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The recent experimental realization of spin-orbit coupling for ultra-cold atoms has generated
much interest in the physics of spin-orbit coupled degenerate Fermi gases. Although recently the
BCS-BEC crossover in three-dimensional (3D) spin-orbit coupled Fermi gases has been intensively
studied, the corresponding two-dimensional (2D) crossover physics has remained unexplored. In
this paper, we investigate, both numerically and analytically, the BCS-BEC crossover physics in 2D
degenerate Fermi gases in the presence of a Rashba type of spin-orbit coupling. We derive the mean
field gap and atom number equations suitable for the 2D spin-orbit coupled Fermi gases and solve
them numerically and self-consistently, from which the dependence of the ground state properties
(chemical potential, superfluid pairing gap, ground state energy per atom) on the system parameters
(e.g., binding energy, spin-orbit coupling strength) is obtained. Furthermore, we derive analytic
expressions for these ground state quantities, which agree well with our numerical results within a
broad parameter region. Such analytic expressions also agree qualitatively with previous numerical
results for the 3D spin-orbit coupled Fermi gases, where analytic results are lacked. We show that
with an increasing SOC strength, the chemical potential is shifted by a constant determined by the
SOC strength. The superfluid pairing gap is enhanced significantly in the BCS limit for strong SOC,

but only increases slightly in the BEC limit.

PACS numbers: 03.75.Ss, 05.30. Fk, 74.20.Fg

I. INTRODUCTION

Spin-orbit coupling (SOC), the interaction between the
spin and orbital degrees of freedom of a particle, has
played important roles in condensed matter as well as
atomic and nuclear physics. For instance, it is known
that the coupling between electron spin and its linear
momentum in solids leads to many important condensed
matter phenomena such as spin and anomalous Hall ef-
fects [1, 2], topological insulators and and superconduc-
tors [3], spintronics [4], etc. In atomic physics, the cou-
pling between the electron spin and its motion around an
atomic nucleus is responsible for many of the details of
atomic structure [5].

Superfluidity and superconductivity are another im-
portant phenomena in physics and have been widely
studied in many physical systems, including solids, He-
lium liquids, as well as ultra-cold atomic gases [6]. Al-
though particles in superfluids and superconductors usu-
ally possess spins or pseudospins, the effects of SOC
on superfluidity and superconductivity have remained
largely unexplored. In this context, the recent experi-
mental realization of SOC for ultra-cold atoms [7] pro-
vides a completely new platform for exploring many-body
phenomena in spin-orbit coupled superfluids, including
both Bose-Einstein condensates (BECs) [8, 9] and degen-
erate Fermi gases [10, 11]. In the presence of SOC, vari-
ous new and exotic superfluid phenomena may exist since
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spins are not conserved during their motion. In particu-
lar, in spin-orbit coupled BECs, the ground state phase
diagrams as well as the collective excitations have been
studied [8]. In spin-orbit coupled degenerate Fermi gases,
the crossover physics from the Bardeen-Cooper-Schrieffer
(BCS) superfluids of loosely bounded Cooper pairs to
the BEC of tightly bounded molecules has been inves-
tigated extensively, in both uniform and trapped three-
dimensional (3D) gases [10, 11]. However, the study of
spin-orbit coupled two-dimensional (2D) Fermi gases is
still lacked.

On the other hand, the 2D degenerate Fermi gas (with-
out SOC) in itself is one of the most active topics in
ultra-cold atomic physics [12]. Experimentally, the 2D
degenerate Fermi cold atomic gases have been realized
recently using a highly anisotropic pancake-shaped po-
tential [13], and the interaction energy in this system has
been measured using the radio-frequency spectroscopy
[14]. In this system, tunable interactions between atoms
through Feshbach resonance [15] allow the exploration of
the crossover physics from the BCS superfluids to the
BEC of molecules in 2D [16]. In addition to the study of
many-body physics such as quantum fluctuations, non-
Fermi liquid behavior, etc. [17], the 2D Fermionic cold
atomic gases are particularly interesting because of the
existence of exotic topological excitations such as Majo-
rana fermions with non-Abelian exchange statistics [18].

