
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Atom-molecule conversion with particle losses
B. Cui, L. C. Wang, and X. X. Yi

Phys. Rev. A 85, 013618 — Published 12 January 2012
DOI: 10.1103/PhysRevA.85.013618

http://dx.doi.org/10.1103/PhysRevA.85.013618


AB10786

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Atom-molecule conversion with particle losses

B. Cui, L. C. Wang, X. X. Yi
School of Physics and Optoelectronic Technology,
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Based on the mean-field approximation and the phase space analysis, we study the dynamics of
atom-molecule conversion systems subject to particle losses. Starting from the many-body dynamics
described by a master equation, an effective nonlinear Schrödinger equation is introduced. The
classical phase space is then specified and classified by fixed points. The boundaries, which separate
different dynamical regimes have been established and discussed. The effect of particle loss on the
conversion efficiency and the self-trapping is explored. By numerically solving the master equation,
we show that the mean-field approximation is a good approach to study the dynamics of this atom-
molecule conversion system.

PACS numbers: 03.65.Bz, 07.60.Ly

I. INTRODUCTION

Association of ultracold atoms into molecules is cur-
rently an active topic in the field of ultracold quantum
physics, it attracts much attention due to its applica-
tions ranging from the production of molecular Bose-
Einstein condensates to the search for permanent electric
dipole moments, see for example [1–13]. By applying a
time varying magnetic field in the vicinity of Feshbach
resonance, a pair of atoms can bound into a diatomic
molecule [14, 15], this conversion can be described by
the Gross-Pitaevski (GP) equations within the mean-field
theory (MFT) [16–21], which reduces the full many-body
problem into a set of coupled nonlinear Schrödinger equa-
tions and maps the complicated many-body dynamics
into the dynamics of a two-mode system. Earlier study
shows that the nonlinearity, which arises from the atom-
atom and molecule-molecule couplings, plays an impor-
tant role in the dynamics of the system [17], for example,
four distinct regimes, each has different feature in dy-
namics can be classified, accordingly the bifurcation of
the fixed points in the classical phase space [17, 21] can
be identified.

Every quantum system is inevitably coupled to
its surrounding environment. For Bose-Einstein
condensates[22–27], the thermal atoms or molecules may
play the role of surrounding environment. Description
of decoherence by fully including the quantum effects re-
quires sophisticated theoretical studies, it is complicated
and difficult to solve. Fortunately, the standard approach
in quantum optics can reduce the complexity, and in fact
it has been widely used in the study of Bose-Einstein con-
densates in recent years [28–33]. For an atom-molecule
conversion system, we then ask: how the decoherence
affect the dynamics of the atom-molecule conversion sys-
tem? What are the fixed points in this atom-conversion
system? How do these fixed points behave? We will an-
swer these questions in this paper.

In this paper, we will focus on the effect of decoherence
in the atom-molecule conversion system. The decoher-
ence may arise from inelastic collision between conden-

sate and noncondensate atoms/molecules in the system.
These inelastic collisions may lead to dissipation (or par-
ticle loss) and dephasing for the system. Here, we con-
sider only the dissipative effect due to particle loss and
neglect the dephasing that conserves the particle num-
ber. Under the mean-field approximation, an effective
non-Hermitian Gross-Pitaevskii equation is derived. Bi-
furcation of the fixed points divides the parameter space
into different dynamical regimes, boundaries that sepa-
rate these regimes are changed by the decoherence. By
calculating the Jacobian matrix, we find that a sudden
transition in the fixed point from elliptic point to attrac-
tor or repeller happens with non-zero decoherence rate.
The atom-molecule conversion efficiency as well as the
self-trapping for the system are also studied.

The paper is organized as follows. In Sec. II, we intro-
duce the model and transform the master equation into
a nonlinear Schrödinger equation. In Sec. III, we de-
fine different regimes by the fixed points and study the
dynamics in these regimes. In Sec. IV, we investigate
the effect of particle loss on the conversion efficiency. In
Sec. V, we shed light on the self-trapping taking the de-
coherence into account, an explanation for the predicted
features is also given. Finally, we conclude our results in
Sec. VI.

