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We study ultracold bosons in three dimensions with an anisotropic Rashba-Dresselhaus spin-orbit
coupling. We first carry out the exact summation of ladder diagrams for the two boson t-matrix
at zero energy. Then, with the t-matrix as the effective interaction, we find the ground state phase
diagrams of bosons in mean field, as a function of the spin-orbit coupling, the anisotropy, and the
scattering lengths between particles in the same and in different pseudospin states. The resulting
phase diagrams have a much richer structures than those obtained using mean-field couplings, ex-
hibiting three different phases: a plane wave condensate, a striped condensate, and an unstable
phase. The differences between the present approach using the t-matrix compared using mean-
field couplings is significant for large scattering lengths, large spin-orbit coupling strength, or small
anisotropy.

I. INTRODUCTION

Spin-orbit coupling plays a crucial role in a variety
of physical systems ranging from atoms and nuclei to
topological insulators [1] and spintronics [2]. Recently,
the prospect of realizing spin-orbit coupling in ultracold
atomic systems has led to increased interest not only in
fermions but also bosons for this purpose [3]. Currently
proposed and realized schemes to produce spin-orbit cou-
pling in ultracold atomic systems create effective non-
Abelian gauge fields for atoms [3–9] which take the form
of Rashba-Dresselhaus spin-orbit couplings, familiar in
semiconductor physics [10, 11]. A system of spin-orbit
coupled ultracold bosons was recently realized by Lin et
al. [4].

The problem of ultracold bosons with Rashba-
Dresselhaus spin-orbit coupling has been considered
within mean-field, where the interparticle interactions are
assumed to be independent of momenta [12–17]. These
studies predicted that the ground states can be either
a “plane wave” Bose-Einstein condensate (BEC) of par-
ticles in a single momentum state, or a “striped” BEC
involving a coherent superposition of two different mo-
menta. However, recent studies indicate that beyond
mean-field the effective interaction has a qualitatively
different structure, resulting, e.g., in the absence of in-
teraction between particles scattering in the zero total-
momentum channel [18, 19], and the prediction that a
BEC involving only a single momentum of particles is
not favorable in an isotropic Rashba field [18].

In this study we delineate the ground state phase
diagram of bosons taking the effective interaction de-
scribed in terms of the full t-matrix rather than mean-
field coupling. We consider bosons with an isotropic
or anisotropic Rashba-Dresselhaus spin-orbit coupling,
∼ κ(σxpx + ησypy), where κ is the spin-orbit coupling
strength, p is the particle momentum, and η deter-
mines the x-y anisotropy. In our previous paper [19], we
showed that the effective interaction can be renormal-
ized in terms of physical scattering lengths and does not
depend on the ultraviolet cutoffs. Here we extend this

calculation, and carry out the exact summation of lad-
der diagrams for the t-matrix of bosons scattering at zero
energy, in three dimensions. Then we reduce the Hamil-
tonian, with the t-matrix as the effective interaction, to a
Nozières model [20], from which we determine the ground
state phases as functions of the anisotropies in the κaaa-
κaab plane, where aaa and aab are the scattering lengths
between the same and different pseudospin states, respec-
tively. We show that there are generally three phases: a
plane wave BEC, a striped BEC with two different mo-
menta, and an unstable phase where the effective interac-
tion is attractive [25]. The phase diagrams (Figs. 2 and 3
below) are substantially different and richer in structure
than those predicted using mean-field couplings with the
bare couplings replaced by 4π~2aij/m, especially when
κaaa and κaab are large, or η is close to unity. In the
isotropic limit η = 1, the plane wave BEC does not ap-
pear (Fig. 3). We describe how the phase diagram evolves
continuously with anisotropy, from η = 0 where spin-
orbit coupling is present only in the x-direction, to an
isotropic spin-orbit coupling η = 1. We find that in the
vicinity of η = 1, the phase diagrams are logarithmically
sensitive to small changes in η, a structure we analyze
by expanding in the anisotropy about η = 1. We also
find that a BEC with negative scattering lengths can be
stabilized in the presence of spin-orbit coupling, when
the scattering lengths are sufficiently large in magnitude
(Fig. 4).
Our analysis can be directly compared with proposed

experimental schemes [5–9] when the scattering lengths
are all equal, a good approximation for the three F = 1
hyperfine states of 87Rb. We discuss in this situation
how the phases of bosons in the ground state evolve with
varying anisotropy and scattering length (Fig. 5). In the
following we take ~ = 1.
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II. HAMILTONIAN

