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Thermodynamics of the two-component Fermi gas with unequal masses at unitarity
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We consider mass-imbalanced two-component Fermi gases for which the unequal-mass atoms
interact via a zero-range model potential with a diverging s-wave scattering length as, i.e., with
1/as = 0. The high temperature thermodynamics of the harmonically trapped and homogeneous
systems are examined using a virial expansion approach up to third order in the fugacity. We find
that the universal part of the third-order virial coefficient associated with two light atoms and one
heavy atom is negative, while that associated with two heavy and one light atom changes sign from
negative to positive as the mass ratio κ increases, and diverges when Efimov physics sets in at
κ = 13.61. By examining the Helmholtz free energy, we find that the equilibrium polarization of
the trapped and homogeneous systems is 0 for κ = 1, but finite for κ 6= 1 (with a majority of heavy
particles). Compared to the equilibrium polarization of the non-interacting system, the equilibrium
polarization at unitarity is increased for the trapped system and decreased for the homogeneous
system. We find that unequal-mass Fermi gases are stable for all polarizations.

PACS numbers:

I. INTRODUCTION

It has been predicted that ultracold two-component
Fermi gases with mismatching Fermi surfaces sup-
port novel phases such as the Fulde-Ferrell-Larkin-
Ovchinnikov [1–3] state or other interesting phase sep-
arations, both in the homogeneous and inhomogeneous
systems [4–9]. In equal-mass systems, the two Fermi sur-
faces differ if the number of fermions of species 1 and 2
differ, i.e., if the system exhibits a spin imbalance [10, 11].
Alternatively, mismatching Fermi surfaces arise if species
1 and 2 have different masses [12–19]. Experimentally,
mass-imbalanced systems can be realized by simultane-
ously trapping, e.g., 6Li and 40K [20–26]. The appli-
cation of an external magnetic field in the vicinity of
a Fano-Feshbach resonance allows for the realization of
strongly-interacting gases, thus motivating our studies of
the unequal-mass Fermi gas at unitarity.

At the few-body level, two-component unequal mass
systems with short-range interspecies interactions and
mass ratio κ are interesting because they support a vari-
ety of intriguing states [27]. At unitarity, the three-body
system consisting of two heavy and one light particle [the
(n1, n2) = (2, 1) system] with zero-range interspecies in-
teractions supports no three-body bound state in free
space for κ ≤ 8.62. For 8.62 ≤ κ ≤ 13.61, however,
the (n1, n2) = (2, 1) system can support a bound state
whose binding energy is determined by a three-body pa-
rameter [28–32]. For yet larger mass ratios (κ > 13.61),
the three-body system in free space supports an infinite
number of three-body Efimov states, which are geomet-
rically spaced [33–35]. The spacing depends on the mass
ratio κ between the heavy and light particles with the
energy of the most deeply bound state being determined
by the so-called three-body Efimov parameter [36].

The objective of this paper is to investigate the ther-
modynamics of inhomogeneous and homogeneous two-
component Fermi gases as a function of the mass ratio κ.
Throughout, we consider the unitary regime where the

interspecies s-wave scattering length diverges and deter-
mine the system properties as functions of the polariza-
tion P , P = (N1 − N2)/(N1 + N2), and the tempera-
ture T . We are limiting ourselves to the so-called high
temperature regime, where the virial equation of state
up to the third order is expected to provide a valid de-
scription [37, 38]. For the trapped equal mass system,
the virial equation of state up to the third order has
been shown to be applicable over the temperature range
of well above the Fermi temperature TF down to about
TF/2 [39–43].

Our key findings are: (i) The second order virial equa-
tion of state in a harmonic trap is independent of the
mass ratio κ. The mass ratio first enters at the third or-
der in the virial expansion. (ii) The equilibrium state of
the trapped system at unitarity is stable and favors a ma-
jority of heavy particles for κ 6= 1. (iii) The equation of
state of the homogeneous system depends strongly on the
mass ratio. The mass ratio first enters at the zeroth or-
der in the virial expansion. (iv) The equilibrium state of
the homogeneous system at unitarity is stable and favors
a majority of heavy particles. The equilibrium polariza-
tion exhibits an intricate dependence on the third-order
virial coefficients.

The paper is organized as follows. Section II defines
the virial expansion and the first few virial expansion co-
efficients for a two-component Fermi gas in a harmonic
trap where both species feel the same angular trapping
frequency ω. The third order virial expansion coefficients
at unitarity are determined as functions of the temper-
ature and the mass ratio. Sections III and IV explore
the virial equation of state of the harmonically trapped
and homogeneous two-component Fermi gas at unitar-
ity. Finally, Sec. V concludes. Appendix A summarizes
the virial expansion for the harmonically trapped single-
component Fermi gas and connects the results with those
for the two-component Fermi gas.
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II. DETERMINATION OF THE VIRIAL

COEFFICIENTS

The model Hamiltonian H(n1, n2) that describes un-
equal mass two-component Fermi gases with n1 heavy
and n2 light particles in a harmonic trap with angular
trapping frequency ω reads

H(n1, n2) =

n1
∑

j=1

(−~
2

2m1

~∇2
~rj +

1

2
m1ω

2~r2j

)

(1)

+

n1+n2
∑

j=n1+1

(−~
2

2m2

~∇2
~rj +

1

2
m2ω

2~r2j

)

+

n1
∑

i=1

n1+n2
∑

j=n1+1

Vtb(rij),

where m1 denotes the mass of the heavy species and m2

denotes the mass of the light species. We define the mass
ratio κ as κ = m1/m2 (κ ≥ 1). In Eq. (1), ~rj denotes
the position vector of the jth atom measured with re-
spect to the trap center. The interspecies interaction
potential Vtb is parameterized by a zero-range potential,
Vtb(rij) = (2π~2as/µred)δ(~rij)(∂/∂rij)rij , where µred de-
notes the reduced mass, µred = m1m2/(m1+m2), as the
interspecies s-wave scattering length, and rij the inter-
particle distance, rij = |~ri − ~rj |.
If the complete energy spectrum of the Hamiltonian

given in Eq. (1) were known, one could calculate ther-
modynamic quantities like the average energy U or the
entropy S from the free energy F , F = −kBT lnQn1,n2

,
using the canonical ensemble. Here, kB is Boltzmann’s
constant and Qn1,n2

is the canonical partition func-
tion [44, 45],

Qn1,n2
= Tr exp [−H(n1, n2)/(kBT )], (2)

where Tr is the trace operator. To evaluate the trace, we
insert a complete set of eigenstates, yielding

Qn1,n2
=
∑

j

exp[−E
(n1,n2)
j /(kBT )]. (3)

The summation index j collectively denotes the complete
set of quantum numbers allowed by symmetry.
In practice, it is easier to work in the grand canonical

ensemble, which can be considered to be a collection of
canonical ensembles with n1 and n2 particles of species
1 and 2 in thermal equilibrium with each other. In the
grand canonical ensemble, the chemical potentials µ1 and
µ2 of the two species are fixed. This implies that the
system is characterized by the average numbers N1 and
N2 of atoms of species 1 and 2. The thermodynamic
potential Ω(2) of the two-component Fermi gas in the
grand canonical ensemble is [45]

