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We propose an experimental scheme to detect the macroscopic Klein tunneling with spin-orbit
coupled Bose-Einstein condensates (BECs). We show that a nonlinear Dirac equation with tunable
parameters can be realized with such BECs. Through numerical calculations, we demonstrate that
the macroscopic Klein tunneling can be clearly detected under realistic conditions. The macroscopic
quantum coherence in such relativistic tunneling is clarified and the BEC with a negative energy is
shown to be able to transmit transparently through a wide Gaussian potential barrier.
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I. INTRODUCTION

Shortly after the relativistic equation of electron was
established by Dirac, Klein used it to study an electron
scattering by a potential step and found that there ex-
ists a nonzero transmission probability even though the
potential height tends to infinity[1], in contrast to the
scattering of a non-relativistic particle. This phenomena
has been referred to as the Klein tunneling (KT). The
KT is an intrinsic relativistic effect and is interpreted as
a fundamental property of Dirac equation that particle
and antiparticle states are inherently linked together as
two components of the same spinor wavefunction [2].
This unique scattering process has attracted lots of in-

terest over the past eighty years but failed to be directly
tested by elementary particles due to the requirements
of currently unavailable electric field gradients [3]. In-
terestingly, the dynamics of particles in some systems,
such as electrons in graphene [3] and trap ions [4, 5] etc.,
may be described by effective relativistic wave equations
and have been proposed to observe such relativistic tun-
neling. Ultra-cold atoms in optical lattices [6] and light-
induced gauge fields [7] are also able to behave as rela-
tivistic particles [8, 9]. Recent experiments in graphene
heterojunctions [10, 11] have provided some indications
for KT. However, the existence of disorders and interac-
tions in these solid-state systems makes it hard to realize
full ballistic scatterings. In addition, it seems hard to
unambiguously observe the KT in the graphene since it
is a typical 2D system, while the scattering in the 2D
system is a combination of perfect transmission for nor-
mally incident particles (a relativistic effect) and expo-
nentially decay tunneling for obliquely incident particles
(a non-relativistic effect). Moreover, Klein tunneling
as well as Zitterbewegung effect have been exper-
imentally simulated with the trapped ions[5].
In this paper we propose a feasible experimental
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scheme to observe macroscopic KT with spin-orbit cou-
pled BECs [12, 13]. We demonstrate that a one-
dimensional nonlinear Dirac equation (NLDE) with tun-
able parameters can be realized with a spinor BEC in the
presence of a light-induced gauge field. Through numer-
ical simulations, we demonstrate that a macroscopic KT
can be observed under realistic conditions. The simple
configuration of gauge field, in combination with control-
lable dimensions, interactions and potential barriers may
provide us with a clean and tunable platform to investi-
gate the interesting relativistic tunneling effects.

We investigate the relativistic tunneling of a
macroscopic quantum object by comparing the
transmission coefficients between a BEC in the
absence of interactions and an incoherent ensem-
ble average of non-condensed atoms. In addition,
we find that a realistically weak interaction be-
tween atoms affects slightly the transmission co-
efficients. The main feature of a BEC is that all
atoms in the BEC are in the same state and with
the same phase and then the BEC can be consid-
ered as a macroscopic object. So the tunneling
of a BEC we studied is a coherent scattering of
a macroscopic object. The tunneling in the for-
mer shows a distinct difference of the relativistic
effects between the macroscopic objects and the
ensemble average of some microscopic particles,
while the KT is only studied previously within
a single-particle scenario. We also present another
unexpected result that the BEC with a negative energy
can almost completely transmit through a Gaussian bar-
rier. Since KT is a relativistic phenomenon associated
with an anti-particle in the potential, our proposed spin-
orbit coupled BEC can mimic a macroscopic ’anti-BEC’
(a super-atom made from ’anti-atoms’), at least in a scat-
tering problem. Therefore, the mimicked ’anti-BEC’ may
open the possibility to explore exotic relativistic effects
of macroscopic body (even for very large antimatter), in
contrast to a conventional wisdom that relativistic effects
are only clearer for a microscopic particle.