We consider bosons in three dimensions with a Rashba-
Dresselhaus spin-orbit coupling, described by the Hamil-
tonian

H =
∑

p

(

a†
p

b†
p

)

[

p2 + κ2

2m
I +

κ

m
(σxpx + ησypy)

](

ap
bp

)

+
1

2V

∑

p1+p2=p3+p4

(

gaaa
†
p4
a†
p3
ap2

ap1

+gbbb
†
p4
b†
p3
bp2

bp1
+ 2gab a†

p4
b†
p3
bp2

ap1

)

. (1)

As in our previous paper [19], m is the atomic mass, V
is the volume of the system, ap annihilates an atom the
pseudospin state a with momentum p, and bp annihi-
lates an atom in pseudospin state b with momentum p;
the σx and σy are the usual Pauli matrices between the
internal states, and I is the two-by-two identity matrix.
We take the coupling κ to be positive. The gaa, gbb, and
gab are the bare s-wave couplings between a-a, b-b, and
a-b particles. When the system is isotropic, η = 1, the
Hamiltonian completely reduces to that considered pre-
viously [19]. In practice the effective Hamiltonian, in the
basis in which the coupling has the Rashba-Dresselhaus
form, can contain terms that do not conserve the individ-
ual number of particle of each species (a-like and b-like);
we ignore such terms at this point, and return to this
issue below.

To diagonalize the single particle part of the Hamilto-
nian we introduce operators αp and βp defined by

(

αp

βp

)

=
1√
2

(

1 −e−iφ

1 e−iφ

)(

ap
bp

)

, (2)

where φ is the angle of (px, ηpy) in the x-y plane. Note
that for a given momentum φ depends on η. In terms of
the α’s and β’s the Hamiltonian becomes

H =
∑

p

(

ǫ−(p)α
†
p
αp + ǫ+(p)β

†
p
βp

)

+Hint. (3)

The single-particle spectrum has two branches

ǫ±(p) =
1

2m

[

(√

p2x + η2p2y ± κ
)2

+ (1− η2)p2y + p2z

]

;

(4)

the single particle ground state is given by the lower
branch ǫ−(p), which has degenerate states on the cir-

cle
√

p2x + p2y = κ and pz = 0 when η = 1, and two-fold

degeneracy for p = (±κ, 0, 0) when 0 ≤ η < 1.

The interaction part Hint is as in Ref. [19], except for

the η dependence:

Hint =
1

V

∑

p1+p2=p3+p4

[

V(1)
φ1,φ2;φ3,φ4

(

α†
p4
α†
p3
αp2

αp1
+ β†

p4
β†
p3
βp2

βp1

)

/2

+ V(2)
φ1,φ2;φ3,φ4

(

β†
p4
β†
p3
αp2

αp1
+ α†

p4
α†
p3
βp2

βp1

)

/2

+ V(3)
φ1,φ2;φ3,φ4

(

α†
p4
β†
p3
βp2

βp1
+ β†

p4
α†
p3
αp2

αp1

)

/
√
2

+ V(4)
φ1,φ2;φ3,φ4

(

α†
p4
α†
p3
βp2

αp1
+ β†

p4
β†
p3
αp2

βp1

)

/
√
2

+V(5)
φ1,φ2;φ3,φ4

α†
p4
β†
p3
βp2

αp1

]

, (5)

where φi is the angle of (pi,x, ηpi,y) in the x-y plane,

dependent on η, and the V(i)’s are

V(1)
φ1,φ2;φ3,φ4

= A+ +
gab
8

(

eiφ1 + eiφ2

) (

e−iφ3 + e−iφ4

)

V(2)
φ1,φ2;φ3,φ4

= A+ − gab
8

(

eiφ1 + eiφ2

) (

e−iφ3 + e−iφ4

)

V(3)
φ1,φ2;φ3,φ4

=
√
2A− +

gab

4
√
2

(

eiφ1 + eiφ2

) (

e−iφ3 − e−iφ4

)

V(4)
φ1,φ2;φ3,φ4

=
√
2A− +

gab

4
√
2

(

eiφ1 − eiφ2

) (

e−iφ3 + e−iφ4

)