Ω(2) =− kBT lnTr exp[−(H(n1, n2)

− µ1n1 − µ2n2)/(kBT )], (4)

where the trace operator now extends over n1 and
n2. Rewritten in terms of the fugacities zi, zi =

exp[µi/(kBT )], the thermodynamic potential reads

Ω(2) = −kBT ln

[

∞
∑

n1=0

∞
∑

n2=0

Qn1,n2
zn1

1 zn2

2

]

. (5)

Throughout, we are interested in the large T limit
where zi is small. Taylor expanding Eq. (5) about zi = 0
to third order, we find [41]

Ω(2) = Ω
(1)
1 + Ω

(1)
2 +∆Ω, (6)

where

Ω
(1)
1 = −kBTQ1,0

∞
∑

n1=1

bn1,0 zn1

1 , (7)

Ω
(1)
2 = −kBTQ1,0

∞
∑

n2=1

b0,n2
zn2

2 (8)

and

∆Ω =− kBTQ1,0[ b1,1 z1z2 +

b1,2 z1z
2
2 + b2,1 z21z2 + · · · ]. (9)

Equations (6)-(9) show that the thermodynamic poten-
tial of the two-component Fermi gas can be written as

a sum of the thermodynamic potentials Ω
(1)
1 and Ω

(1)
2

of components 1 and 2 and a correction term ∆Ω. The

thermodynamic potentials Ω
(1)
1 and Ω

(1)
2 of the single-

component species 1 and 2 are written in terms of the
expansion or virial coefficients bn1,0 and b0,n2

(see Ap-
pendix A) and the canonical partition function Q1,0 of a
single heavy particle of species 1. The bn1,0 (b0,n2

) with
n1 > 1 (n2 > 1) arise from the fermionic nature of the
atoms and can be viewed as corrections to the Boltzmann
gas [44, 45]. The correction term ∆Ω contains the expan-
sion or virial coefficients bn1,n2

, which account for the
interactions between distinguishable fermions [46, 47],

b1,1 =(Q1,1 −Q1,0Q0,1)/Q1,0, (10)

b1,2 =(Q1,2 −Q1,0Q0,2 − b1,1Q1,0Q0,1)/Q1,0, (11)

and

b2,1 =(Q2,1 −Q2,0Q0,1 − b1,1Q1,0Q1,0)/Q1,0. (12)

In the non-interacting limit, i.e., for as = 0, we label
the partition functions by a superscript NI. In this case,
QNI

n1,n2
reduces to Qn1,0Q0,n2

, since H(n1, n2) is separa-

ble for as = 0. In this limit, b1,1 vanishes since QNI
1,1

equals Q1,0Q0,1. Consequently, b1,2 and b2,1 as well as
all higher order virial coefficients bn1,n2

with n1+n2 > 3
vanish; thus, ∆Ω is zero for vanishing as.
To determine the bn1,n2

, one must know three things:
(i) all bi,j where i ≤ n1 and j < n2 or i < n1 and j ≤ n2;
(ii) all Qi,0 and Q0,j, where i ≤ n1 and j ≤ n2; and
(iii) the complete energy spectrum of the (n1, n2) system.
The Qn1,0 and Q0,n2

characterize the single-component
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Fermi gas and are calculated in Appendix A. In calculat-
ing the Qn1,n2

, it is convenient to express the total energy

E(n1,n2) as a sum of the center of mass energy ECM and

the relative energy E
(n1,n2)
rel , E(n1,n2) = ECM + E

(n1,n2)
rel .

In Eqs. (10)-(12), the center of mass contribution cancels
the Q1,0 term in the denominator [39].

We now evaluate the bn1,n2
at unitarity, i.e., for 1/as =

0. The calculation of b1,1 is straightforward [39]. The
relative energies of the (n1, n2) = (1, 1) system in a har-
monic trap can be solved exactly using zero-range s-wave
interactions [48]. The relative energies of the (1, 1) sys-

tem at unitarity are E
(1,1)
rel = (2q + 1/2)~ω for l = 0 and

E
(1,1)
rel = (2q + l + 3/2)~ω for l = 1, 2, . . ., where q is a

non-negative integer. As the relative energy spectrum for
l > 0 is identical to the single particle energy spectrum,
we have that Q1,1/Q1,0 is equal to Q0,1 for states with
l > 0. The remaining sum,

b1,1 =

∞
∑

q=0

(

e−(2q+1/2)ω̃ − e−(2q+3/2)ω̃
)

, (13)

includes all s-wave states and can be calculated analyti-
cally [39],

b1,1 =
eω̃/2

1 + eω̃
, (14)

where ω̃ denotes a dimensionless inverse temperature,
ω̃ = ~ω/(kBT ). Equation (14) shows that b1,1 is inde-
pendent of the mass ratio. This is a direct consequence
of the fact that the relative two-body energy spectrum
is independent of the mass ratio. Furthermore, like the
single-component virial coefficients bn (see Appendix A),
b1,1 is an even function in ω̃.

To calculate b1,2 and b2,1, we need the complete relative
energy spectrum of the (1, 2) system (1 light atom and 2
heavy atoms) and the (2, 1) system (2 light atoms and 1
heavy atom), respectively. The three-body energies are
conveniently expressed in terms of the quantity κ̄,

κ̄ =

{

1/κ for a majority of light species

κ for a majority of heavy species.
(15)

At unitarity, the relative three-body energies for inter-
species s-wave zero-range interaction potentials can be

written as E
(n1,n2)
rel = (2q + sl,ν + 1)~ω [29], where

q = 0, 1, . . ., and where the sl,ν denote non-integer val-
ues. The sl,ν depend on the particle symmetry and κ̄,
and are obtained by solving the five-dimensional hyper-
angular Schrödinger equation [49–51]. The hyperangular
eigenvalues were first obtained for three identical bosons
by Efimov [33], but have since been extended to any par-
ticle symmetry and mass ratio by both Efimov [34, 35]
and others [49–51]. Application of Ref. [51] to the two-
component system with κ̄, relative angular momentum l,
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FIG. 1: (Color online) Hyperangular eigenvalues sl,ν as a
function of κ̄ for (a) l = 0, (b) l = 1, and (c) l = 2 at
unitarity. Note that κ̄ is shown on a log scale. Solid lines
show the sl,ν obtained by solving Eq. (16), dashed lines show
the limiting expressions, Eqs. (17)-(20), for κ̄ ≪ 1, and thin
dotted lines show the non-interacting sNI

l,ν .

and parity (−1)l at unitarity yields

−
√
4π Γ(l + 3/2)

Γ
(

1+l−sl,ν
2

)

Γ
(

1+l+sl,ν
2

) =

( −κ̄

κ̄+ 1

)l

× (16)

2F1

(

1 +
l− sl,ν

2
, 1 +

l + sl,ν
2

, l+ 3
2 ,

κ̄2

(κ̄+ 1)2

)

,

where Γ is the gamma function and 2F1 is the hyper-
geometric function. Equation (16) has a spurious root
at s0,ν = 2 for all κ̄; this root needs to be removed “by
hand”.

