) g2(7 = 0) reaches the steady-state
after a time interval which is set by the bandwidth of the
system, one-photon state (green, dotted) is partially trans-
mitted while the transmission of the two-photon state (red,
dashed) is further suppressed due the nonlinear dispersion.
This has been generated for a system with I'i p /T = 10% an
d°P* = 160.

modes of the system, as calculated in Sec. 6. A similar
behavior involving the “self-organization” of photons in
an NLSE system in equilibrium has been discussed in
Ref. [8].

k=0 kd=1.5

kd=3.0

FIG. 15: (Color online) Two-photon wave function |¢(z1, 22)|
exhibiting delocalization. We have assumed no dissipation
(I'" =T = 0) in this plot. d = 30 for different values of x.

In the presence of linear absorption (discussed in
Sec. 3), the system will not be perfectly transmitting even
on resonance, and therefore in a realistic situation the
transmittivity will be less than one (77 < 1). Note, how-
ever, that such absorption would result in a classical out-
put given a classical input. Significantly, in the presence
of a nonlinearity, we find that the output light can ac-
quire non-classical character. Specifically, the transmit-
ted light exhibits anti-bunching (g2(z = d,7 = 0) < 1),
which becomes more pronounced with increasing rd?
(Fig. 16). This effect partly arises from the suppression
of transmission of two-photon components, due to an ex-
tra nonlinear phase shift that shifts these components
out of transmission resonance. In fact, these components
are more likely to get reflected, which causes the reflected
field to subsequently exhibit bunching behavior. We note
that this effect is similar to photon blockade in a cavity
(e.g., see Refs.[10, 12, 13]). In addition, additional anti-
bunching occurs due to the fact that two-photon compo-
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nents inside the system tend to get repelled from each
other. This effect arises due to the spatial degrees of
freedom present in the system, which is fundamentally
different than switching schemes proposed in optical cav-
ities (e.g., Refs.[10, 12, 13]) or wave-guides coupled to a
point-like emitter [4, 24]. In the limit where Kk — oo,
the transmitted field approaches perfect anti-bunching,
gg(d,’r = 0) =0.

\‘\‘“ -E|-d=10
W -4-d=20
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FIG. 16: (Color online) g2(7 = 0) as a function of nonlinearity.
For large system sizes d > 1, the anti-bunching of the system
scales with xd?.

In an experimental realization, the requirement to see
the photon repulsion (kd?> > 40) for a system with
I'ip/T = 10%, would be a coherent optical length of
d ~ 40 when Ay/T = 1. Therefore, at least an optical
density of d°P! ~ 160 is needed for T} ~ 20%. The anti-
bunching in the transmitted light is more pronounced as
the optical density increases, which increases the effective
system finesse (Fig. 17).
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FIG. 17: (Color online) Repulsive photons: Correlation func-
tion g2(7 = 0) of the transmitted light when the frequency
is set to the single-photon transmission resonance with 77 ~
20% and 42 = 5.



7.2. Attractive Interaction (k < 0)

In this section, we study the quantum transport prop-
erties of the system in the presence of dispersive non-
linearity with negative coefficient. Contrary to the semi-
classical prediction, we show that the second-order corre-
lation function of the transmitted field oscillates as func-
tion of nonlinear interaction strength and can exhibit
both bunching and anti-bunching. We explain the ori-
gin of this behavior in terms of the analytical solutions
obtained in Sec. 6.2.