Motivated by these recent experimental breakthroughs
in the realization of SOC and 2D Fermi gases, in this
paper, we investigate, both numerically and analytically,
the BCS-BEC crossover physics in 2D degenerate Fermi
gases in the presence of a Rashba type of SOC. Our main



results are the following:

1) We derive the mean field gap and atom number
equations suitable for the 2D spin-orbit coupled Fermi
gases.

2) These two equations are solved numerically and self-
consistently, from which the dependence of the ground
state properties (chemical potential, superfluid pairing
gap, ground state energy per atom) on the system param-
eters (e.g., binding energy, SOC strength) is obtained.

3) We derive analytic expressions for these ground
state physical quantities, which agree well with our nu-
merical results within a broad parameter region. Such
analytic expressions also agree qualitatively with previ-
ous numerical results for the 3D spin-orbit coupled Fermi
gases [10], where analytic results are lacked.

4) We find that with an increasing SOC strength «, the
chemical potential is shifted by a constant —ma? deter-
mined by . The superfluid pairing gap and the ground
state energy per atom are affected at the order of a*
rather than o2, which means that weak SOC does not
affect the pairing gap and the ground state energy per
atom. In the strong SOC regime, the pairing gap and
the ground state energy are enhanced significantly in the
BCS limit, but only increase slightly in the BEC limit.
Although these analytic results are obtained for the 2D
Fermi gases, they also provide qualitative understanding
for the numerical results in 3D Fermi gases [10], where
similar changes of the chemical potential and superfluid
pairing order with respect to the SOC strength are ob-
served but analytic results are lacked.

The paper is organized as follows. Section II describes
the physical system: the spin-orbit coupled 2D degen-
erate Fermi gases, and the corresponding Hamiltonian.
In section III, we derive the mean field gap and atom
number equations. These equations are self-consistently
solved in section IV, both numerically and analytically
(through perturbative methods), to obtain the ground
state properties (chemical potential, superfluid order pa-
rameter, and ground state energy per atom) of the spin-
orbit coupled Fermi gases in the BCS-BEC crossover.
Section V consists of discussion and conclusion.

II. THE PHYSICAL SYSTEM AND THE
HAMILTONIAN

The physical system in consideration is a 2D de-
generate Fermi gas. Experimentally, the 2D degener-
ate Fermi gas has been realized using a 1D deep op-
tical lattice along the third dimension, where the tun-
neling between different layers is suppressed completely
[13, 14]. The 1D optical lattice potential Vj sin®(272/\y,)
can be generated using two counter-propagating laser
beams (parallel to the z axis with a wavelength A, ).
In this case, the two-body binding energy is given
by E, =~ 0.915hwy exp(v/2nly/as)/m, where wy =

8m2Vh/(mA2) is the effective trapping frequency along

the z axis, I, = y/h/(mwr), and as is the 3D s-wave

scattering length [19]. Therefore the two-body binding
energy Fj can be tuned by varying the s-wave scattering
length as via the Feshbash resonance for the study of the
BCS-BEC crossover physics [16]. For a small attractive
as — 07, Ep — 0, corresponding to the BCS limit. While
for a small repulsive a; — 0%, E, — oo, corresponding
to the BEC limit. When Ej increases from 0 to oo, the
system evolves continuously from a BCS superfluid to a
BEC of molecules.

The SOC for cold atoms can be generated by the in-
teraction between atoms and laser beams, as shown in
many previous literatures [20], and demonstrated in a
recent benchmark experiment [7]. In this paper, we con-
sider only a Rashba type of SOC, and the effects of other
types of SOC (e.g. Dresselhaus or the combination of
both) can be investigated similarly. For simplicity we
consider a uniform Fermi gas and neglect the weak har-
monic trap in the 2D plane, whose effects can be incor-
porated using the local density approximation.