Solid lines in Fig. 1 show the sl,ν as a function of κ̄
for the three lowest relative angular momenta, i.e., for
l = 0, 1, and 2. The hyperangular quantum number ν,
ν = 0, 1, . . ., counts the number of times that the slope
of sl,ν changes sign. The thin dotted lines indicate the
non-interacting limits, sNI

0,ν = 2ν + 4 for l = 0 and sNI
l,ν =

2ν + l+2 for l > 0. The dashed lines show an expansion
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of Eq. (16) for κ̄ ≪ 1,

s0,0 ≈ 2 +
16

3π2
κ̄2, (17)

s0,2j ≈ 4j + 2 +
8√
3π

√

j(j + 1) κ̄, (18)

s0,2j−1 ≈ 4j + 2− 8√
3π

√

j(j + 1) κ̄, (19)

where j = 1, 2, . . ., and

sl,ν ≈ 2ν + l + 1 +
(−1)l+ν Γ(l + ν + 1)√
π Γ(l + 3/2) Γ(ν + 1)

κ̄l (20)

for l > 0. For l = 0, the lowest eigenvalue varies quadrat-
ically with κ̄ in the small κ̄ regime. The higher lying sl,ν
values for l = 0 appear in pairs as κ̄ → 0, with a splitting
that is linear in κ̄. For l > 0, in contrast, all eigen-
values are non-degenerate as κ̄ → 0. The lowest l = 1
eigenvalue equals 2 for κ̄ = 0, crosses 1 for κ̄ ≈ 8.62,
and becomes purely imaginary for κ̄ ≈ 13.61. The lat-
ter point indicates the onset of Efimov physics [28]. For
8.62 ≤ κ̄ ≤ 13.61, non-universal three-body states can
exist [28–32]. Similar behavior is found for the lowest
sl,ν values for higher odd angular momenta. The sl,ν
values for even l are greater than 1 for all κ̄, indicating
the absence of non-universal and Efimov physics in the
even l angular momentum channels. For l = 1, 3, 5, . . .
[see Fig. 1(b) for l = 1], the sl,ν with ν > 0 begin one unit
below the non-interacting value in the κ̄ = 0 limit and
decrease to the next lower non-interacting value in the
limit κ̄ → ∞. For l = 2, 4, 6, . . . [see Fig. 1(c) for l = 2],
the sl,ν begin one unit below the non-interacting val-
ues in the κ̄ = 0 limit and approach the non-interacting
values in the limit κ̄ → ∞. In the limit κ̄ → ∞, all
states save those that describe Efimov physics behave
like non-interacting states. The two masses are so heavy
compared to the single light particle that even infinitely
strong interactions cannot mediate a lowering of the en-
ergy.
Now that we have the sl,ν , we can calculate Q1,2

and Q2,1, and thus b1,2 and b2,1. We restrict ourselves
to the regime where Efimov physics is absent (i.e., we
limit ourselves to κ̄ ≤ 13.61) and we assume that the
three-body system behaves fully universal (i.e., we as-
sume the absence of three-body resonances in the regime
8.62 ≤ κ̄ ≤ 13.61). Under these assumptions, the virial
coefficient b2,1, Eq. (12), can be written as

b2,1 =

∞
∑

l=0

b2,1(l), (21)

where

b2,1(l) =

∞
∑

ν=0

∞
∑

q=0

(2l + 1)

[

e−(2q+sl,ν+1)ω̃

−e−(2q+sNI

l,ν+1)ω̃ − e−(2q+1/2+2ν+l+3/2)ω̃

+e−(2q+3/2+2ν+l+3/2)ω̃

]

. (22)

The first and second terms in the square bracket on the
right hand side of Eq. (22) arise from the Q2,1/Q1,0 and
Q2,0 terms, respectively, while the third and fourth terms
in the square bracket on the right hand side of Eq. (22)
arise from the −b1,1Q1,0 term. For l > 0, the second and
fourth terms cancel, while the third term can be rewritten
in terms of sNI

l,ν . Performing the sum over q analytically,
we find

b2,1(l > 0) =
e2ω̃

e2ω̃ − 1
× (23)

[

(2l+ 1)

∞
∑

ν=0

(

e−(sl,ν+1)ω̃ − e−sNI

l,ν ω̃
)

]

.

For l = 0, the second and fourth terms do not completely
cancel and contribute, after the sum over q is done an-
alytically, a term proportional to exp(−3ω̃). Combining
the first and third terms in the square bracket on the
right hand side of Eq. (22), we find

b2,1(l = 0) =
e2ω̃

e2ω̃ − 1

[

e−3ω̃ − e−2ω̃+ (24)

∞
∑

ν=0

(

e−(s0,ν+1)ω̃ − e−sNI

0,ν ω̃
)

]

.

Since the mass ratio dependence only enters through the
sl,ν , Eqs. (21)-(24) remain valid for b1,2. In practice, we
calculate the first 10,000 sl,ν values for each l, l = 0−50,
and determine the b1,2(l) and b2,1(l) using Eqs. (23) and
(24). We find that we obtain better convergence if we
employ the same cutoff on the terms that involve sl,ν
and sNI

l,ν than if we perform the sum over ν that involves

the non-interacting sNI
l,ν values analytically.

Figure 2 shows the b2,1(l) for the first five angular mo-
menta for (a) κ̄ = 1 and (b) κ̄ = 6.67. The b2,1(l) are
negative for even l and positive for odd l for all ω̃. The
leading contribution for any mass ratio comes from the
solution with ν = 0. For odd l, we have sl,0+1 < sNI

l,0 [see

Fig. 1(b) for l = 1], implying that the b2,1(l) are positive
for all ω̃ and κ̄. For even l, we have sl,0 + 1 > sNI

l,0 [see

Fig. 1(c) for l = 2], implying that the b2,1(l) are negative.
For l = 0, the − exp(−2ω̃) term gives the leading contri-
bution, implying that b2,1(l) is negative for all ω̃ and κ̄.
A similar analysis can be conducted for the b1,2(l). The
alternating sign of the b1,2(l) and the b2,1(l) implies that
the full virial coefficients b1,2 and b2,1 converge like an
alternating series as more l terms are included. We find
that the convergence rate decreases as κ̄ increases.
Figure 3 shows the virial coefficients b2,1 for κ̄ = 2, 3, 4

and 6.67 (from bottom to top) as a function of ω̃. The
virial coefficient b2,1 for κ̄ = 2 and 3 is negative for all
ω̃. The virial coefficient for κ̄ = 4 is negative for large
ω̃, changes sign at ω̃ ≈ 1.67, and is positive for small ω̃.
The virial coefficient for κ̄ = 6.67 changes sign at a much
lower temperature, i.e., at ω̃ ≈ 5.59. The sign change of
b2,1 can be attributed to the fact that the negative l = 0
contribution increases slower in magnitude than the pos-
itive l = 1 contribution with increasing κ̄ (see Fig. 2), so
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FIG. 2: (Color online) Angular momentum contributions
b2,1(l) for l = 0 − 4 for (a) κ̄ = 1 and (b) κ̄ = 6.67 as a
function of ω̃ at unitarity. Solid, dotted, dashed, dash-dotted,
and dash-dot-dotted lines show b2,1(l) for l=0, 1, 2, 3, and 4,
respectively.
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ω~