II. MODEL

Based on the two-mode approximation, the Hamilto-
nian that includes the atom-atom collision Uaa, atom-
molecule conversion with rate V , and molecule-molecule
couplings Ubb takes the following form [17, 18],

H = µaâ
†â+ µbb̂

†b̂+ Uaaâ
†â†ââ+ Ubbb̂

†b̂†b̂b̂ (1)

+Uabâ
†âb̂†b̂+ V (â†â†b̂+ b̂†ââ).
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The master equation [34] that takes the particle loss into
account can be written as [22],

ρ̇ = − i[Ĥ, ρ]− Γa

2
(â†âρ+ ρâ†â− 2âρâ†) (2)

− Γb

2
(b̂†b̂ρ+ ρb̂†b̂− 2b̂ρb̂†),

where Γa and Γb represent decoherence rates for atoms
and molecules, respectively. In the mean-field approxi-
mation, the quantum fluctuation is neglected, the oper-

ator â and b̂ can be replaced with c numbers a = |a|eiθa
and b = |b|eiθb , respectively. With these considerations,
the master equation (2) can be casted into the following
nonlinear Schrödinger equation,

i
d

dt

(

a
b

)

= H

(

a
b

)

, (3)

H =

(

R− Uz − i

2Γa 2V a∗

V a −2R+ 2Uz − i

2Γb

)

, (4)

with z = |a|2 − 2|b|2 denoting the number difference of
atoms in the atom and molecule modes. U = 1

4Uab −
1
2Uaa− 1

8Ubb represents the coupling strength and V is the

conversion rate. R = 1
4 (2µa − µb +2Uaa − 1

2Ubb) denotes
the energy difference between the two modes, which can
be effectively adjusted by a time-varying external field
[18, 19]. Units are chosen such that ~ = 1 throughout
this paper.
The Hilbert space for such an atom-diatomic molecule

conversion system is spanned by a set of Bloch vectors.
Under the mean-field approximation, the Bloch vectors
can be defined by [20],

~h = (2
√
2Re[(a∗)2b], 2

√
2Im[(a∗)2b], |a|2 − 2|b|2). (5)

With the normalization condition |a|2+2|b|2 = 1 (for the
case without decoherence), the Bloch sphere is a tear-
drop shaped surface as shown in Fig. 3.
To analyze the dissipative dynamics of the system in its

classical phase space, we define relative phase θ, particle
number n and normalized population difference S as

θ = 2θa − θb, (6)

n = 2|b|2 + |a|2, (7)

S =
z

n
. (8)

Inserting these definitions into Eq. (3), a set of evolution
equations is obtained

Ṡ = −2Ω(1 + S)
√
1− S sin θ − Γ−(1− S2), (9)

θ̇ = 4CS − 4R− Ω
1− 3S√
1− S

cos θ, (10)

ṅ = −(Γ+ + Γ−S)n, (11)

where Γ+ = 1
2 (Γa + Γb) and Γ− = 1

2 (Γa − Γb) have
been defined, representing the total and relative deco-
herence rates for the two modes. C = Un and Ω = V

√
n

represent a rescaled coupling strength and conversion
rate. The particle number n(t) is initially normalized

to n(0) = 1 and the Block vectors ~h were normalized
by n(t) in the rest of paper. Without decoherence, i.e.,
Γa = Γb = 0, dynamics of the system can be described
by an classical Hamiltonian

H = 2Ω(1 + S)
√
1− S cos θ − 2CS2 + 4RS, (12)

where θ and S are conjugate variables. By this classical
Hamiltonian, the authors have found that the bifurcation
of the fixed points falls into four regimes in the parameter
space [17, 21] (see Fig. 1). A natural question arises: how
the decoherence affects these regimes and the dynamics,
we will explore this question in the next section.