In Fig. 18(a), we plot ga(r7 = 0) for the transmit-
ted field versus xd. Initially, the system exhibits anti-
bunching behavior for small values of |k|d which indi-
cates that multi-photon components tend to switch them-
selves out of transmission resonance. However, as we
increase |k|d, oscillations develop in the correlation func-
tion, exhibiting strong bunching behavior at particular
values of kd. Thus, unlike the repulsive case, a com-
peting behavior arises between the photon switching ef-
fect and the resonant excitation of specific bound states
within the system, as we describe below. In particular,
the bound state energies E¥ decrease quadratically with
changing x, according to Eq. (76) or Eq. (75), which is
shown in Fig. 18(b). For a fixed detuning J, the oscilla-
tion peaks (where g9 is largest) correspond to situations
where the energy of a bound state becomes equal to the
energy of two incoming photons (E’ = 2§). This effect
is further confirmed by examining the two-photon wave
function at each of these oscillation peaks (Fig. 18a). We
clearly observe that these wave functions correspond to
the bound states calculated in Sec. 6.2. Similar to Fig.
11 and Fig. 13, it is readily seen that the wave functions
at these peaks are localized along the diagonal, indicating
a bound state in the relative coordinates and leading to
the bunching effect in transmission. On the other hand,
an increasing number of nodes and anti-nodes develop
along the diagonal for increasing |k|d, which are associ-
ated with the higher momenta of the center-of-mass mo-
tion. We note that such resonances deviate significantly
from the the semiclassical picture, where anti-bunching
was predicted for both positive and negative nonlinear-
ity. We also note that in cavity QED systems this effect
is not present since these systems are single-mode.

The experimental requirement to see such behaviors
is more stringent than the photon repulsion in the pre-
vious section. For example, if we want to observe the
second photonic bound state (kd > 5) for a system with
I'1p/T" = 0.2, the coherent optical length should be at
least d ~ 200 when Ay /T = —5. To achieve a reasonable
signal (linear transmission 77 = 1%) an optical density
of d°Pt = 3500 is needed. Importantly, however, we have
shown that the presence of bound states inside the non-
linear medium can be probed with classical light, simply
by examining higher-order correlation functions in the
output field, rather than sending in complicated quan-
tum inputs.
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FIG. 18: (Color online) (a) Output correlation function
g2(7 = 0) as a function of nonlinearity: When the negative
nonlinear strength is changed to higher values and g2 exhibits
resonances at certain values of xd ~ (0,6, 10,14, ...). In this
plot the system size is d = 30, however, for other system
size same behaviors were observed around similar values of
kd. The two-photon wavefunction (|¢(z1,22)|) for four val-
ues of nonlinearity is shown. (b) Corresponding bound state
energies (green-solid) which become resonant with incoming
photon energy (black-dotted) for specific nonlinearities. We
have assumed no dissipation (I' =T = 0) in these plots.

7.3. Dissipative Regime (k = i|x|)

In this section, we study the transport properties of
the system in the presence of nonlinear absorption, and
calculate its effect on the transmitted light and its corre-
lation functions.

A purely absorptive nonlinearity arises when the de-
tuning Ao is set to zero in our atomic system (see
Fig. 1(a)). This nonlinear loss also leads to anti-bunching
in the transmitted field, as multi-photon components be-
come less likely to pass through the waveguide without
being absorbed. Linear absorption, on the other hand,
affects transmission of single- and multi-photon compo-
nents equally. Fig. 19 and Fig. 20 show how two-photon
and one-photon states are transported differently in the
nonlinear absorptive system (realistic linear losses are in-
cluded in this calculation).

We note that the two-photon wavefunction is atten-
uated due the nonlinear absorption, while it is not de-
formed, as shown in Fig. 21. In an experimental real-
ization of such a system with I'1p/T" = 10%, an optical
coherent length of d ~ 20 is enough to yield a relatively
large anti-bunching (g2 < 0.3). In order to have high
transmission (77 = 20%) for single photons an optical
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FIG. 19: (Color online) g2(7 = 0) reaches the steady-state
after a time interval which is set by the bandwidth of the
system, one-photon state (green, dotted) is partially trans-
mitted while the two-photon state (red, dashed) is strongly
attenuated due the nonlinear absorption. This plot has been
generated for a system with I'1p/T" = 10% and d°Pt = 70.

density of d°P* ~ 70 is required. Among the various ef-
fects predicted in this article, the anti-bunching induced
by the dissipative nonlinearity is easier for implementa-
tion. For example, I'ip/T" ~ 0.6% and d°P* ~ 180 is
demonstrated in Ref. [19] and also I'1p/T" ~ 3% and
d°P! ~ 30 is reported in Ref. [20].