0
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0.2
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1

FIG. 3: (Color online) Solid, dashed, dash-dotted, and dash-
dot-dotted lines show the virial coefficient b2,1 as a function
of ω̃ for κ̄ = 2, 3, 4 and 6.67. The thin dotted line at 0 is a
guide to emphasize the sign change of b2,1 for κ̄ = 4 around
ω̃ ≈ 1.67.

that the positive l = 1 contribution dominates for suffi-
ciently large κ̄. In the high temperature limit, b2,1 first
becomes positive for κ̄ ≈ 3.11. In the low temperature
regime, b2,1 remains negative for κ̄ < 8.62 and changes
sign when s1,0 = 1, i.e., the κ̄ value beyond which three-
body resonances can appear [28–32]. We find that the
virial coefficient b1,2 is negative for all κ̄ and ω̃. We note
that a general framework for calculating b1,2 and b2,1 for
unequal-mass systems is given in Ref. [52]; however, this
reference did not provide numerical values for b1,2 and
b2,1. The fact that the third order virial coefficient b2,1

0.1 1 10
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b(n
)
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2, b

(n
)

2,
1

0.1 1 10
-1
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1

FIG. 4: (Color online) Circles show the universal parts b
(0)
1,2

(κ̄ < 1) and b
(0)
2,1 (κ̄ > 1) of the virial coefficients as a function

of κ̄. The inset (the axes use the same labels as the main

panel) shows the first non-universal corrections b
(2)
1,2 and b

(2)
2,1

(squares) and the second non-universal corrections b
(4)
1,2 and

b
(4)
2,1 (triangles) as a function of κ̄. The lines are guides to the
eye.

changes sign as κ̄ increases suggests that the higher or-
der virial coefficients might also change sign. Through-
out this paper, we restrict our analysis to systems with
n1 + n2 ≤ 3.

In the high temperature limit, we Taylor expand the
bn1,n2

(n1 + n2 = 3) [53],

bn1,n2
= b(0)n1,n2

+ b(2)n1,n2
ω̃2 + b(4)n1,n2

ω̃4 + · · · . (25)

To our calculated accuracy, we find that the odd powers
vanish, i.e., the virial coefficients b1,2 and b2,1 appear to
be even functions in ω̃, similar to their single-component
counterparts. For the equal-mass system, the expres-

sion (25) was considered in Ref. [39]. The b
(0)
n1,n2

term
is independent of ω̃ and thus universal. The higher or-

der corrections b
(n>0)
1,2 and b

(n>0)
2,1 are non-universal, since

they depend on the harmonic trapping potential through

ω̃. The supplementary material [53] tabulates the b
(n)
1,2

and b
(n)
2,1 , n = 0, 2, 4 and 6, as a function of κ̄. The b

(n)
1,2

and b
(n)
2,1 with n = 0, 2, and 4 are shown in Fig. 4 as a

function of κ̄, where κ̄ is shown on a log scale. The univer-

sal virial coefficient b
(0)
2,1 has an infinite slope at κ̄ = 13.61

where Efimov physics sets in. For κ̄ > 13.61 (not shown),

b
(0)
2,1 is expected to diverge due to the contributions of the
infinite sequence of Efimov trimers. In the limit κ̄ → 0,
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the b1,2(l) with l > 0 vanish and we have

b1,2(κ̄ = 0) =
−e2ω̃

(eω̃ + 1)2(e2ω̃ + 1)

≈− 1

8
+

3

32
ω̃2 − 3

64
ω̃4 +O(ω̃6). (26)

III. THERMODYNAMICS OF THE TRAPPED

MASS-IMBALANCED TWO-COMPONENT

FERMI GAS

This section considers the thermodynamics of the har-
monically trapped two-component Fermi gas at unitarity
as a function of κ. For the equal-mass case, we refer the
reader to Refs. [39–43]. We measure our temperature T
in units of the semi-classical Fermi temperature TF of a
single-component Fermi gas with N/2 particles of mass
m1, TF = [6(N/2)]1/3~ω/kB [54]. Correspondingly, our
energy is measured in units of EF , where EF = kBTF .
Our starting point is the thermodynamic potential Ω(2),
Eq. (6), with n1 + n2 ≤ 3 (i.e., including b1,1, b1,2, and
b2,1).
The two coupled number equations, derived from Ni =

−∂Ω(2)/∂µi (i = 1 and 2), are

N1

Q1,0
= f1(z1) + b1,1z1z2 + 2b2,1z

2
1z2 + b1,2z1z

2
2 (27)

and

N2

Q1,0
= f2(z2) + b1,1z1z2 + b2,1z

2
1z2 + 2b1,2z1z

2
2 . (28)

Throughout, we use the full temperature dependent ex-
pressions for the virial coefficients, and

f1(z1) =

∞
∑

n1=0

n1bn1,0z
n1

1 (29)

and

f2(z2) =

∞
∑

n2=0

n2b0,n2
zn2

2 . (30)

Equations (29) and (30) can be employed if zi < e3ω̃/2,
i = 1, 2. For larger zi, useful parameterizations of
Eqs. (29) and (30) are

fi(zi) ≈ −Li3(−zi) (31)

+ 1
8 ω̃

2 [−Ln(1 + zi)− Li3(−zi)]

+ 1
1920 ω̃

4

[

17zi
(1 + zi)2

− 30Ln(1 + zi)− 13Li3(−zi)

]

+O(ω̃6),

where Ln is the natural logarithm function and Li is the
polylogarithm function. For the temperatures considered

0

1

2

3

z 1, z
2

-1 -0.5 0 0.5 1
P

0

0.1

0.2

0.3

z 1, z
2
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(b)

FIG. 5: (Color online) Trapped system at unitarity. Solid and
dashed lines (dash-dotted and dotted lines) show the fugaci-
ties z1 and z2, respectively, for κ = 1 (κ = 13) as a function
of the polarization P for N = 5× 107 and (a) T/TF = 1 and
(b) T/TF = 1/2.

in this paper, terms of order ω̃6 and higher are negligi-
ble. Equations (29) and (30) treat the non-interacting
“reference pieces” f1(z1) and f2(z2) as an infinite series
in the fugacities and the interacting pieces at third or-
der in the fugacities. Alternatively, one may consider
truncating the non-interacting and interacting pieces at
the same order in the fugacities. We have opted for the
former approach for two reasons: (i) In the limit that
P = 1 or −1, we recover the exact results of the single-
component Fermi gas. (ii) In the regime where the zi
are small, i.e., in the regime where the virial equation
of state up to third order is expected to provide reliable
results, we find fairly small differences [e.g., < 0.06% in
Fig. 5(a)] between the approaches that treat the non-
interacting piece at infinite order and third order in the
fugacities. For a given temperature T , polarization P ,
and total number of particles N , we solve Eqs. (27) and
(28) self-consistently for z1 and z2.