The Hamiltonian for this uniform 2D spin-orbit cou-
pled degenerate Fermi gases can be written as

H:HF+HI+H5007 (1)
where
Hr =" GCf,Cio (2)
k,o

is the single atom Hamiltonian, C’;LU is the creation oper-
ator for a Fermi atom with the momentum k = (k;, ky ),
o =1, ] are the pseudospins of atoms. (x = €x — p with
the kinetic energy ex = k?/2m, the chemical potential s,
and the atom mass m. Henceforth, we take the Planck
constant A = 1. The s-wave scattering interaction be-
tween atom

Hi=g Z CikTOlLCklcfkTv (3)
k

where g is the effective scattering interaction parameter.
In a 2D Fermi gas,
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The Hamiltonian for the Rashba type of SOC for atoms
can be written as

Heoe = Y [(ky +ike) Cly Cic) + (ky — ik ) Cf Cierl, (5)
k

where a is the SOC strength. In solid state materials, o
is generally much smaller than Kr/(2m) with K as the
Fermi vector. However, in ultra-cold neutral atoms, «
can reach the order of Kr/(2m) [20]. Such strong SOC,
together with tunable interactions through the Feshbach
resonance, may yield some exotic many-body phenom-
ena that have not been explored in solid state systems.
Recently, a generalized SOC with the Rashba and the
Dresselhaus terms in the Hamiltonian (1) has been con-
sidered [11].



IIT. MEAN FIELD GAP AND ATOM NUMBER
EQUATIONS

As the first step for the eventual understanding of the
2D spin-orbit coupled Fermi gas, we consider the zero
temperature superfluid physics under the mean field ap-
proximation [16]. Generally, the mean field approxima-
tion can give qualitatively but not quantitatively correct
results [21]. In the mean field approximation, the super-
fluid order parameter is taken as

A=g> (CiCoit). (6)
k

With this pairing order parameter, we can rewrite the
two-body interaction Hamiltonian (3) as

Hi=—A%/g+ A (CCaq +CT ). (7)
k

Therefore the total Hamiltonian can be rewritten as
1 A2
Hp ==Y UH(k)MU(k)— — 8
B 2; (k) My ¥ (k) g+;<k (8)

under the Nambu basis  ¥(k) =
(Cxt, Cxys C’T_k i —CikT)T, where Bogoliubov-de-Gennes

operator

spinor

G aky A0

o ak_ Ck 0 A
M=l A 0 —a —aks ©)

0 A —ak G

preserves the particle-hole symmetry, k+ = k, & ik,.
The quasiparticle excitation spectrum

El)(‘_’i = /\\/(ek —ptak)?4+ A2 (10)

is the eigenvalue of the matrix My, A\ = + correspond

to the particle and hole branches of the spectrum. For

each branch, there are two different excitations due to

the existence of the SOC. From Eq. (8), we see the total

ground-state energy is

A? 1

Eg=-—+) [G—s(B+E ). (1)

g k 2 ’ ’

Without the SOC, the term (Ey , + Eyf _)/2 reduces to
the well-known form ' '

By = V(e — p)? + A% (12)
in the BCS theory.
The ground-state properties of the 2D spin-orbit cou-
pled Fermi gases can be obtained from the atom number
equation

1,0E,  0E!

-G _ 14 = * 13
n=-gr =205t
and the superfluid gap equation

O0FE¢q _ Z[ A _ l(aEL
OA ” 2ex + Fy 4% OA

OE;
oA =0 (14)

IV. GROUND STATE PROPERTIES

A. Numerical results

We numerically solve the above atom number equa-
tion (13) and the gap equation (14) self-consistently to
obtain various ground state quantities. In Fig. 1, we
plot the dependence of the ground state quantities: the
chemical potential u, the superfluid order parameter A,
and the ground state energy per atom E = Eg/n, on
the physical parameters: the SOC strength « and the
binding energy F,. We see that the chemical potential p
decreases with the increasing spin-orbit coupling strength
a. With increasing binding energy, the chemical poten-
tial also decreases, signaling the crossover physics from
the BCS superfluids to the BEC molecules. One inter-
esting feature shown in Fig. 1(a2) is that the shift of the
chemical potential induced by the SOC depends only on
the SOC strength.

