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Abstract

The ground state entanglement of the two-mode Bose-Einstein condensate is investigated through

a quantum phase transition approach. The entanglement measure is taken as the order parameter

and this is a non-local order parameter, which is different from the conventional order parameter

of the Mott insulator-superfluid phase transitions. For this non-local order parameter, scaling

behavior corresponding to a continuous phase transition is obtained and a power-law divergence

near the critical region follows it. This scaling behavior of quantum entanglement is analyzed

by the finite-size scaling and the critical exponents are obtained as ν = 1.01 and γ = 0.86. A

close connection between quantum fluctuations and the phase transition of entanglement is also

obtained.
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I. INTRODUCTION

Quantum entanglement is a key feature of quantum information theory and it is one of the

most active research areas in recent years[1], especially in the area of its combination with

condensed matter systems[2]. Beyond its generation and application, one of the essential

questions is how to understand the process that happens in a physical system when it transits

from non-entangled states to entangled states. One approach to study this phenomenon is

to treat it as a quantum phase transition, where the order parameter is the entanglement

measure. This approach combines the theory of critical phenomenon with the theory of

quantum information. For spin lattice models, many results have been obtained. The

concurrence [3, 4] is often used as the entanglement measure in spin models. Entanglement

exhibits scaling behavior near the critical region and the critical behavior is shown to be

logarithm [5–8]. The phase transition is second-order for the ferromagnetic case and is

first-order for the antiferromagnetic case [9].

While the critical behavior of quantum entanglement in spin models have widely been

studied, there are very few studies on that in boson systems. It is thus of interest to

investigate the critical behavior of quantum entanglement in boson systems.

One extensively studied boson system in quantum entanglement is the two-mode Bose-

Einstein condensates coupled via Josephson tunneling [10]. It is described by the Hamilto-

nian [11]

H =
K

8
(N1 −N2)2 − ∆µ

2
(N1 −N2)− εJ

2
(a†1a2 + a†2a1), (1)

where a1, a2 are the annihilation operators for the two modes (1 and 2) respectively, and

N1 = a†1a1, N2 = a†2a2 are the corresponding number operators. The parameter K provides

the atom-atom interaction, ∆µ is the difference in the chemical potential between the two

modes and εJ is the coupling for tunneling. This Hamiltonian describes both the double-well

Bose-Einstein condensate and the two-level Bose-Einstein condensate in a single potential.

For the first case, the tunneling between the two wells must be small to use this Hamiltonian,

while for the second case, there is no such restriction. We will show in this paper that the

phase transition occurs at very small couplings, so the quantum phase transition approach

can describe both cases. The entanglement production in this system has been extensively

studied [10, 12–15]. The von Neumann entropy [16] E(ρ) is the usually used entanglement

measure, where ρ is the density matrix of the system, and for a system size of N particles,
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the maximum entropy is Emax = log2(N + 1).

This Hamiltonian (1) is in fact a two-site version of the Bose-Hubbard model [17]. When

varying the ratio between the interaction term the coupling term through a critical value, a

quantum phase transition occurs in the Bose-Hubbard model, which is the Mott insulator to

the superfluid transition [18]. This phase transition is driven by quantum fluctuations and

the order parameter is the conventional wave function. In the Mott insulator phase, atoms

are localized in lattice sites, while in the superfluid phase, atoms spread out over the whole

system. Although the insulator-superfluid phase transition is studied extensively [19–23]

both in theory and in experiment, it is interesting to investigate what would happen to the

Bose-Hubbard model when taking a non-local order parameter, rather than the conventional

order parameter.

In this paper, we present such a study for the simplest two-site Bose-Hubbard system,

the two-mode Bose-Einstein condensate. The entanglement measure, the von Neumann

entropy, is taken as the non-local order parameter. We show that there is a critical point

and entanglement exhibits scaling behavior near the critical point, which can be analyzed

using the theory of critical phenomena. We identify this as a continuous phase transition.

This phase transition is different from the insulator-superfluid phase transition, because it

is obtained for a non-local order parameter, rather than the conventional order parameter.

The critical behavior of quantum entanglement is shown to be power-law divergent, which

is different from the logarithm divergent of spin lattice models. Our work may help the

combination of methods in critical phenomena and quantum information theory for the

boson systems, especially for the Bose-Hubbard model. Further extension of this work is to

investigate quantum phase transitions in the Bose-Hubbard model of dozens of lattice site,

where a new entanglement measure is also needed to be put up.