Figure 5 shows the fugacities z1 and z2 at unitarity
as a function of the polarization for (a) T/TF = 1 and
(b) T/TF = 1/2 for κ = 1 (solid and dashed lines) and
κ = 13 (dash-dotted and dotted lines). The fugacities for
T/TF = 1 are smaller than 0.35 for both mass ratios con-
sidered, suggesting that the virial equation of state can
likely be trusted for T/TF ≥ 1. For T/TF = 1/2, in con-
trast, the fugacities are as large as 3.5, suggesting that
the description is at best qualitatively correct. On the
scale shown, the fugacities for T/TF = 1 and κ = 1 are
nearly indistinguishable from those at the same tempera-
ture but higher mass ratio. This makes sense intuitively,
since the fugacities are small in the high temperature
regime, thereby suppressing higher order terms in the
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FIG. 6: (Color online) Free energy per particle F/N (N =
5× 107) as a function of the polarization P for (a) T/TF = 1
and (b) T/TF = 1/2 for the trapped system at unitarity.
Alternating solid and dotted curves, from top to bottom, show
the free energy for κ = 1− 13 in units of 1. The dashed lines
connect the (Feq , Peq) points for different κ.

virial expansion. At lower temperatures [see Fig. 5(b)],
the higher order virial coefficients become more impor-
tant, as evidenced by the fact that the fugacities show a
notable dependence on the mass ratio.
In the following, we use the virial equation of state to

determine the free energy F , F = Ω(2) + µ1N1 + µ2N2,
the entropy S, S = −∂Ω(2)/∂T (calculated for fixed ω,
µ1 and µ2), and the energy U , U = F +TS, as a function
of the mass ratio κ, the polarization P , and the tempera-
ture T at unitarity. Solid and dotted lines in Fig. 6 show
the free energy per particle F/N as a function of the po-
larization for (a) T/TF = 1 and (b) T/TF = 1/2. In both
panels, the alternating solid and dotted lines, from top to
bottom, correspond to mass ratios κ = 1, 2, . . . , 13. For
the equal mass system, the minimum of the free energy
occurs for P = 0, i.e., for equal numbers of spin-up and
spin-down fermions. As κ increases, the minimum of the
free energy moves to positive polarizations, i.e., to a ma-
jority of heavy particles. We refer to the (F, P ) values at
which the free energy is minimized as (Feq , Peq). Dashed
lines in Figs. 6(a) and 6(b) connect the (Feq , Peq) val-
ues for different κ. For both temperatures, Peq increases
with increasing κ, which can be understood by realiz-
ing that the three-body system consisting of two heavy
atoms and one light atom has a lower energy than the
three-body system consisting of one heavy atom and two
light atoms. Moreover, for a given κ, Peq increases with
decreasing temperature. This trend makes sense, since

we expect interaction effects to become more important
as the temperature decreases.
To obtain an analytical expression for Peq, we take

the derivative of F with respect to P at fixed temper-
ature and fixed number of particles. We find that the
extremum of P occurs when the two fugacities are equal
(i.e., z1 = z2 = zeq). This restriction allows for a
straightfoward calculation of zeq, namely

N

Q1,0
= f1(zeq) + f2(zeq) + 2b1,1z

2
eq + 3(b2,1 + b1,2)z

3
eq

(32)

can be solved self-consistently for fixed N and T . Up to
third order in zeq, Peq can be written as

Peq =
N

Q1,0
(b2,1 − b1,2)z

3
eq. (33)

Peq is equal to zero for all κ if the virial equation of state
terminates at the second order in the fugacity. At the
third order, we find Peq = 0 for κ = 1, since b1,2 equals
b2,1 in this case. For κ > 1, however, Peq is positive
since b2,1 > b1,2 for all κ > 1. Interestingly, the sign
change of b2,1 in the high temperature regime for κ ≈
3.11 does not lead to a discontinuity or a sign change of
Peq since b1,2 is finite and negative for all κ. For small
deviations from κ = 1, we find that Peq and Feq change
linearly and quadratically, respectively, as a function of
κ for fixed temperature and fixed number of particles.
We find that ∂2F/∂P 2, calculated for fixed T and N ,
is greater than zero for all polarizations and mass ratios
considered, which implies that the system is stable at this
level of approximation.
To discuss the dependence of the entropy S and the

energy U on the temperature and the polarization, we
focus on the mass ratio κ = 6.67, i.e., on the experimen-
tally realizable K-Li system at unitarity [20–26]. Thin
dotted and solid lines in Fig. 7(a) show the free energy
per particle as a function of the polarization for T/TF =
1, 1.2, . . . , 1.8 (from top to bottom). The dashed line con-
nects the (Feq , Peq) values for different T (but fixed κ
and N). The vertical solid line marks the value Peq for
T/TF = 1, where F/N = −2.82EF , S/N = 5.73kB, and
U/N = 2.91EF . Thin solid and dotted lines in Fig. 7(b)
show the entropy per particle S/N as a function of the po-
larization for T/TF = 0.95, 0.96, . . . , 1.04 (from bottom
at P ≈ 0 to top at P ≈ 0.5). Similarly, thin solid and dot-
ted lines in Fig. 7(c) show the energy per particle U/N as
a function of the polarization for T/TF = 0.99, 1, . . . , 1.06
(from bottom at P ≈ 0.5 to top at P ≈ 0.1). The dashed
lines in Figs. 7(b) and 7(c) connect points of constant
U/N = 2.91EF and S/N = 5.73kB, respectively (i.e.,
the values of U/N and S/N at Peq for T/TF = 1). As
expected, the entropy for a fixed energy and the energy
for a fixed entropy are concave and convex functions of
the polarization, respectively. It can be seen that the
entropy per particle S/N is maximized at Peq while the
energy per particle U/N is minimized at Peq. The fact
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FIG. 7: (Color online) Thermodynamic observables F/N ,
S/N , and U/N as a function of the polarization P for κ = 6.67
and N = 5 × 107 for the trapped system at unitarity. Alter-
nating dotted and solid lines show (a) the free energy per par-
ticle F/N for T/TF = 1, 1.2, . . . , 1.8 (from top to bottom), (b)
the entropy per particle S/N for T/TF = 0.95, 0.96, . . . , 1.04
(from bottom at P ≈ 0 to top at P ≈ 0.5), and (c) the energy
per particle U/N for T/TF = 0.99, 1, . . . , 1.06 (from bottom
at P ≈ 0.5 to top at P ≈ 0.1). In panel (a), the dashed
line connects (Feq , Peq) values for different T . In panels (b)
and (c), the dashed lines show S/N for U/N = 2.91EF and
U/N for S/N = 5.73kB , respectively. In all three panels, the
vertical lines indicate the value of Peq for T/TF = 1.

that −∂2S/∂P 2 (∂2U/∂P 2) is greater than zero for fixed
U and N (for fixed S and N) is consistent with the fact
that the system is stable as concluded earlier from the
fact that ∂2F/∂P 2 is greater than zero for fixed T and
N . Lastly, we note that the maximum of the isotherm
S/N moves to smaller P with decreasing T and that the
minimum of the isotherm U/N moves to larger P with
decreasing T .