III. FOUR DYNAMICAL REGIMES WITH

DECOHERENCE

We divide this section into two parts. In the first sub-
section, we study the dynamics with fixed C and Ω, i.e.,
n(t) is treated as a constant [28, 32]. Because the particle
number n(t) in fact is time-dependent and decreases with
time, this discussion is valid for a short time scale, within
which the change of n(t) does not destroy the phase space
structure and can not induce transitions between differ-
ent regimes, this is similar to the scenario discussed in
[28, 32], and the dynamics can be seen as a meta-stable
process. In the second subsection, we take the change
of n(t) into account and explore the transition between
different regimes.

A. slow and small change of n(t)

In this subsection, we consider a scenario where n(t)
changes slowly and the change of n(t) is small. In this
case, n(t), C and Ω can be treated as constants. When
n(t) in Eq.(11) changes slowly with respect to S(t) and
θ(t) in Eqs(9,10), S and θ can reach a ’fixed point’ for
each n(t). The following analogy well characterizes the
situation under study: a moving twister characterized by
a spiraling funnel-shaped wind current, connecting to a
large cumulus or cumulonimbus cloud. Although the cen-
ter of the twister moves, the air can keep rotating around
the center. The fixed point in the next section is similar
to the center of the twister, it moves but it still can be
found as a metastable process. Mathematically, this is
the case when the change rate δ = Γ+ + Γ−S of n in
Eq. (11) is very small. Further consideration shows that
δ ≪ 1 equals to Γb ≫ Γa and S(0) ≈ 1, or Γa ≫ Γb

and S(0) ≈ −1. The first corresponds to an attractor
near S = 1, while the later corresponds to an attractor
near S = −1. Because the lifetime for molecular conden-
sate is much shorter than that of atomic condensate in
experiments [39, 40], we numerically check the first case
and plot the results in Fig. 2. Namely, we plot the time
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FIG. 1: (color online) Parameter space spanned by nonlinear-
ity C and energy difference R. Ω = 1. Here and hereafter

C, Ω, and R are rescaled in units of V , t is in units

of 1/V , hence all parameters are dimensionless. Dif-
ferent regimes are separated by boundary lines, where black
solid lines represent the case for Γ

−
= 0, while blue dashed

lines denotes the case for Γ
−

= −1 in (a). Green solid lines
in (b) denotes the boundary lines for Γ

−
= −1.5. Γ+ has

no effect on the distribution of fixed points according to Eqs.
(14,15), but it affects the life-time of meta-stable process (see
Eq. (18)). (c), (d), (e), and (f) describe the classical phase
space for regime I , II , III , and IV , respectively, for the case
without decoherence.

evolution for population difference S and relative phase
θ by numerically solving Eqs. (9,10,11), and compare it
to the results by only solving Eqs (9,10) with n(t) = 1.
We find that for small Γ+ ≃ Γ−, the two results for S(t)
and θ(t) coincide. As Γ+ ≃ Γ− increases, the consistent
time becomes shorter, but it can still last a long time.
Meanwhile, time evolution of δ keeps smaller (than 1)
under the condition we considered.
With these notations, the fixed points of the system

are defined by

Ṡ = θ̇ = 0. (13)

By this definition, we can calculate the fixed points
and find that one of the fixed point is S = −1, θ =

arccos(−
√
2(C+R)

Ω ), while the other fixed points are de-
termined by

(9Γ2
− + 64C2)S3 − (Γ2

− − 4Ω2 + 64R2)

−(15Γ2
− − 36Ω2 + 64C2 + 128CR)S2

−(24Ω2 − 7Γ2
− − 64R2 − 128CR)S = 0, (14)

and

sin θ = −Γ−
2Ω

√
1− S. (15)

By a Jacobian matrix defined as

J =

(

∂Ṡ/∂S ∂Ṡ/∂θ

∂θ̇/∂S ∂θ̇/∂θ

)