The paper is organized as follows. In Sec. II we
propose an approach to realize a spin-orbit cou-
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pled atomic gas through the Λ-level configuration,
and then demonstrate that the dynamics of the
atoms should be described by the NLDE when
the atoms are condensed into a BEC. In Sec. III
we show that the region for KT of a single atom
can be reached in experiments. Then we demon-
strate in Sec. IV that the KT of BECs can be
clearly observed. We also clarify the macroscopic
quantum coherence in such relativistic tunneling
and show that a wide Gaussian potential barrier
is transparent for the BEC with a negative en-
ergy. In Sec. V, we present our discussion and
conclusion. In the appendix, we briefly review
the numerical method to calculate the transmis-
sion coefficient of a single atom scattered by a
Gaussian potential.
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FIG. 1: (color online). Schematic illustration of the system.
(a) Atom with Λ-level configuration interacting with laser
beams characterized by the Rabi frequencies Ω1, Ω2 and a
large detunning ∆. (b) The configuration of the laser beams
to realize a Dirac-like equation by the lasers Ω1,Ω2 and an ef-
fective Gaussian (square)-shape potential induced by another
laser beam. The atoms are confined in a 1D waveguide along
y axis and scattered by the potential.

II. REALIZATION OF A NONLINEAR DIRAC

EQUATION WITH COLD ATOMS

The Dirac equation with tunable parameters can be
realized with ultrcold atoms through two different ap-
proaches [6, 8, 9]. Similar to graphene, it was proposed
that the low energy quasi-particles in a honeycomb op-
tical lattice should also be described by the relativistic
Dirac equation [6]. On the other hand, the Hamilto-
nian of cold atoms (without optical lattices) with certain
spin-orbit coupling, which can be achieved with synthetic
gauge fields, is a Dirac Hamiltonian when the wave num-
ber of the atoms is much smaller than the wave number
of the laser beams. It is demonstrated that the required
spin-orbit coupling can be realized though a tripod level
configuration [8, 9]. In this paper we proposed that the
Λ-level configuration is also feasible to be used in the
realization of Dirac equation.
Let us consider the motion of bosonic atoms with

mass m in y-z plane with each having a Λ-level struc-
ture interacting with laser beams as shown in Fig.1.
The ground states |1〉 and |2〉 are coupled to an excited
state |3〉 through laser beams characterized respectively
with the Rabi frequencies Ω1 = Ωcos(κyy)e

−iκzz and

Ω2 = Ωsin(κyy)e
i(π−κzz), where Ω =

√

|Ω1|2 + |Ω2|2.
As shown in Fig.1 (b), the Rabi frequencies Ω1 and Ω2

can be respectively realized with a pair of lasers Ω1± =
1
2Ωexp[i(−κzz ± κyy)] and Ω2± = 1

2Ωexp{i[−κzz ±
(κyy + π/2)]}, where κy = κ cosϕ and κz = κ sinϕ with
κ being the wave number of the lasers and ϕ being the
angle between the laser and the y axis. The Hamilto-

nian of a single atom reads H = P
2

2m + V (r) +HI , where

V (r) =
∑3

j=1(VT (r) +Vb(r))|j〉〈j| denotes the full exter-

nal potentials (including the trapping potentials VT and
the scattering potential Vb) and the interaction Hamil-

tonian HI = h̄∆|3〉〈3| − (
∑2

j=1 h̄Ωj |3〉〈j| + h.c.) with ∆
as the detuning. Diagonalizing HI yields the eigenval-
ues as h̄{[∆−

√
∆2 + 4Ω2]/2, 0, [∆+

√
∆2 + 4Ω2]/2}. In

the large detuning case, the two eigenstates correspond-
ing to the first two eigenvalues span a near-degenerate
subspace, and can be considered as a pseudo-spin with
spin-orbit coupling induced by a gauge potential [7, 14].
Under this condition we obtain an effective Hamiltonian

H =
p2y + p2z
2m

+ vyσypy + vzσzpz + γzσz + VT + Vb, (1)

where vy =
h̄κy

m , vz = h̄κzΩ
2

2m∆2 , and γz = h̄2Ω2

4m∆2 [κ
2
y − (1 +

Ω2/∆2)κ2
z]+

h̄Ω2

2∆ . In the derivation, we have dropped an
irrelevant constant and assumed that the potentials V (r)
are spin-independent. Furthermore, the atomic gas can
well be confined by a 1D optical waveguide along y axis
[9], so we may further restrict our study in 1D system.
Therefore, both tripod and Lambda-level configuration
can be used, in principle, in the realization of the Dirac
equation. Comparing with the tripod configuration [8, 9],
the large detuning is necessary in the Lambda configura-
tion. However, the laser beams are simpler in the lambda
level configuration. Furthermore, the pseudospins in the
lambda configuration would be more robust against the
collision of the atoms since they are constructed by the
lowest two dressed states, while the two dark states in
the tripod configuration are not the ground states.
We assume that the interaction can be described by