II. CONTINUOUS PHASE TRANSITION

In this paper, we only consider the case K > 0, corresponding to a repulsive interaction

between atoms. The total particle number is conserved and we set ∆µ = 0. Using the
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angular momentum operators

Jz =
1

2
(N2 −N1)

Jx =
1

2
(a†1a2 + a†2a1)

Jy =
i

2
(a†1a2 − a†2a1)

and neglecting constant terms, the Hamiltonian (1) is rewritten as

H = χJ2
z − ΩJx, (2)

where χ = K/2 and Ω = εJ . As we are only interested in the ratio between the two

competing energy terms, it is convenient to introduce the dimensionless parameter Ω/χ in

the calculation, so the Hamiltonian can be reduced to

H = J2
z − ΩJx, (3)

where we have redefined Ω using the dimensionless parameter, i.e., Ω/χ → Ω. This di-

mensionless coupling parameter can be viewed as an ’external field’ by analogy with Ising

models. We also define the dimensionless entropy E(ρ)/Emax → E(ρ) to make it easier to

compare the results of different system sizes. We use numerical diagonalization to calculate

[24, 25] the ground state entanglement and its susceptibility with respect to the external

field Ω.

We first calculate the susceptibility dE(ρ)
dΩ

with respect to the coupling Ω for various system

sizes, which is shown in Fig. 1. We see that there is a critical point Ωm for each system

size, where the susceptibility reaches its critical value dE(ρ)
dΩ m

. The critical susceptibility

dE(ρ)
dΩ m

increases with the system size and would be divergent for an infinite system size

that corresponds to the thermodynamic limit, which implies that this is a continuous phase

transition where there is no discontinuity in the order parameter, as depicted by the inset

for the system of N = 2700 particles. This will be verified further in section IV.

From Fig. 1, the critical point Ωm lies in the small coupling regime, which means the

phase transition occurs shortly after the external field is switched on. We could easily figure

that the critical value is Ωc = 0 for an infinite system size of the thermodynamic limit. When

Ω = 0, the Neumann entropy is zero and there is no two-mode entanglement in the system;

When Ω > 0, the Neumann entropy gets a finite value and entanglement is generated in

4



0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
Ω

0

50

100

150

200

250

300

350
d
E

(ρ
)

d
Ω

N=240

N=400

N=700

N=1000

N=2100

N=2700

0.0005 0.0015 0.0025
Ω

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

E
(ρ

)
N=2700

FIG. 1. (color online) The susceptibility dE(ρ)
dΩ of the quantum entanglement with respect to

the external field Ω for system sizes of N = 240, 400, 700, 1000, 2100, 2700. A continuous phase

transition occurs as the susceptibility diverges with the system size. The critical point Ωm where

the susceptibility attains its maximum dE(ρ)
dΩ m

lies in the Fock regime and this critical susceptibility

diverges with the system size. The inset depicts the change of the order parameter-the ground state

entanglement for the system of N = 2700, which increases continuously from zero. We choose even

particle numbers because for odd particle numbers there is a degeneracy of the ground state when

Ω = 0.

the system. That means the system transits from non-entangled states to entangled states,

two essentially different states, once Ω is switched on from 0, so the critical value is just 0.

This will be verified further in section III, where we numerically fit the critical point and

the critical susceptibility for various system sizes. The critical point Ωm is well fitted to N

by choosing Ωc = 0.
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III. POWER-LAW DIVERGENCE

The well-behaved relationship between the critical point and the system size in Fig. 2 is

not just a coincidence. Actually it manifests the scaling behavior of quantum entanglement

for this quantum system, which is typical in critical phenomenon. From Fig. 2, we obtain

the scaling relationship

Ωm = 0.319225N−0.989062 (4)

for the critical point and the scaling relationship

dE(ρ)

dΩ m
= 0.393037N0.846662. (5)

for the critical susceptibility. The scaling behavior of the susceptibility is power-law diver-

gent, in contrast to the logarithm divergence of spin lattice systems [5].

This power-law divergence of the susceptibility can be understood in the thermodynamic

limit using a simple analysis. The basic idea is to truncate the Fock space of the system to

just three basis states and use them to approximate the state of the system. The validity

of this approximation lies in the fact that the critical point is Ωc = 0 and the delocalization

process is very weak near this critical point, which means that the transitions between

different basis states of the original Fock space are very weak and we can use the three

most important basis states for approximation. This is verified at the end of the calculation

in Eq. (6), where a power-law behavior of the susceptibility is obtained and the divergent

exponent does not differ much from that of the numerical simulation.