, (16)
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FIG. 2: (color online) n(t), S(t) and θ(t) as a function of
time. In figures (a), (b), and (c), red thick solid line, blue
and green solid lines represent the time evolution of n, S and
sin θ, respectively. These results are from numerically solving
Eqs (9,10,11). These results are compared with that from
solving only Eqs. (9,10) with n(t) keeping in its initial value,
n(t) = 1. Blue dashed and green dash-dotted lines are for S
and sin θ in this case. Parameters chosen are R = 0, Ω(0) = 1,
S(0) = 0.99, and θ(0) = 0 for (a), (b), (c). C(0) = 4, Γ

−
=

−0.49, Γ+ = 0.51 for (a). C(0) = 2, Γ
−

= −0.99, Γ+ = 1.01
for (b). C(0) = 2, Γ

−
= −1.99, Γ+ = 2.01 for (c). In figure

(d), time evolution of δ corresponding to (a), (b), and (c) are
shown by red dash-dotted line, black dash line, and blue solid
line, respectively.

we can study the stability of the fixed points and classi-
fied the phase space as in the literature [33, 35, 36]. All
parameters used here are realizable with recent technolo-
gies. To be specific, the lifetime for atomic and molec-
ular condensate can be the order of 10 seconds [39] and
1 second [40], which is consistent with dissipation rates
in our paper. Ratio between nonlinear strength C and
conversion rate Ω is adjustable with the help of Feshbach
resonance [15], for example, MIT experiment parameters
with 23Na condensate [41], giving the mean density of
the condensate n ∼ 1015cm−3 and C/Ω = 0.36.

In Ref. [17], without decoherence effects, the parame-
ter space was divided into four regimes by the feature of
fixed points. Here using Eq.(16) we re-divide the regimes
by taking the decoherence into account (see Fig. 1, Fig. 3
and Fig. 4). Boundaries that separate different regimes,
are determined by numerically solving Eqs. (14,15). Note
that the fixed points on the boundary behave like the
fixed points in the regime labeled by a smaller number
(for example, boundary that separate regimes I and II
belongs to the regime I).

Figure 1(c) shows Poincaré section of the classical
Hamiltonian for the regime I. The only fixed point is
located near the border of the phase space (S = 1) and
the dynamics of the system is localized. When taking
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FIG. 3: (color online) Mean-field dynamics on the Bloch
sphere for cases without (left) and with (right) decoherence.
The north pole and south pole of the sphere corresponds to
the pure atomic condensate and the pure molecular conden-
sate, respectively. Red spots and center of the vortex denote
the location of the fixed points. Blue solid lines represent the
trajectories for the time evolution of the system. Parameters
chosen are R = 1, Ω = 1, C = 0 for (a) and (b), R = 0, Ω = 1,
C = 2 for (c) and (d), and R = 0, Ω = 1, C = 0 for (e) and
(f). The figures on the left side ((a),(c),(e)) are for the case
without decoherence (i.e., Γ+ = Γ

−
= 0), while the figures on

the right side depict the case with decoherence (Γ+ = 1 and
Γ
−
= −1).

the decoherence into account, the fixed point near S = 1
turns into an attractor, where Figs. 3(a) and 3(b) show
trajectories on the tear-drop shaped Bloch sphere. The
dynamics of the system becomes delocalized due to the
appearance of such an attractor.

By changing the energy difference R and the nonlin-
earity C (see Fig. 1(a)), the system can go across the
boundary into regime II, the fixed point in regime I bi-
furcates into two elliptic points and a hyperbolic one as
Fig. 1(d) shows. The regime II shares similar features
with the self-trapping in the two-mode Bose-Hubburd
model [37, 38]. With a negative relative decoherence rate,
both of the two elliptic fixed points transit to attractors
in this regime (see Figs. 3(c) and 3(d)). While the lo-
cations of the stable attractors are just slightly changed
due to the decoherence (see Fig. 4(b)).