an effective 1D interacting strength g = 2h̄2asN/(ml2⊥),
where as is the scattering length, N is the particle num-
ber, and l⊥ is the oscillator length associated to a har-
monic vertical confinement. The interaction between the
atoms (per particle) should be much smaller than the
confinement frequency (about kHz)[20], and thus is also
much smaller than Ω (about MHz), therefore the in-
teraction can not pump the atoms outside of the near-
degenerate subspace. Under the condition py ≪ h̄κy, we
can safely neglect the p2y term. In addition, we assume
that the bosonic atoms are condensed into a BEC state.
Within the Gross-Pitaevskii formalism, the interacting
bosons in the near-degenerate subspace are then effec-
tively described by a 1D NLDE as ih̄∂tΨ = HNDΨ [15],
where

HND = −ih̄vyσy∂y + γzσz + gΨ† ·Ψ+ VT + Vb (2)

with vy being the effective speed of light and γz as the
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effective rest energy of the cold atoms. It is a remark-
able feature that all parameters, vy, γz and g, can be
experimentally controllable, providing us with a tunable
platform to explore the relativistic quantum effects.

III. KLEIN TUNNELING OF A SINGLE ATOM

We now turn to address the relativistic quantum tun-
neling that can be observed with cold atoms. To have an
intuitive physics picture, we first consider a single atom
with energy E scattered by a square potential with the
width L and potential height Vs. Such potential can be
experimentally formed by a laser beam with flat-top pro-
file [16]. The transmission coefficient TD for the so-called
KT regime Vs > E+ γz [2], can be obtained explicitly as

TD =
[

1 + (η − η−1)2 sin2(βL)/4
]−1

, (3)

where η =
√

(Vs−E+γz)(E+γz)
(E−Vs+γz)(γz−E) and β =

√

(Vs−E−γz)
(Vs−E+γz)

/h̄.

Comparing with the well-known property in the non-
relativistic quantum mechanics that the transmission co-
efficient decreases mono-exponentially with the height Vs

or width L, a distinctly different feature within this KT
region is that the tunneling amplitude is an oscillation
function of Vs or L even when the kinetic energy of the in-
cident particle is less than the height of the barrier. This
relativistic effect can be attributed to the fact that the
incident particle in a positive energy state can propagate
inside the barrier by occupying a negative energy state,
which is also a plane wave aligned in energy with that of
the particle continuum outside. Matching between pos-
itive and negative energy states across the barrier leads
to the high-probability tunneling. We take the atoms
of 7Li as an example. If we choose the following prac-
tical parameters: κy = 107 m−1, κz = 0.8 × 107 m−1,
Ω = 107 Hz and ∆ = 109 Hz, it is found that the Klein
regime corresponds to the Rabi frequency Ωs

b > 0.162
MHz, which can be easily achieved in experiments. So
we have demonstrated from a simple example that it is
feasible to observe the KT with cold atoms.

IV. KLEIN TUNNELING OF ATOMIC

CONDENSATES

As for a practical experiment it is required to release
two conditions: the trajectory of a single atom is hard
to detect, and it is much easier to measure the density
evolution of an ensemble of atoms in experiments. Com-
pared with the square potential, a Gaussian potential

V G
b (y, ν) = νVGe

−y2/σ2

, where VG is the height and σ
characterizes the spatial variance, is much easier to be
generated. Here ν donates a barrier (ν = +) or a po-
tential well (ν = −), and the potential barrier (well)
can be realized by focusing a blue- (red-) detuned far-
off-resonant Gaussian shaped laser beam. However, the
conditions of resonant transmission vary with the velocity

and the width of the potential, and thus both the ensem-
ble of atoms and the Gaussian potential may smoothen
the oscillations in the transmission coefficient. So it is
natural to ask whether the KT can still be observed in an
ensemble of atoms. Surprisingly we will illustrate below
that the KT of the BEC may be observed very clearly.
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t = 1.5 ms
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FIG. 2: (color online). (a) A schematic diagram shows four
kinds of scattering events. (b) Normalized density distribu-
tion in a scattering process at time t = 0, 1.5 and 2.0 ms.
The peaks at y = 0 are the Gaussian barriers.