We choose the Fock space basis |N1, N2 > for the system, where N1 is the particle number

in the first site and N2 is the particle number on the second site. When Ω = 0, the ground

state is |N/2, N/2 > with energy E = 0, that is, the system is in a self-trapping state without

particle tunneling between the two sites. As Ω increases, the particles begin tunneling

between the two sites and this delocalization process connects different basis states, so the

system is described by
∑N

n=0 cn|n,N−n >. The critical value is Ωc = 0 and the delocalization

process is very weak near this region, so we can truncate the Fock space of the system to

just three basis states |N/2, N/2 >, |N/2− 1, N/2 + 1 > and |N/2 + 1, N/2− 1 >, then the

state of the system is |ψ >= c0|N/2, N/2 > +c1|N/2−1, N/2+1 > +c2|N/2+1, N/2−1 >,

where we assume the coefficient ci to be real numbers for simplicity. As the probabilities of

tunneling between the two sites are equal, the coefficients c1 and c2 are equal. Combining
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with the normalization condition c2
0 + c2

1 + c2
2 = 1, we get the relationship c0 =

√
1− 2c2

1.

We next calculate the approximate ground state to determine the value of the coefficients,

H|ψ > = −ΩN

2
c1{|

N

2
,
N

2
> +
−ΩN

4

√
1− 2c2

1 + c1

−ΩN
2
c1

[|N
2
− 1,

N

2
+ 1 > +|N

2
+ 1,

N

2
− 1 >]}

= E|ψ >,

where the approximation
√
N/2(N/2 + 1) ∼ N/2 is taken. The critical point Ωc = 0

determines that c1 is a small number. From |ψ >= c0[|N/2, N/2 > +c1/c0(|N/2− 1, N/2 +

1 > +|N/2 + 1, N/2− 1 >)], we obtain

E = −ΩN

2

c1

c0

,

which is approximately zero and is the ground state energy near Ωc = 0, and

−ΩN
4

√
1− 2c2

1 + c1

−ΩN
2
c1

=
c1√

1− 2c2
1

,

which gives the value

c2
1 =

1

4
(1− 1√

1 + Ω2N2

2

).

There are two values of c2
1 and what we choose is the smaller one. Substituting the values

of the coefficients into the von Neumann entropy

E(ρ) = −c2
0 log2 c

2
0 − c2

1 log2 c
2
1 − c2

2 log2 c
2
2

and taking its derivative with respect to Ω gives

dE(ρ)

dΩ
∼ ΩN2

Ω4N4
∼ N0.97, (6)

where the relationship ΩN ∼ N0.01 from Eq. (4) in the thermodynamics limit is used. Thus

we briefly illustrate the power-law divergence of the susceptiblity in the thermodynamic

limit.

The divergent exponent obtained in the analytic calculation is 0.97 and it is different from

the value 0.85 of the numerical simulation in Eq. (5). This difference may be accounted by

the finite-size effects and the truncation errors. First, the analytic calculation manifests the

thermodynamic limit, where there is no finite-size effect. The numerical result, however,

is influenced by the finite-size effects, so this may be one of the reasons for the difference
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FIG. 2. (color online) The scaling behavior of the quantum phase transition with the critical

value Ωc = 0. The critical point Ωm approaches 0 asymptotically by Ωm ∼ N−0.989062 and the

susceptibility diverges in a power-law behavior captured by dE(ρ)
dΩ m

∼ N0.846662, which is different

from the logarithm divergence of spin lattice models.

between the divergent exponents. Second, we adopt approximation in the analytic calcula-

tion by truncating the Fock space of the system to just three basis states. The numerical

simulation, however, includes the full Fock space. The neglected basis states would certainly

contribute to the result, although their amplitudes are small near the critical point. So the

difference between the divergent exponent is also influenced by the truncation errors.

IV. FINITE-SIZE SCALING

A key feature of the critical phenomenon is the finite-size scaling. Phase transitions

only occur at the thermodynamic limit, while numerical simulations can only deal with

finite system sizes. To extract information from results obtained from the finite system,

the finite-size scaling is required, where the effect of finite system sizes are eliminated by
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collecting all data of various system sizes onto a single curve and the critical exponent can

be deduced in this process. In the phase transition of thermal order parameters, e. g. , the

magnetization, the critical exponent ν of the correlation length satisfies |T − Tc| ∼ N−1/ν .

By analogy, we obtain ν = 1/0.989062 ∼ 1.01 from Eq. 4, which is the critical exponent for

the quantum phase transition of quantum entanglement. This critical exponent gives the

reduced coordinate N ν(Ω−Ωm) for all the finite system sizes. From Eq. 5, the susceptibility

is reduced to N−0.85(dE(ρ)
dΩ
− dE(ρ)

dΩ m
). If the quantum entanglement of this model manifests

quantum phase transitions, then all data of various system sizes could be collected onto a

single cure using the above reduced coordinates. This is indeed the case as exhibited in Fig.