V(5)
φ1,φ2;φ3,φ4

= 2A+ − gab
4

(

eiφ1 − eiφ2

) (

e−iφ3 − e−iφ4

)

,

(6)

with

A± =
(

gaa ± gbbe
i(φ1+φ2−φ3−φ4)

)

/4. (7)

III. THE T-MATRIX

We now turn to calculating the scattering t-matrix,
Γαα
αα(p,p

′;q), for two bosons in the ground states of the
lower (α) branch, with incoming momenta q/2 + p and
q/2− p, and outgoing momenta q/2 + p′ and q/2− p′.
Note that for particles in the single particle ground state,
the z component of the momentum is zero. As we showed
earlier, the ultraviolet divergences in the t-matrix can be
renormalized in terms of cutoff-independent low energy
parameters [19], and in the isotropic case, the t-matrix
depends only on the spin-orbit coupling strength, the
scattering lengths, and the incident and outgoing mo-
menta. The exact summation of ladder diagrams for
the t-matrix, for both isotropic and anisotropic spin-orbit
couplings, is then (see Appendix A for the derivation):

Γαα
αα(p,p

′;q) =

π

mκ

(

1 ei(φ1+φ2)
eiφ1 + eiφ2

2

)

M−1







1
e−i(φ3+φ4)

e−iφ3 + e−iφ4

2






,

(8)
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where

M =






f( q̃2 ) +
1

κaaa
h1(q̃/2) h2(q̃/2)

h∗
1(q̃/2) f( q̃2 ) +

1
κabb

h∗
2(q̃/2)

h∗
2(q̃/2) h2(q̃/2)

1
2

(

f( q̃2 )− g( q̃2 ) +
1

κaab

)






,

(9)

with q̄ ≡ q/κ and q̃ ≡ q/κ. The angles φ1, φ2, φ3, and
φ4 are those of the vectors q/2+p, q/2−p, q/2−p′, and
q/2 + p′ in the x-y plane with a factor of η multiplying
the y-components. The dimensionless functions f(q̃/2),
g(q̃/2), h1(q̃/2) and h2(q̃/2) are,

f(q̃/2) ≡ π

mκ

∫

d3k

(2π)3

[

1

ǫ−(
q

2 + k) + ǫ−(
q

2 − k)
+

1

ǫ+(
q

2 + k) + ǫ+(
q

2 − k)
+

2

ǫ−(
q

2 + k) + ǫ+(
q

2 − k)
− 4m

k2

]

g(q̃/2) ≡ − π

mκ

∫

d3k

(2π)3

[

cos(φ5 − φ6)

ǫ−(
q

2 + k) + ǫ−(
q

2 − k)

+
cos(φ5 − φ6)

ǫ+(
q

2 + k) + ǫ+(
q

2 − k)
− 2 cos(φ5 − φ6)

ǫ−(
q

2 + k) + ǫ+(
q

2 − k)

]

h1(q̃/2) ≡
π

mκ

∫

d3k

(2π)3

[

ei(φ5+φ6)

ǫ−(
q

2 + k) + ǫ−(
q

2 − k)

+
ei(φ5+φ6)

ǫ+(
q

2 + k) + ǫ+(
q

2 − k)
− 2ei(φ5+φ6)

ǫ−(
q

2 + k) + ǫ+(
q

2 − k)

]

h2(q̃/2) ≡
π

2mκ

∫

d3k

(2π)3

[

eiφ5 + eiφ6

ǫ−(
q

2 + k) + ǫ−(
q

2 − k)

− eiφ5 + eiφ6

ǫ+(
q

2 + k) + ǫ+(
q

2 − k)
− 2(eiφ5 − eiφ6)

ǫ−(
q

2 + k) + ǫ+(
q

2 − k)

]

,

(10)

where φ5 and φ6 are the angles of q/2−k and q/2+k in
the x-y plane with y-components multiplied by η. Chang-
ing the angle of q in the x-y plane only changes the overall
phases of h1(q̃/2) and h2(q̃/2). These four functions are
everywhere finite except for the logarithmic divergence of
f(q̃/2) at q̃ = 0. When the scattering lengths are small,
the diagonal elements of M are dominant and we may
ignore the off-diagonal elements; the t-matrix thus ob-
tained does not have terms containing products of differ-
ent scattering lengths, the approximate result obtained
for the bosonic t-matrix in [19].