All of the physics related to the photon correlation
function is described again by product of the coherent op-
tical length and the nonlinearity coefficient (|x|d) (since
the nonlinear absorption is equal to the nonlinear absorp-
tion coefficient times the length of the medium). How-
ever, for a fixed optical density, since the nonlinear tran-
sition is on resonance, the magnitude of the nonlinear
coefficient || is enhanced compared to the nonlinear dis-
persive case. We note that in the presence of nonlinear
absorption, one has to also consider the effect of accom-
panied noise. However, the effect of noise for an ensemble
of many atoms which are driven by a weak laser field, is
negligible, and therefore, using the NLSE with a decay
term is sufficient and consistent. A rigorous demonstra-
tion of the validity of such approximation is the subject
of further research. We also note a related study [52] in
the dissipative regime which appeared during the prepa-
ration of this manuscript.

8. CONCLUSIONS

We have developed a technique to study few-photon
quantum dynamics inside 1D nonlinear photonic system.
This technique allows us to study the system even in
regimes where nonlinearities are significant even at a few-
photon level, where we find that the behavior of the sys-
tem deviates significantly from estimates based on clas-
sical formalism. Specifically, when the system is driven
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FIG. 20: (Color online) (a) one-photon state is partially trans-
mitted (71) while the two-photon state transmission (1) is
suppressed due the nonlinear absorption. This suppression is
more pronounced for higher optical density and cooperativity.
(b) Correlation function g2(7 = 0) of the transmitted light
when the frequency is set to the single-photon transmission
resonance with 7'~ 20% and 42 = 0.

by classical light, the strong optical nonlinearity man-
ifests itself in the correlation functions of the outgoing
transmitted light. In particular, when the interaction
between photons is effectively repulsive, the suppression
of multi-photon components results in anti-bunching of
the transmitted field and the system acts as a single-
photon switch. In the case of attractive interaction, the
system can exhibit either anti-bunching or bunching, as-
sociated with the resonant excitation of bound states of
photons by the input field. These effects can be observed
by probing statistics of photons transmitted through the
nonlinear fiber.
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Appendix A: EIT-Bandgap

In this appendix, we show that how in an EIT system,
where the control field is a standing wave, a band gap
structure can be developed. In particular, we show the
presence of transmission resonances at the band gap edge
by taking into account the full expression for the atomic
susceptibilities. We show that at the band gap edge, we
recover that same resonances that we presented in the
main text for small detunings.

We consider a A-level scheme, where a standing control
field has coupled the forward- and backward-going probe
together, similar to Fig.1 without the nonlinear transi-
tion (c-d). Following [53], we assume the noises to be
negligible, and therefore, the atomic equations of motion
to the leading order in £y are

061, = +(iAy —T/2)6} +iQ64c +igyV2mEL(AL)
oy, = +(iDAy —T/2)6,, + Q6,4 + igV2mE_(A2)
Nbac = —V00ac + 1026, +1iQ6, (A3)

and the evolution equation of the photonic fields are writ-
ten as:

(0 + c0.)E4 = IAKE, +igV2mnes),  (A4)
(8; — cd.)E- = iAKE_ +igV2mnos,,. (A5)

The wave-vector mismatch can be ignored by including
a small shift in the two-photon detuning. By taking the
Fourier transform of the atomic equation of motion, one
can solve for atomic polarization and obtain the self- and
cross-susceptibilities. We can define a unit length based
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on the absorption length L.,s = and write the

field equation as:

cI’
2wg?ng’

0:E. = iAsEL +ixs(0)E4 +ixe(0)E-
—0:E = iA3E +ixs(0)E- +ix.(0)Es

(A6)

where the self- and cross susceptibilities and the detuning
are given by:

T TI'Ty + Q2
00 = I T, a02 (A7)
I 02
xe0) = i, T ae (48)
~ As T? o T
Ay = 2 = (A9)

- ?27792710 o E|A1|

where IV = T'/2 — 1Ay —iA3 , Tg = v — 1Az and Agj
is the two-photon detuning of the probe from the pump
field which is related to the dimensionless two-photon
detuning in the main text (Asz = 2%‘;5 < Ay). We
note that in most cases, Ag is very small for slow group
velocities (273;72% = (%)22737;% < 1), and therefore the
corresponding term can be neglected for simplicity.