The thermodynamic quantities shown in Figs. 5-7 have
been obtained for N = 5×107 particles. For fixed T/TF ,
the actual temperature T decreases with decreasing N ,
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FIG. 8: (Color online) Percent difference between Peq for N =
5× 107 and Peq for N = 500 as a function of the mass ratio κ
for the trapped system at unitarity. Solid, dashed and dotted
lines show the percent difference for T/TF = 1/2, 1 and 2,
respectively.

since TF decreases with decreasing N . Correspondingly,
ω̃ increases with decreasing N (again, assuming fixed
T/TF ). Since the leading order non-universal corrections
scale with ω̃2 [see Eqs. (25) and (31)], the non-universal
corrections are expected to be negligible for large N , but
not for very small N . Figure 8 shows the percentage dif-
ference between Peq for N = 5×107 and Peq for N = 500
as a function of κ for T/TF = 2, 1 and 1/2. The non-
universal corrections are largest, i.e., on the order of 2%,
for κ = 1 and T/TF = 1/2 [solid line in Fig. 8]. For
larger N , the non-universal corrections are even smaller,
implying that Figs. 5-7 show essentially universal, N -
independent thermodynamic quantities of the trapped
two-component Fermi system with equal trapping fre-
quencies.
We conclude this section by noting that Peq is quite

small for the K-Li system down to T/TF = 1, but then
changes more rapidly as the temperature is lowered fur-
ther. The dependence of Peq on the mass ratio κ may be
enhanced by switching to a trap geometry for which the
single-particle energies are dependent on the mass m1 or
m2. One such system is, as detailed in the next section,
the homogeneous system, which favors much larger polar-
izations than the trapped system for comparable T/TF .

IV. THERMODYNAMICS OF THE UNIVERSAL

HOMOGENEOUS MASS-IMBALANCED

TWO-COMPONENT FERMI GAS

A. Local Density Approximation

This section shows how the homogeneous system can
be related to the harmonically trapped system via the
local density approximation [39, 55]. In the high tem-
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perature limit, the thermodynamic potential Ω
(2)
hom of the

homogeneous system can be written as

Ω
(2)
hom = Ω

(1)
1,hom +Ω

(1)
2,hom +∆Ωhom, (34)

where

Ω
(1)
1,hom = −kBT

V

λ3
m1

∞
∑

n1=1

bn1,0,hom zn1

1 , (35)

Ω
(1)
2,hom = −kBT

V

λ3
m1

∞
∑

n2=1

b0,n2,hom zn2

2 , (36)

and

∆Ωhom =− kBT
V

λ3
m1

∞
∑

n1=1

∞
∑

n2=1

bn1,n2,homz
n1

1 zn2

2 . (37)

Here, the bn1,n2,hom denote the virial coefficients of the
homogeneous system, and z1 and z2 are the fugaci-
ties of the homogeneous system. The virial coefficients
bn1,n2,hom are defined by Eqs. (10)-(12) with the Qn1,n2

interpreted as the partition functions of the homogeneous
systems. Equations (34)-(37) are analogous to the high
temperature limits of Eqs. (6)-(9). In Eqs. (34)-(37), we
used that the high temperature limit of Q1,0,hom is given
by V/λ3

m1
[45], where V is the volume of the system and

where λm1
is the thermal de Broglie wavelength of a par-

ticle of the heavy species,

λm1
=

√

2π~2

m1kBT
. (38)

In the local density approximation [39, 55], the ther-
modynamic potential Ω(2) of the trapped system is given

by a weighted average of Ω
(2)
hom(~r) over all space,

Ω(2) =

∫

Ω
(2)
hom(~r)d

3~r
∫

d3~r
, (39)

i.e., we assume that the thermodynamic potential at
each location ~r in the trap can be approximated by
the corresponding bulk value. This implies that the
zi in Eqs. (35)-(37) are replaced by zi(~r), zi(~r) =
exp[µi,loc(~r)/(kBT )], where the local chemical potentials
µi,loc(~r) are defined as

µi,loc(~r) = µi − 1
2miω

2~r2. (40)

The integrations on the right hand side of Eq. (39)
are straightforward. We first perform the integration in-
volving ∆Ωhom(~r). The integration in the denominator
introduces a factor of V , which cancels with the factor
of V in the numerator. This leaves, after performing the
angular integrals,

∆Ω =− 4π
kBT

λ3
m1

∞
∑

n1=1

∞
∑

n2=1

bn1,n2,homz
n1

1 zn2

2 × (41)

∫ ∞

0

exp [− 1
2 (m1n1 +m2n2)ω

2r2/(kBT )]r
2dr.

Performing the remaining integration and expressing the
result in terms of the mass ratio κ, we find

∆Ω =− kBT

(

kBT

~ω

)3

×
∞
∑

n1=1

∞
∑

n2=1

bn1,n2,hom

(n1 + n2/κ)3/2
zn1

1 zn2

2 . (42)

The prefactor [kBT/(~ω)]
3 coincides with the high T

limit of Q1,0 for the trapped system. Comparison of
Eqs. (9) and (42) allows us to relate the universal virial

coefficients b
(0)
n1,n2

of the trapped system to the virial co-
efficients bn1,n2,hom of the homogeneous system,

bn1,n2,hom = (n1 + n2/κ)
3/2b(0)n1,n2

. (43)

Considering the integrations over Ω
(1)
1,hom(~r) and

Ω
(1)
2,hom(~r), one finds analogous relationships between

bn1,0,hom and b
(0)
n1,0

, and between b0,n2,hom and b
(0)
0,n2

.

B. Universal thermodynamics of the homogeneous

system

This section considers the universal, N -independent
thermodynamics of the homogeneous two-component
Fermi gas at unitarity as a function of κ. We
measure our temperature T in units of the semi-
classical Fermi temperature TF of a single-component
Fermi gas with N/2 particles of mass m1, kBTF =
[6π2(N/2)/V ]2/3~2/(2m1) [45]. Notice that the Fermi
temperature scales inversely with the mass m1. This
implies that the Fermi temperature of N/2 light parti-
cles with mass m2 is κ times larger than the Fermi tem-
perature of N/2 heavy particles. The different Fermi
temperatures of the single-component heavy and light
particles are, of course, a direct consequence of the mis-
matching Fermi surfaces of unequal-mass Fermi gases or,
equivalently, a direct consequence of the fact that the
single-particle energies of a mass mi particle in a box
with periodic boundary conditions scale with 1/mi. The
high temperature virial equation of state of the homo-
geneous system can be applied down to T/TF about 1
for κ = 1. For unequal masses, the applicability regime,
using the heavy mass to define TF (see above), is limited
to T/TF & κ.
The coupled number equations of the homogeneous

system, up to third order, read

N1λ
3
m1

V
=− Li3/2(−z1) + b1,1,homz1z2

+ 2b2,1,homz
2
1z2 + b1,2,homz1z

2
2 (44)

and

κ3/2N2λ
3
m1

V
= −Li3/2(−z2) + κ3/2b1,1,homz1z2

+ κ3/2b2,1,homz
2
1z2 + 2κ3/2b1,2,homz1z

2
2 . (45)
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FIG. 9: (Color online) Fugacities z1 and z2 of the homo-
geneous system as a function of the polarization P for (a)
κ = 1 and T/TF = 6.67, (b) κ = 6.67 and T/TF = 6.67, (c)
κ = 1 and T/TF = 2, and (d) κ = 2 and T/TF = 2. Dotted
and dash-dotted lines show z1 and z2, respectively, for the
unitary system obtained by solving Eqs. (44) and (45) self-
consistently. For comparison, solid and dashed lines show z1
and z2, respectively, for the non-interacting system.