IV. GROUND STATE PHASES

We now determine the many-body ground state via
mean field theory using the t-matrix derived above as
the effective interactions, an approximation valid as long
as the na3ij are all ≪ 1, where n is the particle density.
In mean field, we assume that all particles are in the
single-particle ground states (κ, 0, 0) or (−κ, 0, 0), and

thus ignore possible occupation of excited states as a
consequence of the interaction. In this case the system
is described essentially by the Nozières model [20]. The
issues of going beyond mean field, e.g., via Bogoliubov
theory, as well as including possible effects of the conden-
sate on the effective interaction, are beyond the scope of
this paper and are left for the future. For 0 ≤ η < 1,
we take the particles to be either at p = (κ, 0, 0) or
(−κ, 0, 0); the relevant interactions are those between
particles of either the same momentum or opposite mo-
menta. We denote the interaction with same momentum
by Γ0 ≡ Γαα

αα(0, 0;±2K) and that with opposite momenta
by Γπ ≡ Γαα

αα(±K,∓K, 0), where we use the abbreviated
notation K ≡ (κ, 0, 0).
The relevant terms in the interaction are then equiva-

lent to the Nozières model [20]

Hint ∼
1

2V
Γ0N(N + 1) +

1

V
(2Γπ − Γ0)NπN0, (11)

where N0 ≡ α†

(κ,0,0)α(κ,0,0) and Nπ ≡ α†

(−κ,0,0)α(−κ,0,0).

The total number of particles, N = N0 + Nπ, is fixed.
For Γ0 < 2Γπ, the ground state is a single BEC with
either all the particles in (κ, 0, 0) or (−κ, 0, 0), while for
Γ0 > 2Γπ, the condensate is nominally fragmented with
half of atoms forming a BEC in one state and the other
half forming a BEC in the other state. However, as shown
in Ref. [23], such a fragmented state is expected to be un-
stable against formation of a coherent condensate with
a condensate wave function that is a coherent superpo-
sition of the two momenta. Following the conventions
of Refs. [14, 15], we call the single BEC phase “plane
wave”, and the BEC phase with two different momenta
“striped.” The difference of the present calculation from
earlier studies with mean-field couplings [14, 15], is that

here the bare couplings, V(1)
0,0;0,0 and V(1)

0,π;0,π, are replaced
by Γ0 and Γπ respectively.
While there is no difficulty in deriving the phase di-

agrams for general scattering lengths, we assume here
for simplicity that the intraspecies scattering lengths are
equal, aaa = abb. Then,

Γ0 =
2π

mκ
×

1/κaaa + 1/κaab + 2f(1)− g(1) + h1(1)− 4h2(1)

(1/κaab + f(1)− g(1))(1/κaaa + f(1) + h1(1))− 4h2(1)2

Γπ =
2π

mκ

1

1/κaaa + f(0)− h1(0)
, (12)

where h1(0) ≡ h1(q̃ = (0, 0, 0)), h1(1) ≡
h1(q̃ = (1, 0, 0)), etc. The quantities
f(0), h1(0), f(1), g(1), h1(1), and h2(1), which depend
on η, can be calculated numerically. The interaction
between different momenta Γπ is independent of aab,
and is a monotonically increasing nonnegative func-
tion of κaaa, equal to 0 at κaaa = 0 and reaching
2π/ [mκ(f(0)− h1(0))] at κaaa = ∞. The dependence
of Γ0 on κaaa and κaab is more complicated. We plot
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Γ0 and Γπ, both scaled by 2π/mκ, for η = 0.5 in Fig. 1.
Now we discuss the ground state phases from η = 0 to 1.

(a)

0.2 0.4 0.6 0.8 1.0
Κ aaa

0.2

0.4

0.6

0.8

GΠ

(b)

FIG. 1: (Color online) (a) Γ0 as a function of κaaa and κaab,
and (b) Γπ as a function of κaaa, both scaled by 2π/mκ,
for η = 0.5. The vertical plane in the middle of panel (a)
indicates the resonance where, from left to right, Γ0 diverges
to positive infinity and comes back from negative infinity.