3. Again this relationship is not just a coincidence. It illustrates that quantum entanglement

of this model indeed belongs to critical phenomenon. Resorting to the the phase transition

of the Magnetization, where the susceptibility χ of the Magetization is reduced to N−γ/νχ,

we obtain the critical exponent γ = 0.85ν ∼ 0.86 in this model.

V. QUANTUM FLUCTUATIONS

The Mott insulator-superfluid transition is driven by quantum fluctuations, which is com-

mon for quantum phase transitions. Here we show that a close connection also exists between

quantum fluctuations and the phase transition of entanglement . In the dynamical regime of

entanglement production, the system is required to undergo a delocalization process, where

large quantum fluctuation exists, to generate entanglement. So the quantum phase tran-

sition of entanglement should be closely related to quantum fluctuations. In the angular

momentum representation |j, jz >, where j = N/2 and jz = −N/2,−N/2 + 1, . . . , N/2,

the quantum fluctuation is (∆Jz)
2 = 〈J2

z 〉 − 〈Jz〉2. We show that (∆Jz)
2 and E(ρ) have a

similiar behavior, which indicates their close connection with each other. We plot (∆Jz)
2,

E(ρ) and their derivatives with respect to Ω in their reduced value in Fig. 4. We see that

both the quantum fluctuation and the quantum entanglement grows with the external field

Ω, and their growth corresponds to each other, which can be seen from their derivatives. As

quantum entanglement is a non-classical correlation, it is consistent that its quantum phase

transition is closely related to quantum fluctuations.

There is a ’delay’ between the derivative of E(ρ) and that of (∆Jz)
2, where the derivative

of E(ρ) reaches its maximum value earlier than the derivative of (∆Jz)
2. This is due to the
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FIG. 3. (color online) The finite-size scaling for the quantum phase transition of quantum en-

tanglement. After the susceptibility is reduced by the system size to N−0.85(dE(ρ)
dΩ − dE(ρ)

dΩ m
), it

becomes a function of N1.01(Ω − Ωm). Data from a broad range of system sizes are collected on

this single curve. The critical exponent obtained is ν = 1.01 and γ = 0.86.

finite-size effects. We are not working in the thermodynamic limit, so the derivatives between

the quantum fluctuation and the quantum entanglement are not in complete correspondance.

This is further confirmed by Table I, where the ’delay’ ∆Ω between the maximum points of

the derivatives are calculated for various system sizes. We see that the ’delay’ between them

is decreasing as the system size growes, so we can figure that in the thermodynamic limit,

the growth behavior of the entanglement and that of the fluctuation will approximately
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FIG. 4. (color online) Comparison between (∆Jz)
2, E(ρ) and their derivatives with respect to Ω.

Their values are reduced to 1 by their maximum values. The increase of the quantum fluctuation

corresponds to the increase of the order parameter, which indicates its connection with the phase

transition of entanglement. There is a small ’delay’ between the derivative of the fluctuation and

the susceptibility, with the susceptibility obtaining maximum value first. This ’delay’ comes from

the finite-size effects.

correspond to each other.

VI. SUMMARY

In summary, we have studied the entanglement of a boson system from the quantum

phase transition approach. It is shown that in this system there is a continuous phase tran-

sition for the non-local order parameter and entanglement exhibits scaling behavior near
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TABLE I. The ’delay’ ∆Ω between the maximum points of the derivatives of E(ρ) and (∆Jz)
2 for

various system sizes. As the system size increases, the ’delay’ decreases, which means the growth

behavior of the entanglement and that of the fluctuation are more closely related. This suggests

that in the thermodynamic limit, the two growth behaviors will correspond to each other.

N 200 400 600 800 1600 2700

∆Ω 0.000675 0.000375 0.000263 0.000188 0.000075 0.000055

the critical point, with the critical exponent calculated to be ν = 1.01 and γ = 0.86. The

critical behavior under discussion is different from that of the spin lattice models, because

a power-law divergence is obtained for the boson system while it is logarithm divergence

for the spin models. A further study of this phenomenon may consist of putting up an

entanglement measure for Boson systems of more lattice sites, investigating the quantum

phase transition of the Bose-Hubbard model of more lattice sites and obtaining its univer-

sality class. The renormalization group method specially for taking into account the effect

of quantum entanglement [26–28] may be used in that case.
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