In Fig. 1(bl), we see the superfluid order parameter
A increases with increasing a. Here A is the superfluid
order parameter without SOC. For a small «, the change
of A/A is very small. The growth of A becomes signifi-
cant only when K is large than the Fermi energy Er.
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Figure 1: (Color online) (al-cl) Plot of the chemical poten-
tial p, the dimensionless superfluid pairing gap A/Ag, and
the ground-state energy per atom E with respect to the SOC
strength a for the two-body binding energy E, = 0.1EFr and
1.0 Er. (a2-c2) Plot of p, A/Ao, and E with respect to Ej
for aKr = 0.5EFr and 1.0 Er. In all figures, the black solid
lines and the red dashed lines represent the approximate ana-
lytical results obtained in the paper, while the open symbols
correspond to the exact numerical results.



Furthermore, the effects of the SOC are clearly seen for
a small E} (the BCS side), but not important for a large
Ey (the BEC side).

The ground state energy per atom E has a similar be-
havior as A/Ag. It increases with «, but the growth is
only important for a large a. Without SOC £ = —%EF,
and the SOC induces a small correction. The change of
E is significant in the BCS side (small E}), but negligible
in the BEC side (large Ep). We note that similar changes
of the chemical potential and the superfluid order param-
eter have been observed numerically in a 3D spin-orbit
coupled Fermi gases. All these numerical observed phe-
nomena will be explained in the next subsection where
the analytic expressions for these ground state quantities
are derived.

B. Analytic results

Although the above numerical results give the depen-
dence of the ground state quantities on the SOC strength
for certain parameters, analytic results are desired for a
better understanding of the underlying physics. In the
following, we present a perturbative method (with « as
the small parameter) to analytically extract the funda-
mental ground-state properties of the spin-orbit coupled
Fermi gases. For this purpose, we rearrange Eq. (11)
into two parts

Eg = Eo + Ese (15)
with
A2
Ey = Y + k(Ck - Ey) (16)

as the ground-state energy without SOC. For a 2D Fermi
gas, Ey can be obtained exactly, yielding [16]

m 24+ A2 — A2
Bo= Mt AT - S

E,
(17)
The second term in Eq. (15) is given by
1
Esoc - Zk[Ek - g(Elir’+ + Eli—)]v (18)

which describes the contribution from the SOC.
Because it is difficult to derive a simple analytic ex-
pression for Eg,. directly, we first perform a Taylor ex-
pansion with respect to the SOC strength, and then do
the summation over k. Formally, Fy,. can be written as

m .
Esoe = —Ci(p, A)n' 19

i, A (19)

with 7 = ma?/2. The coefficients C; (i1, A) can be ob-
tained, in principle, for any order. Here, we only give the

first six orders

C1 = —4A(Vp? + A% + p), (20)

8 @
= ——(14 ——— 21
G = 50+ L) (21)
—16A2
co = —————— 22
3 15(M2+A2)3/27 ( )
2
C, = 32uA (23)

35(u2 + A2)5/2°

64A2(A2 — 44:2)
C; = ———— © 7 24
5T 315(u2 + A2)7/2° (24)

—128uA2(3A2% — 42)
Co = : 25
o 693 (u2 + A2)9/2 (25)

Although the expression for Eg,. is very complicate,
the expressions for the chemical potential 1 and the su-
perfluid pairing order A are very simple, as we will show
later in the paper. With the ground-state energy Eg,
the superfluid pair order and the chemical potential can
be derived by self-consistently solving the corresponding
gap and number equations

2+A2_
%) = Ga(n, A, p), (26)

Vi + A2+ = 2Bp — Gu(n, A p) (27

In(

analytically, where Ga(n,A,u) = >, aCIé(ZyA)

Gu(m,Ap) = >, %ﬁ’mni. Er is the Fermi energy
for a 2D non-interacting Fermi gas without SOC and
with the density n = mEp /7. Without SOC (n = 0),
Ga(n, A, p) = Gu(n, A, ) = 0, and Egs. (26) and (27)
become

n', and

p2+ A2 —p = E,
\/M2+A2+M = 2Fp.

In this case, the superfluid pairing order and the chemical
potential are given exactly by Ay = V2E,Er and pg =
Er — Ep/2 [16], as expected.