When η = 0, the effective interactions are relatively
simple. It can be shown that f(0) = h1(0) for η = 0;
hence Γπ = 2πaaa/m, and the effective interaction in
the q = 0 channel does not depend on the spin-orbit
coupling strength κ. In the q/2 = (κ, 0, 0) channel,
f(1) = −1, g(1) = 0, h1(1) = 0, and h2(1) = 1/2, and
thus,

Γ0 =
2π

mκ

κaaa + κaab − 4κaaa · κaab
1− κaaa − κaab

for η = 0. The effective interaction at small κaaa and
κaab is positive, and diverges when κaaa + κaab ap-
proaches unity. As one crosses the line κaaa + κaab = 1,
Γ0 starts at negative infinity and remains negative until
κaaa + κaab = 4κaaa · κaab, after which Γ0 is positive.
When Γ0 is negative, we expect the BEC in bulk to be
unstable against collapse, as in ordinary BECs with neg-
ative scattering length in the absence of spin-orbit cou-
plings. We call the phase with an attractive interaction

“unstable.” The three possible ground state phases, plane
wave, striped, and unstable, are determined by the sign
of Γ0 and the interplay between Γ0 and Γπ.
As η increases from 0, the basic structure of Γ0 does

not change; Γ0 remains positive at small κaaa and κaab,
and as these variables increase, Γ0 again diverges at a
line in the κaaa-κaab plane, beyond which it is negative
up to a second line, after which Γ0 is positive. Since the
denominator of Eq. (12) for Γ0 is quadratic in the 1/κa,
it has in fact two zeroes, the one for positive scattering
lengths, as shown, and a second for negative scattering
lengths, which is discussed at the end of this section. The
structure for positive scattering lengths is illustrated in
Fig. 1, for η = 0.5.
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Κ
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FIG. 2: (Color online) Ground state phase diagrams in the
κaaa - κaab plane for anisotropies η = 0, 0.25, 0.5, and 0.75.
The regions P are the plane wave phase with a BEC of a
single momentum. The regions S are the striped phase with
a BEC of a coherent superposition of two different momenta.
The phase in the regions U are unstable, with the effective
interaction Γ0 negative. Along the line between S and U, Γ0

diverges, and along the line between U and P, Γ0 vanishes.
The intersection of these two lines is a critical point. The
dashed lines indicate the phase diagram derived using mean-
field coupling, in which the plane is separated into an upper
striped region and a lower plane wave region.

The ground state phase diagrams for various η are plot-
ted in Fig. 2. In the panels, the plane-wave phase is la-
belled “P,” the striped phase “S,” and the unstable phase
“U.” The plane-wave phase occurs when Γ0 < 2Γπ, the
striped phase when Γ0 > 2Γπ, and the unstable phase
when Γ0 < 0. Note the overall tendency of the phase di-
agrams as η increases; the upper striped region detaches
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from the resonant critical point, where the resonant line
(between S and U) and the line with Γ0 = 0 (between U
and P) touch, and the region is pushed upwards as η is in-
creased. Meanwhile, the shapes of the resonant line and
the boundaries of plane wave regions change but, with the
exception of the upper striped region the overall topol-
ogy does not change. The dashed lines aaa = aab in the
figures are the phase separation lines obtained earlier [14]
using mean-field couplings 4πaaa/m and 4πaab/m; there
the striped phase is preferred above and the plane wave
phase below the dashed lines. Use of mean-field couplings
is accurate for small κaaa and κaab, but as these variables
increase, the deviation from the mean-field coupling pre-
diction becomes significant and the phase diagrams ex-
hibit qualitatively new and rich structures.
This overall tendency continues to around η ∼ 0.99.

With further increase of η towards isotropy, η = 1, we
start to observe qualitatively new behavior of the phase
diagrams. The phase diagrams close to η = 1 are plotted
in Fig. 3. As one sees, the striped region comes back from
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FIG. 3: (Color online) Ground state phase diagrams for η
close to unity.

above and touches the resonant critical point, and at the
same time the lower plane wave region detaches from the
critical point. In the limit η = 1, the plane wave region
vanishes.
The behavior around η ≃ 1 is in fact logarithmic in

the deviations of the anisotropy η from unity. We write
δ = 1 − η2; as δ → 0, h1(0), f(1), g(1), h1(1), and
h2(1) approach finite values, but, in leading order for
small δ, f(0) ∼ | log δ|/4. Setting, for small δ, h1(0),
f(1), g(1), h1(1), and h2(1) to their values at δ = 0 and

approximating f(0) by | log δ|/4, corresponds to fixing Γ0

and varying the slope of Γπ. In the isotropic limit δ = 0,
Γπ = 0 and thus a plane wave region is not allowed (cf.
Eq. (11)). With small anisotropy, Γπ can be positive,
and small plane wave regions appear.