We assume that the BEC consisted of 7Li is initially
trapped in a harmonic trap which moves along the y axis.
At the initial time t = 0, the center of the trap locates
at y = −d, and the center of the Gaussian potential is at
y = 0. The trap is turned off at t = 0 and then we cal-
culate the evolution of the density profile of the atomic
gas after a long enough time for scattering. The single-
atom dispersion described in Eq. (2) is characterized by
two branches E±(ky) = ±(γ2

z + h̄2v2yk
2
y)

1/2, where the
lower (up) branch represents the negative (positive) en-
ergy state. One can prepare an initial BEC with a desig-
nated mode k0 at the positive or negative energy branch.
The two branches allow us to study a more fruitful tun-
neling problem: there are four classes of the scattering
which describe the wave function Ψµ (µ(= ±)) scattered
by the potential V G

b (y, ν),as shown in Fig. 2(a).
The BEC in a harmonic trap can be well described

by a Gaussian wave packet, so we may choose the initial
wave function as

Ψµ(y, 0) =
1

√

l0
√
π
eiµk0ye−(y+d)2/2l20φµ, (4)

where l0 is the width, k0 is the central wave number
of the wave-packet and the spinor φµ are defined as
φ+ = (i cos ξ,− sin ξ)T , φ− = (−i sin ξ, cos ξ)Tr with
ξ = 1

2 arctan(h̄vyk0/γz) and Tr as the transposition of
matrix. This wave function describes a Gaussian wave
packet with the central velocity h̄(κy + µk0)/m moving
along y-axis. After the evolution governed by Dirac-type
Eq. (2) with time t, the finial wave function becomes

Ψµ(y, t) = T̂ exp

(

− i

h̄

∫ t

0

HNDdt

)

Ψµ(y, 0), (5)

where T̂ denotes the time ordering operator. We nu-
merically calculate Ψµ(y, t) in Eq.(5) by using the
standard split-operator method. According to
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the method [19], Eq. (5) can be rewritten as

Ψµ(y, t+ δt) =
{

e−
i
2h̄

vyσypyδte−
i
h̄
γzσzδt

× e−
i
h̄ [V

G
b (y,ν)+g|Ψµ(y,t)|

2]δt

×e−
i
2h̄

vyσypyδt +O(δt3)
}

Ψµ(y, t).

(6)
In the sufficiently short time step δt, the high-
order term O(δt3) (due to the non-commuting)
can be safely neglected. Combining with the
Fourier transform between the position and mo-
mentum spaces, we can finally get the numerical
solution of Ψµ(y, t) following the computation pro-
cedure step by step with time step δt.
We have numerically calculated Ψµ(y, t), and found the

existence of stationary solution for the scattering process,
with an example being shown in Fig. 2(b). After tunnel-
ing, the incident wave packet divides into the left- and
right-traveling wave packets and only the latter one is on
the transmission side of the barrier. Thus we can define
the transmission coefficient of the incident wave packet
Ψµ(y, 0) scattering by a potential V G

b (y, ν) as

Tµν =

∫ ∞

σ

Ψ†
µ(y, τ)Ψµ(y, τ)dy, (7)

where τ (being slightly larger than d/v0) represents a
time that the reflected and transmitted wave packets
are sufficient away from the Gaussian potential. One
can directly measure the transmission coefficient in Eq.
(7) since the spatial density distribution ρµ(y, τ) =
|Ψµ(y, τ)|2 can be detected using absorption imaging [17].
We first look into the tunneling phenomena for a BEC

in the absence of interactions (g = 0). We note that
there are two identities T++ = T−− and T−+ = T+−

since Eq.(2) with g = 0 is invariant under the charge con-
jugation [18]. We plot the transmission coefficient T++

as a function of the height VG and width σ in Fig. 3(a)
with the practical parameters. It is interesting to note
that the transmission coefficient decreases exponentially
to zero with VG when VG < V K

G , while it will increase
and then be an oscillating function in the Klein region
VG > V K

G , being similar to the results of Eq. (3) for the
square barrier. Here the critical value of the potential
height may approximately be estimated using the square
barrier with V K