In the presence of SOC (1 # 0), the nonlinear equa-
tions (26) and (27) cannot be solved exactly. However,
approximate solutions can be derived for the physical
parameters within current experimentally achievable re-
gion. Since the ground-state energy depends on A?, the
solutions of Egs. (26) and (27) can be assumed to be
p=>,_omn" and A* =3 A;n'. Substituting these
expressions into the nonlinear equations (26) and (27)
and then comparing the coeflicients for the same order of
n*, we obtain A,; and p; respectively.

1. Chemical potential

After a straightforward but tedious calculation, the co-
efficients for the chemical potential are given by pu; =



—2, p2 = 4E,/[3(Ep + 2EF)?] and pus = —64E,(E, —
4Er)/[15(Ey + 2Er)*]. Note that the second order jz
is already very small for all different values of Ej when
1n < Er, therefore the high-order terms do not affect the
chemical potential significantly. The chemical potential
can then be written as

HZEF—%—%?- (28)
From Fig. 1la, we see Eq. (28) agrees well with the exact
values of the chemical potential obtained from numeri-
cally solving Eqs. (13) and (14) self-consistently.

Equation (28) shows clearly that with the increasing
SOC strength «, the chemical potential p is decreased
by 217 = ma?, as shown in Fig. 2. If we define an effec-
tive chemical potential 1 = p + 2 = p + ma?, Eq. (28)
can be rewritten as T = Ep — Ep/2. Similar to the previ-
ous discussion without SOC, we find that in the asymp-
totic BCS limit with a weak bound state (E, < FEr),
the chemical potential T ~ Er. However, in the deep
BEC regime with a strong bound state (E, > EFr), the
chemical potential T = —FE}/2. The BCS-BEC crossover
may occur around the crossover point @ = 0 [16]. Fur-
thermore, in the presence of SOC, Eq. (28) can also
be written as p = py + pa, where uy = Erp — 2
is the chemical potential for the free Fermi gas and
pa = —Ep/2 + 3., pai(Ep)n' reflects the revision of
the chemical potential induced by the two-body binding
energy Fy. Here pa; = 0 implies that the binding energy
E} has no effect on the chemical potential p at the order
of n = ma?/2.

It is important to point out that although the chemi-
cal potential x4 only has a simple shift from that without
SOC, the underlying physics is quite different. Without
SOC, the pairing wave function is simply singlet. How-
ever, in the presence of SOC, each energy band contains
both spin up and down components. As a result, the
pairing wave function has a more complicated structure
with both singlet and triplet components [22]. The triplet
pairing correlations in s-wave superfluids may be used
to detect the anisotropic Fulde-Ferrell-Larkin-Ovchinikov
states [23]. In addition, the 2D Fermi gases with SOC can
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Figure 2: (Color online) (a) The chemical potential without
SOC in the BCS limit. (b) The chemical potential with SOC
in the BCS limit. For weak SOC, their difference Ay = ma?®.

exhibit p-wave character in the helicity bases. If a Zee-
man field in Hamiltonian (8) is added, a novel topolog-
ical phase transition from non-topological superfluids to
topological superfluids can be induced. In the topological
superfluid phase, there exist Majorana fermions and the
associated non-Abelian statistics, which are the critical
ingredients for implementing topological quantum com-
puting [18].

2. Superfluid order gaps

The effects of SOC are more interesting for the super-
fluid pairing gap A. Applying the same procedure as
that for the chemical potential, we find

16E,Er

A? ~ 2B Ep + —— 2
VRt S, v 22

(29)

There is no first-order correction with respect to 7 (~ a?)
for A%, and the second-order n? (~ a*) is the leading cor-
rection. Moreover, the second-order coefficient 92A2%/9n?
is always positive and has a maximum 41%/3 (= m?a?*/3)
when Ey = 2Er. The high-order coefficients for n? and
n* are A3 = —512E,Er(Ey, — Er)/[15(E, + 2Er)*] and
Ay = 64E,Er(1017E2 — 3508 B, Ep + 1076 E%) /[315(Ep +
2Er)%] respectively.