In order to obtain transmission and reflection co-
efficient, one should solve the couple mode equations
Eq.(A6) with proper boundary conditions. Therefore, we
consider a system which is driven with a weak coherent
field at (z = 0). Therefore, the boundary conditions can
be set to,

5_;,_(22:0) = g()
E_(z=d) = 0.

We evaluate the transmission coefficient (£y(z =
d)/&p), and the reflection coefficient (€_(z = 0)/&y) by
numerical methods using BVP5C in Matlab. In partic-
ular, we are interested in the Raman regime, in other
words the detuning is very large |A;| > I' and also we
assume A; < 0. First, we consider the case where the
EIT width is smaller than the one-photon detuning, i.e.
Q < |Aq|. Fig.22 shows the reflectivity and transmit-
tivity of the system for different optical densities. In
the regime with low optical density, the spectrum corre-
sponds to a shifted Raman transition at Az ~ 22—2 and
an EIT window around Az ~ —A;. In higher optica]I den-
sities, the system develops a band gap for —2 < Az < 0.
Fig.22 shows that in media with higher optical density,
the band gap becomes more prominent.

As we discussed in the main text, we are interested
in the band gap edge where the transmission peaks
are present and the system acts like an effective cavity.
Fig.23 shows a close-up of the transmittivity and reflec-
tivity spectrum in Fig.22(c) at the band gap edge. We
can observe that several resonances occur at the edge due
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FIG. 22: (Color online) By increasing d°*, the band gap
structure becomes more pronounced

to the finite size of the system. By positioning at the one
of the transmission peaks, the system behaves as an ef-
fective cavity, where the decay rate of the cavity will be
given by the width of the transmission peak. Therefore,
the present results, including the full susceptibilities of
the system, is consistent with the model presented ear-
lier where we had approximated the system to be around

Az =0.

We add that alternatively, one can assume a strong
control field so that the EIT windows would be smaller
than the one-photon detuning € > |A;]. Similar to the
previous case 0 < |Aq|, the system develops a band gap.
As shown in Fig.24, the band gap is formed between
—Q < Az < Q, similar to modulated EIT with AC-stark
shift as discussed in Ref.[35].
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of the band gap
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FIG. 24: (Color online) Band gap structure for strong control
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Appendix B: Numerical Methods

In this section, we describe the numerical methods that
have been used to simulate the evolution of the photonic
quantum state and the related correlation functions, in
the limit where we truncate the Hilbert space to two
photons or less. The partial differential equations for the
one-photon and two-photon wave functions (29, 30) are
turned into difference equations by discretizing space and
time, and are evolved forward in time using the Du Fort-
Frankel scheme [54]. This algorithm is is explicit in time —
i.e., the next time step function is explicitly given by the
past time function — and is also unconditionally stable.
We note that the system under investigation is open and
it is driven out of equilibrium, therefore, conventional
analytical methods for approaching the NLSE such as
Bethe ansatz or quantum inverse scattering [27] are not



applicable here.

The one-photon wave function can be easily integrated
and solved analytically. However, we describe how to ob-
tain the one-photon wave function numerically and then
generalize this technique to obtain the two-photon wave
function. First, we mesh space and time and reduce
the differential equations to a difference equation. If we
choose the time step k and the space step h, the dis-
cretized time and space will be = z/h and s = t/k
and the system length d = Nh. Then following the Du
Fort-Frankel scheme [54], the evolution equation takes
the form:

Oz, s+1)—0(xz,s—1) i

= O(x+1,s)+0(x—1,s)

2k 2mh?