Figure 1(e) illustrates the Poincaré section of the clas-
sical Hamiltonian for regime III without decoherence.
In this regime, large amplitude oscillations around the
elliptic fixed can be observed, see Fig. 3(e). With C = 0
and R = 0, the location of the fixed points in this regime
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FIG. 4: (color online) (a) Locations of fixed points versus
energy difference R. Parameters chosen are C = 0, Ω = 1, and
Γ
−

= 0, 0.9, 1.6 for red solid line, green dashed line and blue
dash-dotted line, respectively. (b) Locations of fixed points
versus interaction strength C. Parameters chosen are R = 0,
Ω = 1, and Γ

−
= 0,−0.5,−1.5 for red solid line, green dashed

line and blue dash-dotted line, respectively. This figure is a
result of Eq.(14).

can be derived analytically

(S, θ) =

(

1
3 , π + arcsin ( Γ

−√
6Ω

)
1
3 , 2π − arcsin ( Γ

−√
6Ω

)

)

, (17)

where we assume the relative decoherence rate positive,
and the relative phase was restricted in θ ∈ [0, 2π]. From
Eq. (17), we find that the relative phase between the
two fixed points decreases, and the fixed points becomes
asymmetric due to the decoherence effect (see Fig. 3(f)).
As the relative decoherence rate increases, the area of
regime III is compressed (see blue dashed line in Fig.
1(a)). The two boundaries coincides and regime III van-
ishes (see dash dotted line in Fig. 4(a)), when relative de-

coherence rate is larger than a threshold (Γ− >
√
2Ω), a

hyperbolic fixed point arises from the bottom of the phase
space (see dash-dotted line in Fig. 4(a)). The boundary
that separates regimes III and IV is shifted due to de-
coherence. This boundary shift can be explained as a
threshold decrease in the energy difference R (denoted
by R0 and R1 in Fig. 4(a)), which is an witness for the
bifurcation of fixed points in classical phase space.
The dynamics in regime IV behaves similarly as that in

regime I. The elliptic fixed point turns into an attractor
due to negative relative decoherence rate, the dynamics
in this regime then becomes delocalized (see Figs. 3(a)
and 3(b)).
Next, we focus on the changes of the fixed points, such

a change in classical phase space is fundamental for non-
hermitian Bose-Hubbard system [28, 32, 33]. However,
we find that, in the atom-molecule conversion system,
the change differs from Bose-Hubbard model in two re-
spects. Firstly, the type of the fixed point (e.g., a repeller
or an attractor) is determined by the the sign of relative
decoherence rate Γ− and the location of the fixed point S.
If Γ− and S are different in sign, i.e., one of them is pos-
itive while another is negative, the original elliptic fixed
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FIG. 5: (color online) Comparison of the results under the
mean-field approximation (thin solid line) with the results by
solving the master equation Eq.(2) (thick dash line). n (left)

denotes the normalized particle number. ~h (right) stands

for the Bloch vector. The three components of ~h, hx, hy ,
and hz are plotted in red, purple and blue, respectively. (a)
and (b) describe regime I and regime IVwith initial con-

dition ~h(t=0)=(0.707,0,0), R = 1, Ω(0) = 1, C(0) = 0,
Γ+ = 0.5, and Γ

−
= −0.5. (c) and (d) depict regime II

with ~h(t=0)=(-0.57,0,-0.8), R = 0, Ω(0) = 1, C(0) = 2,
Γ+ = 0.5, and Γ

−
= −0.5. (e) and (f) depict regime III with

~h(t=0)=(0.707,0,0), R = 0, Ω(0) = 1, C(0) = 0, Γ+ = 0.5,
and Γ

−
= −0.5. Initially, the total number of particles is 100,

and all the particle are in atomic condensate.

point transits into a stable attractor. Otherwise, the orig-
inal fixed point turns into an unstable repeller. Secondly,
the transition is sudden. In other words, the transition
happens provided the decoherence rate is not zero. This
is different from the decoherence effect on Bose-Einstein
condensates in a double-well potential, namely there ex-
ists a critical value for the decoherence rate [28]. In
the atom-molecule conversion system, the transition hap-
pens once the decoherence exists, regardless of how small
the decoherence takes. This feature reflects not only the
meta-stable behavior of the open many-particle system,
but also the sensitivity of the atom-molecule conversion
system to the particle loss.
To show the validity of the mean-field theory, we nu-

merically solve the master equation Eq.(2) by the Monte
Carlo wavefunction method. The results are presented
in Fig. 5. From the figure we find that the mean-field
approximation is a good approach to study the dynamics
of the atom-molecule conversion system.