In order to see the effect of SOC on the superfluid
pairing gap more clearly, we introduce a dimensionless
quantity

A 8
A== iy 8 o
= A, \/ t3smaaEe B0

where A is the superfluid pairing gap without SOC.
In the asymptotic BCS limit with a weak bound state
(Ey < Ep), Ag =~ /1+2n?/E%. For a weak SOC
(n < Ep) in typical solid-state materials, Ay ~ 1,
which means that the SOC does not affect the super-
fluid pairing gap significantly. However, for a strong
SOC n ~ Er that has been achieved for ultracold atoms
[7], this gap can be enhanced greatly. In the deep BEC
regime with a strong binding energy (F, > FEp and
Ey > 1), Ag ~ /1+8n?/(3E?), therefore the super-
fluid pairing gap increases only slightly with the increas-
ing SOC strength. These analytic results agree well with
the numerical results shown in Fig. 1b. Note that similar
behavior for Ay is also observed in the numerical results
in 3D [10].

3. Ground-state energy per atom

In terms of Egs. (28) and (29), the ground-state energy
per Fermi atom E = FEg/n can be obtained

1 SEp )
EF~——F
5t g

(Ey + 2EF)277 ' (1)



The comparison of Eq. (31) with the direct numerical
simulation results is shown in Fig. 1lc. The ground-
state energy, like the superfluid pairing gap, depends on
n? (~ a*). In the asymptotic BCS limit (E, < EFf),
E ~ —Er/2+2n?/(3EF), which means that the ground-
state energy can be enhanced significantly only for a
large 7. In the deep BEC regime (E, > FEp and
E, > 1), E ~ —Er/2 + 8Epn*/(3E}), therefore the
ground-state energy only increases slightly even when
n ~ Ep. In addition, the high-order coefficients for n?
and n* are given by E3 = —128E,Er/[5(Ey + 2Er)?Y]
and E; = 128E,Er(491E, — 538EF)/[315(E, + 2EF)9]
respectively. Note that although such mean field the-
ory gives qualitatively correct results, it may not agree
quantitatively with the experimental results in the deep
BEC regime as shown in recent Monte Carlo numerical
simulation for the 2D Fermi gases without SOC [21].

Finally, we want to remark that if the high-order terms
in the chemical potential i, the superfluid pairing gap A,
and the ground-state energy per Fermi atom F = Eg/n
are included, the analytical results in Eqgs. (28), (30)
and (31) fit better with the numerical results even for
Er <aKp < 3.0FEF.

V. DISCUSSION AND CONCLUSION

The mean field zero temperature BCS-BEC crossover
physics discussed above provides the first critical step
towards the understanding of the 2D spin-orbit coupled
degenerate Fermi gases. Clearly, many issues need be
further explored in the future, as demonstrated by the
development along this direction after the initial submis-
sion of our paper. In particular, the finite temperature ef-
fect need be taken into account in a realistic experiment.
Without SOC, it is known that there are no superflu-
ids for 2D degenerate Fermi gas at a finite temperature

[24], where relevant physics is the Berezinskii-Kosterlitz-
Thouless (BKT) transition [25], leading to the generation
of the vortex-antivortex pairs. Recent some interesting
effects of the SOC on the BKT transition [26] has been
investigated. In experiments, the Fermi gases are con-
fined in a 2D harmonic trap, whose effects may be taken
into account using the local density approximation, as
shown in the recent preprint [26]. The trap geometry
for the Fermi gases may also be quais-2D instead of the
strict 2D. In this case, the confinement along the third
direction may affect the critical transition temperature,
which need be further explored.

In summary, motivated by the recent experimental
breakthrough for the realization of the SOC for cold
atoms and the 2D degenerate Fermi gas, we investigate
the zero temperature BCS-BEC crossover physics in 2D
spin-orbit coupled degenerate Fermi gases using the mean
field approximation. By solving the corresponding gap
and atom number equations both numerically and an-
alytically, we reveal the ground state properties of the
spin-orbit coupled 2D Fermi gases. Our analytic results
agree quantitatively with our numerical results in 2D and
qualitatively with previous numerical results for the 3D
spin-orbit coupled Fermi gases, where analytic results
are lacked. The analytic expressions for various physi-
cal quantities may provide a powerful tool for engineer-
ing and probing many new topological phenomena in 2D
Fermi gases, including the intriguing Majorana physics
and the associated non-Abelian statistics.
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