- O(x,s+1)—0(z,s—1)] (B1)

where the position take all values inside the boundary
(2 <2z < N-—1). By rearranging the above equation, the
explicit form of the equation can be obtained

millfz?)g(m’ s+1)=0(z,s —1) (B2)

O(x+1,t)+60(x—1,¢) —0(x,s — 1))

(1

mh?

Therefore inside the boundaries, the wave function at
time s+ 1 can be obtained knowing the wave function at
time s and s — 1. The boundary condition at z = 0 -i.e.
x =1, will be given by

o - 0(1,s+1) J2r 0(2,s+1) (B3)
Z_49(2,75 +1)—60(1,s+1)

2mh

Or equivalently,

0(1,s+1) =

(B4)

and similarly for the boundary condition at z = d -i.e.
x = N, we have

2mh

BN s+ 1) = (—%+L)9(N—1,5+1).

1 [
§+ 2mh

Therefore, by having the above boundary conditions and
the initial condition §(z,s = 1) = 0, the wave function
can be calculated at any time inside the boundaries (2 <
x < N—1). The order of accuracy of the Du Fort-Frankel
scheme is given by O(h?) + O(k?) + O(k*h~2) and it is
consistent as k/h tends to zero [54].

Similarly, we can write a difference equation for the
two-photon wave function. The d-interaction can be ap-
proximated by a Gaussian distribution. The space do-
main is meshed so that Az; = Azy = h. The evolution
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equation for the two-photon wave function reads

(1 + :;f;) d(z,y,s+1) = (B6)
ik
mh2

ik
oz

ik
p —1 —1
25 b,y s — 1) + élz,y,s — 1)

2i —y)?
22 (O ots)

The boundary condition at z = 0 will be given by

O(y,s+1) = ¢(1’y>3+1)‘;¢(2,y78+1)

N ’L¢(2,y7s + 1) - ¢(1vy78 + ]-)
2mh ’

[¢($ + 17/!/) S) + ¢($ - la Y, 3)]

[(ZS(.’I?,y + 17 S) + (b(.’L‘,y - 17 S)]

(67

2

(B7)

where o is the length scale characterizing the distance
of the two-photon interaction. Approximating the delta-
function with a Gaussian is valid if ¢ < d. On the other
hand, we should have h < ¢ so that the Gaussian func-
tion would be smooth. Or equivalently,

o(1,y,s+1) = 300y, s +1) + (=3 + 507)0(2,y,5 + 1)

1 7
2 + 2mh

(B8)
and similarly for the boundary condition at z = d, we
have

¢(Nay58+1)+¢(N_17y78+1)

0 = 5 (B9)
+ Z¢(N,y,$+1)_¢(N_1,y,s+1)
2mh
which gives
1 i
—<+ N-1,y,s+1
(N, ys+1) = 2 QWhEﬁ 4 ) (B10)
2 2mh

Once the wave function is known at any point in time and
space, we can evaluate the correlation functions. In par-
ticular, the two-photon correlation function go(d, 7 = 0)
is given by Eq. (42), where the first and the second deriva-
tives at anytime are given by the following expressions,

1

0W6(d,d) = 5 [B(N, N) ~ (N — 1, N)|(BL)
00D (d,d) = s BN, N) — 6(N — 1,N)

— ¢(N,N—-1)+¢(N—-1,N —-1)].

Note that in evaluation of g(7), once the first photon
is detected the two-photon wave function collapses to
zero. This seems to be contradictory with the driven
boundary condition Eq.(35) where the two-photon state
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at the boundaries is proportional to the one-photon wave ton states in our truncation. However, this inconsistency
function which is not zero. This apparent inconsistency only leads to higher order corrections to g (7) in the input
occurs because we have neglected higher number pho- field amplitude «, which is assumed to be weak (a<1).