B. transition between different regimes induced by

the change of n(t)

The decreasing of n(t) leads to decreasing in C(t) and
Ω(t). For small change of C(t) and Ω(t) (the change is
due to the change of n(t)), the number of fixed points and
the feature of the fixed points does not change, however,
for large change of C(t) and Ω(t), this is not true. In this
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FIG. 6: (color online) Fixed points of population difference
S as a function of particle number n. Parameters chosen are
C(0) = 2, R = 0, and Ω(0) = 1 for (a) and (b), C(0) =
0, R = 0, and Ω(0) = 1 for (c) and (d). Dissipation rates
are Γ

−
= −0.45,−1.75,−0.2,−0.75 for (a), (b) (c), and (d),

respectively. Red squares denote the points where the regimes
change.

subsection, we study the effect of the time-dependent in-
teraction strength C(t) and conversion strength Ω(t) on
the dynamics of the system. Different regimes are dis-
tinguished by the number of fixed points in the phase
space. When C(t) and Ω(t) changes with time, the num-
ber and locations of fixed points (roots of Eqs. (14,15))
changes as well, which causes the transition between dif-
ferent regimes. To learn where and when the transition
happens, we have numerically solved Eqs. (14,15) and
plot the fixed points S as a function of n(t) in Fig. 6.
When the system is initially prepared in regime II (three
fixed points in phase space) (see Fig. 6(a,b)), it transits
to regime I (one fixed point) when n decreases to a criti-
cal value (see the red squares in Fig. 6). Number of fixed
points can be counted as the number of lines in the figure.
From Fig. 6(a,b) or Fig. 6(c,d), we can find that
the critical value of n increases with the decoher-
ence rate. We can not compare the critical value
of n in Fig. 6(a) and Fig. 6(c) (or in Fig. 6(b) and
Fig. 6(d)), because the other parameters are dif-
ferently taken in these two figures. This observation
can be made by comparing squares in Fig. 6(a) and Fig.
6(b). This observation shows that the regime transition
happens earlier for strong particle loss. The same conclu-
sion can be drawn by observing red squares in Fig. 6(c)
and Fig. 6(d). When the system starts in regime III, it
transits to regime II before it transits to I, which means
two transitions exist in the dynamics (see squares in Fig.
6(c,d)). In Fig. 6(c,d), line located at S ≈ 0.3 denotes
two fixed points that share same S but different θ. Be-
sides numerically solving the equations, we can give part
of analytic explanation for the transition as well. For sim-
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plicity, we restrict our discussion to the symmetric case
(R = 0). By observing the roots of Eq. (14), we find that
with weak dissipation (Γ− < 2Ω(t)), the number of the
fixed points remains unchanged (there are 3 fixed points),
the system will stay in regime II. While with large dis-
sipation rate (Γ− > 2Ω(t)), the number of real roots for
Eq. (14) decreases to one or two, depending on the value
of interaction strength C(t). If C(t) > F (Ω,Γ−) (where
F is a function of Ω(t) and Γ−, it is complicated, not
given here), there is only one fixed point, otherwise two
fixed points exist in the phase space. This indicates the
transition from regime II to regime I or regime III.
Due to the moving of fixed points and transition be-

tween different regimes, there is no true fixed points for
the system. So the dynamics of the system is a meta-
stable process and the transition between different fixed
points is unavoidable. If the dynamics begins with a
small dissipation rate, the system initially converges to
the attractive fixed point near its initial state (see Fig.
7). However as n(t) decreases, the conversion strength Ω
and coupling strength C get smaller and smaller, and
at an instance of time it is smaller than a threshold
(Ω(t) < 0.5Γ−), the original fixed point disappears, and
the system has to converge to a new fixed point (see
thin blue lines in Fig. 7). This effect can be understood
as a manifestation of meta-stable behavior of the many
particle system. If the dissipation rate is large, the meta-
stable process becomes much shorter (see thick red lines
in Fig. 7). In addition, comparing Fig. 6 and Fig. 7,
we can learn the exact regime transition route in Fig. 7
and the value of critical point n can denote the strength
of such a meta-stable process (two figures share same pa-
rameters). The final state of the system will be the fixed
point at S = 1, θ = 0 or S = −1, θ = 0 (top or bot-
tom of the Bloch sphere), which depends on the sign of
Γ−. This can be understood by examining Eqs. (9,10),