G = E(k0) + γz ≈ 0.09 MHz. Moreover,
the feature T++ = T−− is also confirmed in the insert
of Fig. 3(a). As for the transmission coefficient T++(σ),
we may obtain several tunneling oscillations with the po-
tential width, but it decreases to zero when the width
is further increased. Although the amplitude of tunnel-
ing oscillation is less than the unit as comparing with
the tunneling of single atom, the amplitude of tunneling
oscillation can be more than 0.5 and meanwhile the pe-
riod can be a few micrometers, which is experimentally
detectable.
Another interesting feature induced by the relativistic

effects is that, the BEC with negative energy can almost
completely transmit a wide Gaussian potential barrier, as

shown in Fig. 3(b). The transmission coefficient T−+ is
an oscillating function of the potential width σ when σ is
smaller than 3 µm, while it saturates quickly to the unit
when the potential width is larger than 3 µm, leading
to an unexpected result that a wide Gaussian potential
barrier is actually totally transparent for a BEC. This
phenomenon can be understood through the fact that
such scattering feature is actually equivalent to that of a
BEC of positive energy scattered by a Gaussian poten-
tial well because of T−+ = T+−. We also calculate the
transmission coefficient for the central mode of the wave
packet, as shown in the insert of Fig. 3(b), which further
confirms that a wide enough Gaussian potential well is
transparent. The reason lies in the fact that, in contrast
to the periodic function (without a saturation value) in
a square potential well, the Gaussian potential well is
smooth in the whole space, and then even support adia-
batic motions of wave packets in the large width limit.
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FIG. 3: (color online). KT of BECs. (a) T++(σ) for
VG/h̄ = 0.2 MHz and T++(VG) (insert) for σ = 5 µm. The
tunnelings of a BEC with the classic kinetic energy term and
the conventional atomic interaction (N = 2 × 104, l⊥ = 1.4
µm and as = 5a0 with a0 being the Bohr radius) are also
depicted. (b) The coefficients T−+(σ), 〈T (σ)〉 (insert) of one
atom with central mode k0, and of 104 atoms for VG/h̄ = 0.2
MHz. The other parameters in (a) and (b) are l0 = 10 µm,
k0 = 5.5× 105 m−1, γz/h̄ = 30 kHz, and d = 4(l0 + σ).
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FIG. 4: (color online). Comparing KT of BECs with that
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N = 103, 4× 103, 104 are shown by fixing the energy Eint for
l0 = 10 µm and d = 4(l0+σ). (b) 〈T (σ)〉with Na = 1, 10, 102,
and 104 atoms for σk = 5 × 105 m−1. The other parameters
in (a) and (b) are VG/h̄ = 0.2 MHz, k0 = 5.5× 105 m−1, and
γz/h̄ = 30 kHz.



5

The tunneling properties exhibited in Fig. 3(a,b) are
intrinsic relativistic and macroscopic quantum phenom-
ena that can not be explained with an incoherent en-
semble average of many atoms. To clarify this point,
we calculate the average transmission coefficients for an
ensemble of Na noninteracting atoms defined as

〈T 〉 = 1

Na

Na
∑

i=1

T (ki), (8)

where T (ki) donates the transmission coefficient for the
atom i with the wave number ki scattered by the poten-
tial. The numerical calculation method for T (ki) is given
in the Appendix. Here we choose ki to be the same Gaus-
sian distribution as that of the initial BEC wave function
Ψµ(y, 0), i.e., ki ∼ N(k0, σ

2
k) with the variance σk = 1/l0.

The 〈T 〉 of 104 atoms is shown in the insert of Fig. 3(b),
which is almost the same as that of a single atom since
σk is small. The differences between 〈T 〉 and T−+ in
Fig. 3(b) demonstrate that the tunneling of BEC is not
equivalent to an ensemble average of the individual atoms
even with the same distribution of wave number. The co-
efficient 〈T 〉 represents an incoherent transmission of the
individual particles since it is a sum of the transmission
coefficients of all particles. In contrast, the phases of all
atoms in the BEC are the same and then the transmis-
sion of a BEC is coherent. The coherent transmission in
BEC and incoherence in 〈T 〉 cause the difference in Fig.
3. The same phase for all particles in BEC is stemmed
from that macroscopic number of particles are condensed
in the same state, so the coherent transmission of BEC
may be called as a macroscopic quantum tunneling.
To clarify further the macroscopic quantum phenom-

ena in the relativistic tunneling of a BEC, we compare
the scaling properties of transmission coefficients for a
weakly interacting BEC and an incoherent ensemble av-
erage of atoms. An example of scaling of T++ is plotted
in Fig. 4(a). In the calculations, we have fixed the weak
interatomic interaction energy Eint ≈ g/l0 and kept the
parameter γ = mgl0/Nh̄2 ≪ 1 [20] for l0 = 5 µm when
N = 103, l⊥ = 1.4 µm and as = 5a0 (γ ∼ 10−3), both
of which restrict our discussions in the regime for 1D
BECs where the Dirac dynamics instead of the nonlinear
dynamics dominates. In this case, the increase of parti-
cle number is achieved by proportionally increasing the
length l0 of the BEC with small γ. For comparison, we
also calculate the scaling of 〈T 〉 for the atom number of
one (with ki = k0), 10, 10