We briefly consider tuning the scattering lengths to
negative values. In the absence of spin-orbit couplings,
negative scattering lengths lead to an instability in large
systems. On the other hand, as we see from Eq. (12), tun-
ing the inverse scattering lengths to just below 0 does not
immediately lead to an attractive interaction; in the pres-
ence of the spin-orbit coupling fields, Rashba-Dresselhaus
couplings can stabilize BECs with negative scattering
lengths if the inverse scattering lengths are small. Even
when Γ0 is negative, systems with small particle number
can be metasble in the presence of an attractive interac-
tion [26]. For illustration, we plot the phase diagram for
η = 0.5 extended to negative scattering lengths in Fig. 4.
In the regions marked “Stable,” Γ0 > 0 and the ground
state is either a plane wave or striped phase. As seen
in the figure, when both scattering lengths aaa and aab
are negative and large, another stable region appears in
the phase diagram, in which the ground state is in the
striped phase. The line between the lower left striped
phase and the unstable phase is a second resonant line
along which Γ0 diverges. A stable region with negative
scattering lengths generally exists for all 0 < η ≤ 1; as η
increases, the stable region in the phase diagram becomes
larger.

U

U

U

Stable

Stable

Stable

S

-10 -5 0 5 10
-10

-5

0

5

10

Κ aaa

Κ
a a

b

FIG. 4: (Color online) Ground state phase diagram for η =
0.5 extended to negative values of scattering lengths. The
regions marked U and S are unstable and striped phases, as
before. The region marked “Stable” is either a plane wave
or striped phase. Note the appearance of a stable (striped)
phase when both scattering lengths are large and negative.
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V. CONCLUSION

Proposed schemes to realize Rashba-Dresselhaus spin-
orbit couplings in ultracold atomic experiments [5–9]
use Raman lasers to couple atoms in different hyper-
fine states. In general as one transforms the original
basis to one in which the coupling has the Rashba-
Dresselhaus spin-orbit structure, the interaction Hamil-
tonian acquires terms such as a†

p4
a†
p3
ap2

bp1
which do not

conserve the number of particles in each pseudospin state
(a-like and b-like). Our analysis, which did not take such
terms into account, can be directly compared with pro-
posed experiments when the interaction is independent
of species (gaa = gbb = gab), in which case the interaction
is independent of the choice of basis. This condition is
a good approximation for the three hyperfine states of
87Rb in the lowest F = 1 state. The assumption that
gaa = gbb = gab corresponds to the (dashed) diagonal
lines in Figs. 2 and 3. Figure 5 shows the phase dia-
gram in the η-κa plane, where a is the assumed common
scattering length.

P

P

S

U

0 0.2 0.4 0.6 0.8 0.99

0.45

0.50

0.55

0.60

η

κa

(a)

S

S

P

P

U

0.9 0.99 0.999 0.9999 0.99999

0.45

0.50

0.55

0.60

κa

η
(b)

FIG. 5: (Color online) The ground state phase diagram when
aaa = abb = aab = a in the η-κa plane for (a) anisotropies less
than 0.99 and (b) anisotropies close to unity. The horizontal
axis of panel (b) is a logarithmic scale.

For 0 ≤ η ≤ 0.99 the system, with increasing κa, ex-
periences transitions from plane wave to striped, then to
unstable, and finally to the plane wave phase again as
seen in Fig. 5(a). Looking more closely at the region

0.9 ≤ η ≤ 1, as drawn on a logarithmic scale in Fig. 5(b),
we find that the line separating the lower plane wave and
striped region terminates and another line starts from
positive infinity above which the striped phase is pre-
ferred. This new line touches the uppermost line (below
the upper P phase) in the figure in the η → 1 limit and
thus no plane wave region exists at isotropic spin-orbit
coupling [27].
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Appendix A: Exact summation of ladder diagrams

for the t-matrix

Here we outline the derivation of the exact t-matrix
(8). Our starting point is the set of Bethe-Salpeter equa-
tions:

Γαα
αα(p,p

′;q) = V(1)
φ1,φ2;φ3,φ4

−
∫

d3k

(2π)3

[

V(1)
φ1,φ2;φ5,φ6

Γαα
αα(k,p

′;q)

ǫ−(
q

2 − k) + ǫ−(
q

2 + k)

+
V(2)
φ1,φ2;φ5,φ6

Γαα
ββ (k,p

′;q)

ǫ+(
q

2 − k) + ǫ+(
q

2 + k)
+

V(3)
φ1,φ2;φ6,φ5

Γαα
αβ (k,p

′;q)

ǫ+(
q

2 − k) + ǫ−(
q

2 + k)

]

Γαα
ββ (p,p

′;q) = V(2)
φ1,φ2;φ3,φ4

−
∫

d3k

(2π)3

[

V(2)
φ1,φ2;φ5,φ6

Γαα
αα(k,p

′;q)

ǫ−(
q

2 − k) + ǫ−(
q

2 + k)

+
V(1)
φ1,φ2;φ5,φ6

Γαα
ββ (k,p

′;q)

ǫ+(
q

2 − k) + ǫ+(
q

2 + k)
+

V(3)
φ1,φ2;φ5,φ6

Γαα
αβ (k,p

′;q)

ǫ+(
q

2 − k) + ǫ−(
q

2 + k)

]

and

Γαα
αβ(p,p

′;q) = V(4)
φ1,φ2;φ3,φ4

−
∫

d3k

(2π)3

[

V(4)
φ1,φ2;φ5,φ6

Γαα
αα(k,p

′;q)

ǫ−(
q

2 − k) + ǫ−(
q

2 + k)

+
V(4)
φ2,φ1;φ5,φ6

Γαα
ββ (k,p

′;q)

ǫ+(
q

2 − k) + ǫ+(
q

2 + k)
+

V(5)
φ1,φ2;φ6,φ5

Γαα
αβ (k,p

′;q)

ǫ+(
q

2 − k) + ǫ−(
q

2 + k)

]

,

(A1)

where Γρτ
µν(p,p

′;q) is the t-matrix for scattering of par-
ticles in the branches µ, ν with momenta q/2 ± p to
branches ρ, τ with final momenta q/2 ± p′ . The key
to solving this set of equations is to construct the quan-
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tities

X(p,p′;q) ≡ 1

4

(

Γαα
αα(p,p

′;q) + Γαα
ββ (p,p

′;q)

+Γαα
αβ(p,p

′;q)/
√
2 + Γαα

αβ (−p,p′;q)/
√
2
)

,

Y (p,p′;q)e−i(φ3+φ4) ≡ 1

4

(

Γαα
αα(p,p

′;q) + Γαα
ββ (p,p

′;q)

−Γαα
αβ(p,p

′;q)/
√
2− Γαα

αβ (−p,p′;q)/
√
2
)

e−i(φ1+φ2),

and

Z(p,p′;q) ≡ 1

2

Γαα
αα(p,p

′;q)− Γββ
αα(p,p

′;q)

(eiφ1 + eiφ2)(e−iφ3 + e−iφ4)

=
1

2

Γαα
αβ(p,p

′;q)/
√
2− Γαα

αβ(−p,p′;q)/
√
2

(eiφ1 − eiφ2)(e−iφ3 + e−iφ4)
. (A2)

Rewriting the Bethe-Salpeter equations in terms of X ,
Y , and Z, we see that X , Y , and Z do not depend on
their first arguments. Namely, we can writeX(p,p′;q) =
X(p′;q), etc. Then X , Y , and Z inside the integrals can
be moved outside, and we can solve for X , Y , and Z
algebraically, and reconstruct Γαα

αα from X , Y , and Z via

Γαα
αα(p,p

′;q) = X(p′;q) + Y (p′;q)ei(φ1+φ2−φ3−φ4)

+ Z(p′;q)(eiφ1 + eiφ2)(e−iφ3 − e−iφ4). (A3)

Introducing the free field scattering lengths by
m/4πaij = 1/gij + mΛ/2π2, where Λ is the high mo-
mentum cutoff, we obtain Eq. (8).
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