which become Ṡ = −Γ−(1 − S2), and θ̇ = 0 when n(t)
decreases to nearly zero. When Γ− is negative, the only
fixed points left are S = 1 (see Fig. 6). By calculating
the eigenvalues of Eq. (16), we find that negative Γ−
corresponds to the attractor S = 1, whereas positive Γ−
leads to the attractor S = −1.
To measure the length of such a meta-stable process,

we define a life-time T by Ω(T ) = 0.5Γ− for the meta-
stable process. This is based on the analytical re-
sults that the number of fixed points will not
change until condition Ω(T ) = 0.5Γ− is satisfied.
We now derive an approximate life time for the meta-
stable process with a small dissipation rate (Γ− < 2Ω(0)).
From Eq. (11), we can get the particle number n(T ) at
time T . Inserting n(T ) into Ω(T ) = 0.5Γ−, the life-time
for the meta-stable process is given by

T =
2 ln 2Ω(0)− 2 ln |Γ−|

Γ+ + Γ−S(0)
, (18)

where S(0) is location of the fixed point. The approxi-
mation here relies on the average of S(t) in meta-stable
process, which is taken approximately to be S(0) here.

FIG. 7: (color online) Meta-stable process for atom-molecule
conversion system with decoherence. (a) Meta-stable process
in regime II . Parameters chosen are R = 0, C(0) = 2, Ω(0) =
1. Γ

−
= −1.75, Γ+ = 2.25 for thick red line and Γ

−
=

−0.45, Γ+ = 0.55 for thin blue line. (b) Meta-stable process in
regime III . Parameters chosen are R = 0, C = 0, Ω(0) = 1.
Γ
−

= −0.2, Γ+ = 0.3 for thin blue line, and Γ
−

= −0.75
and Γ+ = 1.25 for thick red line. Spot A denotes the initial
state of system in phase space, spot B represents the attractor
that system initially converges to, namely, the steady state
with constant particle number (that is a root of Eq.(14) with
constant n), and spot C denotes the (resulting) steady state
of the system. The left and right figures of both (a) and (b)
are the same but show the feature from different angle.
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FIG. 8: (color online) Conversion efficiency W in (a) and
relative efficiency M in (b) as a function of the sweeping rate
β. Here β is rescaled in units of V 2. Parameters chosen
are C(0) = 0 and Ω(0) = 1 for both (a) and (b). Dissipation
rates chosen are Γ

−
= Γ+ = 0 for blue triangle line in (a),

Γ
−

= −Γ+ = −0.1 for green circle line in (a) and red circle
line in (b), Γ

−
= Γ+ = 0.1 for red square line in (a) and black

square line in (b).

We find that T could be an approximate life-time for most
cases, this can be found by comparing T with numerical
results.
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IV. CONVERSION EFFICIENCY FOR

MOLECULAR CONDENSATE

In experiments, the association of ultracold atoms into
diatomic molecules can be achieved by applying a time-
dependent magnetic field in the vicinity of a Feshbach
resonance, which corresponds to the change between dif-
ferent regimes (I → III → IV ) in the parameter space
(see Fig. 1). To examine the effect of decoherence on the
conversion process, we define conversion efficiency, rela-
tive efficiency and sweeping rate of the external field as
follows,

W =
|b(T )|2
n(T )

, (19)

M =
W (Γ−,Γ+)−W (0)

W (0)
, (20)