2, 104 in Fig. 4(b). Comparing
Fig. 4(a) with Fig. 4(b), a distinct difference of the BEC
and an ensemble average of the individual atoms is that,
the coefficient T++ enhances with the increasing of the
atomic number of the BEC, while the coefficient 〈T 〉 de-
creases with the increasing of the atomic number. How-
ever, in order to keep the same interaction parameter in
the above calculation, we have increased simultaneously
the particle number and the width of the Gaussian wave
packet. In this way the momentum distribution of the
wave functions is shrunk, which is a dominant reason for

the above scaling feature. So many atoms may condense
into the same momentum state is essential in the obser-
vation of KT of the BEC.

V. DISCUSSION AND CONCLUSION

Before concluding, we wish to make two additional
comments. (i) To judge the feasibility of the Dirac ap-
proximation in Eq.(2), the coefficients T++ with or with-
out the quadratic term are compared in Fig. 3(a). It is
shown that the quadratic term leads to merely a slight
left-shift of the tunneling peaks. This phenomenon can
be interpreted by the fact that the wavelength of the BEC
inside the barrier decreases slightly in the presence of the
additional low kinetic energy. This result verifies that the
approximation led to the Dirac equation is well satisfied.
(ii) In Fig. 3(a), we have also calculated the trans-
mission coefficient for BECs with conventional
atomic interactions without Feshbach resonance,
in which case the experimental setup can be sim-
plified. The result shows that the effect of the
realistically weak interaction is little and smooths
merely the tunneling oscillation slightly. There-
fore the exotic tunneling phenomena addressed
here survive in the case of weak interaction be-
tween atoms.
In summary, we have proposed an experimental scheme

to detect macroscopic KT using the spin-orbit coupled
BEC. Through numerical simulations, we have elabo-
rated that such macroscopic KT can be observed under
realistic conditions. In view of that the spin-orbit cou-
pled BEC has been realized in a very recent experiment
[13], it is anticipated that the present proposal will be
tested by a near future experiment.
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Appendix: The derivation of T (ki) in Eq.(8)

The Dirac equation for a particle scattering
by a Gaussian potential can not be solved analyt-
ically for the incoming atom with energy Ei =
√

(h̄vyki)2 + γ2
z and momentum pi = h̄ki. How-

ever, we here adopt an efficient method to numer-
ically solve it based on the transfer matrix meth-
ods [9]. The numerical procedures are outlined
as follows. One first cuts the Gaussian poten-
tial into spatially finite range y ∈ [−yc, yc], where
the cutoff position yc should be chosen to guar-
antee that the potential height outside the range
is low enough to be transparent for the atoms,
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i.e., V G
b (yc) ≪ Ei, VG. Secondly, one equally di-

vides this range into n spindly segments and each
segment can be considered as a square poten-
tial if n is large enough. The potential height
of j-th (j = 1, 2, · · · , n) square potential is given
by Vj = V G

b (yj + f/2) with yj = −yc + (j − 1)f
and the width of each potential f = 2yc/n. In
this case, the Gaussian potential can be approxi-
mately viewed as a sequence of connective small
square potential barriers, and thus the trans-
mission coefficient T (ki) ≈ 1/|m11|2, where m11 is
the first element of the whole transfer matrix
M = MnMn−1 · · ·Mj · · ·M2M1. Here Mj denotes the
transfer matrix of the j-th square potential bar-

rier, whose explicit elements are given by [9]

(Mj)11 = (cos
pjf
h̄ + i

κ2+κ2
j

2κκj
sin

pjf
h̄ )e−

i
h̄
pif ,

(Mj)12 = (i
κ2
j−κ2

2κκj
sin

pjf
h̄ )e−

i
h̄
pi(yj+yj+1),

(Mj)21 = (Mj)
∗
12,

(Mj)22 = (Mj)
∗
11,

(9)

where κ = (Ei − γz)/(vypi) and κj = (Ei − γz −
Vj)/(vypj) with (Ei − Vj)

2 = v2yp
2
j + γ2

z . Note
that this numerical calculation scheme recovers
the non-relativistic scattering governed by the
Schrödinger equation.
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