Dotted and dash-dotted lines in Fig. 9 show z1 and z2, re-
spectively, as a function of the polarization P for the uni-
tary system obtained by solving Eqs. (44) and (45) self-
consistently for fixed κ and T . The panels show the fu-
gacities for (a) κ = 1 and T/TF = 6.67, (b) κ = 6.67 and
T/TF = 6.67, (c) κ = 1 and T/TF = 2, and (d) κ = 2 and
T/TF = 2. For the equal mass case, Eqs. (44) and (45)
are symmetric and thus z1 and z2 are symmetric about
P = 0 for any temperature [see Figs. 9(a) and 9(c)]. For
unequal masses, in contrast, Eqs. (44) and (45) are not
symmetric and the crossing of the fugacities z1 and z2 is
shifted to positive polarizations [see Figs. 9(b) and 9(d)].
For comparison, solid and dashed lines in Fig. 9 show the
fugacities z1 and z2, respectively, for the corresponding
non-interacting systems. Even for the non-interacting
system, the fugacities z1 and z2 are not symmetric with
respect to P = 0; this is a direct consequence of the κ3/2

factor in Eq. (45). For −1 < P < 1, the fugacities for
the non-interacting systems lie above the respective fu-
gacities for the unitary systems. For κ > 1, this implies
that the unitary system has a smaller equilibrium polar-
ization Peq than the non-interacting system for the same
T and κ. Intuitively, this makes sense since we expect
that the attractive interactions, at least for mass ratios
not too much larger than 1, push the system toward an
equal mixture of heavy and light particles.

Figure 10 shows the free energy per particle F/N as
a function of the polarization P for T/TF = 10 and
three different mass ratios κ. The solid lines are cal-
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FIG. 10: (Color online) Free energy per particle F/N of the
homogeneous system as a function of the polarization P for
T/TF = 10 and mass ratios κ = 1, 2, and 6.67. The curves are
grouped in sets of two, each labeled by their corresponding
mass ratio. The solid lines are calculated using the virial
equation of state at unitarity. For comparison, the dotted
lines show F/N for the non-interacting system.

culated using the virial equation of state of the unitary
system. For comparison, dotted lines show F/N for the
non-interacting system. Since the free energy is a con-
cave function with respect to P for fixed N and T , the
equilibrium polarizations are stable minima.
To better understand the interplay of the second and

third order virial coefficients for the homogeneous sys-
tem, we calculate zeq analogously to Eq. (32) and find
Peq for the homogeneous system to be

Peq =
Nλ3

m1

V

(

− Li3/2(−zeq)

[

1− 1

κ3/2

]

+ [b2,1,hom − b1,2,hom]z
3
eq

)

. (46)

Eliminating the polylogarithm function, Peq can be
rewritten as

Peq =
κ3/2 − 1

κ3/2 + 1
− b1,1,hom

κ3/2 − 1

κ3/2 + 1

2V

Nλ3
m1

z2eq+ (47)

+

[

b
(0)
1,2,hom

1− 2κ3/2

κ3/2 + 1
+ b

(0)
2,1,hom

2− κ3/2

κ3/2 + 1

]

2V

Nλ3
m1

z3eq.

As expected, the z0eq term depends only on the mass ra-
tio κ and is greater than zero for κ > 1; in the limit
κ → ∞, the non-interacting system prefers to have only
heavy particles, i.e., Peq → 1. The z2eq term of the uni-
tary system, in contrast, is negative for all κ > 1. This
implies that the second order virial coefficient of the uni-
tary system acts to decrease Peq compared to the Peq of
the non-interacting system. Interestingly, the z3eq term of
the unitary system is positive for κ < 5.40 and negative
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FIG. 11: (Color online) Equilibrium polarization Peq of the
homogeneous system at unitarity as a function of the mass
ratio κ for T/TF = 10. The dashed and solid lines show
Peq calculated using the virial equation of state up to second
and third order, respectively. The dashed and solid lines are
nearly indistinguishable on the scale shown. For comparison,
the dotted line shows Peq for the non-interacting system. The
solid line in the inset shows the difference between the Peq ’s
calculated using the virial equation of state up to the third
and second orders (the dashed line shows zero as a reference).

for κ > 5.40, independent of temperature. This implies
that the third order virial coefficients act to increase (de-
crease) Peq for 1 < κ < 5.40 (κ > 5.40) compared to
the Peq calculated using the virial equation of state up
to second order.
Figure 11 shows the equilibrium polarization Peq as a

function of κ for T/TF = 10. The dashed and solid lines
show Peq calculated using the virial equation of state of
the unitary system up to second and third order, respec-
tively. The second and third orders are nearly indistin-
guishable on the scale shown. For comparison, the dotted
line shows Peq for the non-interacting system. The inset
of Fig. 11 shows the difference of Peq calculated up to
the second order subtracted from Peq calculated up to
the third order. Note that the zero crossing occurs at
κ = 5.56, and not at κ = 5.40, since the equilibrium fu-
gacity determined from the virial equation of state up to
third order is slightly smaller than that determined from
the virial equation of state up to second order.
Figure 12 shows the equilibrium polarization Peq as a

function of T for κ = 6.67. The dashed and solid lines
show Peq at unitarity calculated using the virial equation
of state up to second and third order, respectively. The
second and third orders are nearly indistinguishable on
the scale shown. For comparison, the dotted line shows
Peq for the non-interacting system; it is independent of
T and equals 0.89. The inset of Fig. 12 shows the dif-
ference of Peq at unitarity calculated up to the second
order subtracted from Peq at unitarity calculated up to
the third order. Since the mass ratio used is larger than
5.40, the third order correction acts to further decrease
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FIG. 12: (Color online) Equilibrium polarization Peq of the
homogeneous system at unitarity as a function of the tem-
perature T for κ = 6.67. The dashed and solid lines show
Peq calculated using the virial equation of state up to second
and third order, respectively. The dashed and solid lines are
nearly indistinguishable on the scale shown. For comparison,
the dotted line shows Peq for the non-interacting system. The
solid line in the inset shows the difference between the Peq’s
calculated using the virial equation of state up to the third
and second orders.

Peq for T/TF > 5. Note that the virial equation of state
is likely unreliable for T/TF . 6.67. As the tempera-
ture decreases, interactions become more important and
the deviations between Peq for the unitary and the non-
interacting system increase.