β = Ṙ, (21)

where T denotes the final time for the conversion,
W (Γ−,Γ+) and W (0) denote the conversion efficiency
with and without decoherence, respectively. M describes
the relative increases or decreases of the efficiency with
and without decoherence. By adjusting the external mag-
netic field [18], R can be linearly manipulated to across
the Feshbach resonance point(R = βt−R0, R0 = βT, t ∈
[0, 2T ]), until the system relaxes into a steady state. The
conversion efficiency with decoherence has been calcu-
lated with the same parameters, and a pure atomic mode
(|a(0)|2 = 1) at t = 0 was chosen for this plot.
The results of W show that conversion efficiency in-

creases with positive relative decoherence rate. While
a negative relative decoherence rate decreases the con-
version efficiency (see Fig. 8). This can be interpreted
by the appearance of attractor or repeller in the phase
space. I.e., for a negative relative decoherence rate, the
elliptic fixed points near the atomic mode would turn
into an attractor and the atoms are attracted to stay
away from molecular mode. (see Figs. 3(b) and 3(f)).
The conversion process is depressed by such an attractor
and the conversion efficiency decreases. Similarly, a posi-
tive relative decoherence rate will increase the conversion
efficiency.

V. TUNNELING AND SELF-TRAPPING

In this section, we investigate the effect of particle loss
on the dynamics of the system, the atoms may oscillates
between atomic and molecular modes (corresponding to
regime III), and they can also be trapped in one of the
modes (corresponding to the regime II in the parameter
space).
In regime III, the atoms oscillate between atomic mode

and molecular mode (see Fig. 3(e)). When the relative
decoherence rate is positive, the fixed point transits from
elliptic to a repeller, the amplitude of the oscillation is
then increased (see dash dotted line in Fig. 9(a)). While

0 5 10 15 20 25 30 35 40
0

0.5

1

t

P(
a)

(a)

0 5 10 15 20 25 30 35 40
0

0.5

1

t

P(
a)

(b)

FIG. 9: (color online) Time evolution for the population of
atomic mode P (a) = |a(t)|2 under different decoherence rates
as Γ+ = Γ

−
= 0 for red solid line, Γ+ = 0.5 and Γ

−
= −0.5

for black dashed line, and Γ+ = 0.5, Γ
−

= 0.5 for blue
dash-dotted line, both in (a) and (b). Parameters chosen
are Ω(0) = 1, R = 0 for both (a) and (b), C(0) = 0 for (a)
and C(0) = 1.5 for (b). The initial population for atoms are
|a(0)|2 = 0.9 and the population for atomic mode is normal-
ized by the particle number n.

for negative relative decoherence rate, the oscillation is
compressed, since the elliptic fixed point suddenly tran-
sits into an attractor (see dashed line in Fig. 9(a)).
With C increases, the dynamics of the system turns

into the self-trapping regime, which belongs to the regime
II in Fig. 1(a). We find that the threshold of the coupling
constant is decreased by the decoherence, i.e., the deco-
herence supports the self-trapping (denoted by C0 and
C1 in Fig. 4(b)). With negative relative decoherence
rate, the fixed point near the atomic mode transits into
an attractor. The self-trapping in atomic mode keeps(see
black dashed line in Fig. 9(b)). When the relative de-
coherence rate is positive, which indicates a repeller in
the phase space, the self-trapping in atomic mode is ru-
ined, because the atoms are repelled and converted into
molecules, as dash dotted line shows in Fig. 9(b).

VI. CONCLUSION

In summary, we have investigated the effect of parti-
cle loss on the dynamics of the atom-molecule conversion
system. Within the mean-field approximation, the clas-
sical phase space is specified and the fixed points are
calculated. Due to the bifurcation of the fixe points in
the phase space, the parameter space can be divided into
different regimes. We find that the boundary, which sep-
arates different regimes are changed by the decoherence.
A sudden transition for the fixed points from elliptic
to attractor or repeller happens. Such a transition not
only reflects the meta-stable behavior of the system, but
also characterizes the phase-space structure of the atom-
molecule conversion system. The effect of decoherence
on the conversion efficiency and the self-trapping is also
explored with the mean-field approximation.
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