V. CONCLUSIONS

This paper considers the high temperature virial equa-
tion of state of unequal-mass two-component Fermi gases
at unitarity. For the trapped system with equal frequen-
cies and κ > 1, we found that the equilibrium polariza-
tion Peq at unitarity is relatively small for the temper-
atures considered. The small deviations from Peq = 0
are introduced by the third order virial coefficients. For
the homogeneous system, in contrast, we found compar-
itively large Peq for κ > 1. The value of Peq is de-
termined by an intricate interplay between the second
and third order virial coefficients. For the cases inves-
tigated, Peq increases with decreasing temperature for
the trapped system while Peq decreases with tempera-
ture for the homogeneous system. The fourth-order virial
coefficients b3,1 and b2,2 for unequal-mass systems are
presently unknown, preventing us to estimate the impor-
tance of higher-order terms in the virial equation of state.
At the temperatures considered, the curvature of the

free energy is positive for all polarizations, thus implying
the absence of any first-order phase transition. If the
unequal-mass system is prepared with a polarization P
different from Peq , then the free energy lies above the
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value it would have for Peq . This suggests that the system
prepared with P 6= Peq may phase separate when the
temperature falls below a certain critical value.
In future work, it will be interesting to investigate the

high temperature thermodynamics of unequal mass sys-
tems when the light and heavy species are confined by
harmonic potentials with different frequencies via the lo-
cal density approximation. Moreover, the treatment of
cylindrically symmetric traps will be relevant for ongo-
ing experiments. Other future extensions of our work in-
clude the treatment of unequal mass systems away from
unitarity and at lower temperatures.
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Appendix A: Thermodynamics of the trapped

single-component fermi gas

This appendix studies the virial expansion of the
single-component Fermi gas in a harmonic trap. The
results for the single-component Fermi gas serve as a ref-
erence for the trapped s-wave interacting two-component
Fermi gas. We first derive compact expressions for the
virial coefficients, and then discuss convergence proper-
ties of the virial expansion.
Equation (7) of the main text defines the expansion

coefficients bn; throughout this appendix, we replace n1

by n and use a single subscript n to denote the virial
coefficients bn and the canonical partition functions Qn.
Partial derivatives of the grand canonical potential Ω(1)

determine the various thermodynamic quantities. The
number of particlesN of the single-component Fermi gas,
e.g., can be expressed as a derivative with respect to the
chemical potential µ,

N = −∂Ω(1)

∂µ
= Q1

∞
∑

n=1

nbnz
n. (A1)

To determine the coefficients bn, we use that the popula-
tion N(Ej) of a state with a given single-particle energy
Ej is given by the Fermi-Dirac distribution,

N(Ej) =
1

e(Ej−µ)/(kBT ) + 1
, (A2)

with the constraint that the total number of particles N
is given by

N =
∞
∑

j=1

N(Ej). (A3)
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FIG. 13: (Color online) Virial coefficients bn of the single-
component harmonically trapped Fermi gas as a function of
ω̃. Solid, dotted, dashed, dash-dotted and dash-dot-dotted
lines show b2, b3, b4, b5 and b6, respectively.

The single-particle energies of the three-dimensional har-
monic oscillator are given by Ej = (j + 1/2)~ω, j =
1, 2, 3 . . ., and have a degeneracy of j(j + 1)/2. Us-
ing the single-particle energies and their degeneracies in
Eqs. (A2) and (A3), we find a relationship between N ,
µ, and T ,

N =

∞
∑

j=1

j(j + 1)

2

[

e

(

j+
1
2−

µ
~ω

)

ω̃
+ 1

]−1

. (A4)

To compare Eqs. (A4) and (A1), we Taylor expand Eq.
(A4) for small z, z = exp[µ/(kBT )],

N =

∞
∑

j=1

j(j + 1)

2

∞
∑

n=1

(−1)n+1e
−
(

j+
1
2

)

ω̃n
zn. (A5)

The sum over j can be done analytically. Pulling out a
factor of Q1, we obtain

N = Q1

∞
∑

n=1

(−1)n+1 e
3
2 (n−1)ω̃

(

eω̃ − 1

enω̃ − 1

)3

zn. (A6)

Comparing Eqs. (A6) and (A1), the expansion coeffi-
cients bn can be read off,

bn =
(−1)n+1

n
e
3
2 (n−1)ω̃

(

eω̃ − 1

enω̃ − 1

)3

. (A7)

Figure 13 shows the first five expansion coefficients as
a function of ω̃. In the low temperature limit, the bn
decay exponentially as exp[−3(n − 1)ω̃/2]. The sign of
bn is given by (−1)n+1 for all ω̃ and the bn monotonically
decrease in magnitude as ω̃ increases. The coefficients are
even functions in ω̃, i.e., bn remains unchanged as ω̃ is
replaced by −ω̃. Expanding Eq. (A7) for large T (small



13

0 0.2 0.4 0.6 0.8 1
ω~

0

0.5

1

1.5

2

z

FIG. 14: (Color online) Contour plot of the percent difference
100(z+2b2z

2+3b3z
3−N/Q1)/(N/Q1). The dashed line shows

the percent difference of 1. The solid lines below the dashed
line show the percent difference in steps of powers of 10 down
to a value of 0.001, while solid lines above the dashed line
show the percent difference in steps of 1 up to a value of 7.
We consider the region where the percent difference is less
than 1 to be well converged.

ω̃), we find [56]

bn ≈ (−1)n+1

n4

[

1− 1

8
(n2 − 1)ω̃2

+
1

1920
(17n4 − 30n2 + 13)ω̃4 +O(ω̃6)

]

. (A8)

In the limit ω̃ → 0 we have “universal” physics in the
sense that the virial coefficients bn approach constants,

bn → b
(0)
n as ω̃ → 0, where b

(0)
n = (−1)n+1/n4 [39].

Figure 14 shows a contour plot of the percent difference
between z+2b2z

2+3b3z
3 and N/Q1 [see Eq. (A1)]. The

deviation between the exact expressions and the virial
expansion is smaller than about 1% for z ≤ 1 and is

below 5% for z ≈ 1.5 for the range of temperatures
shown. Thus, the virial expansion up to the third order
provides a qualitatively correct description of the high-
temperature physics for z . 1.5. Even though we ex-
panded around small z, Eq. (A1) is an analytic function
of z that can be continued along the positive real axis
for all z ≥ 1 [57]. For the two-component Fermi gas
with pairwise interactions, in contrast, the convergence
radius of the virial equation of state, to the best of our
knowledge, is not known.
Lastly, one can use Eq. (A7) to calculate the Qn for

n > 1. A compact expression for the Qn, n > 1, can be
found in the literature [45, 57, 58],

Qn =
∑

{~m}

n
∏

i=1

1

mi!
(Q1bi)

mi , (A9)

where {~m} represents all possible sets of n non-negative
integers {m1, . . . ,mn} that fullfill the constraint

n
∑

i=1

imi = n. (A10)

Each set describes a unique way to divide a system of n
particles into smaller clusters of mi particles. For n = 3,
e.g., we have the sets {3, 0, 0}, {1, 1, 0}, and {0, 0, 1}, i.e.,
the three-body system can be thought of as consisting of
three monomers, of one monomer and one dimer, or of
one trimer. For completeness, we report the expressions
for the first few Qn,

Q1 =

∞
∑

n=0

∞
∑

l=0

(2l + 1)e−(2n+l+3/2)ω̃ =
e3ω̃/2

(eω̃ − 1)3
, (A11)

Q2 = b2Q1 +
1
2Q

2
1, (A12)

Q3 = b3Q1 + b2Q
2
1 +

1
6Q

3
1, (A13)

and

Q4 = b4Q1 + b3Q
2
1 +

1
2b

2
2Q

2
1 +

1
2b2Q

3
1 +

1
24Q

4
1, (A14)

where we have used that b1 = 1 [see Eq. (A8)].
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